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We present a stability analysis of the 2D ¢—t' Hubbard model on a square
lattice for ¢’ = —t/6. We find possible phases of the model (d-wave Pomer-
anchuk and superconducting states, band splitting, singlet and triplet flux
phases), and study the interplay of them.
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1. Introduction

In recent years the two-dimensional (2D) Hubbard model has been used
as the simplest model to describe the electron correlations in the copper-
oxide planes of high-temperature superconductors since experimental data
suggest that superconductivity in cuprates basically originates from the
CuOq layers. Apart from the antiferromagnetism and d,>_ »-wave supercon-
ductivity, a few other instabilities related to symmetry-broken states [1-6]
and occurring together with them in the 2D ¢-¢' Hubbard model with next-
nearest-neighbor hopping ¢ have been reported. They are the flux phase
[1,2] or d-wave density order [4], the triplet flux phase [6], the d-wave
Pomeranchuk instability [3] and band splitting [5]. Ferromagnetism and
p-wave triplet superconductivity have been observed also by the authors of
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Refs. [7-10] and Ref. [10], respectively, at certain region of electron concen-
tration around the Van Hove filling (where the Fermi surface passes through
the saddle points of the single particle dispersion) for large negative values .

However, the competition and interplay of these phases remain an open
problem. In this paper we investigate superconducting and other possible
instabilities of the 2D ¢—' Hubbard model at small negative value of t'. We
consider also the leading instabilities depending on the ratio U/t (in the
papers cited above it was fixed).

We start from the Hamiltonian of the ¢—# Hubbard model

=Y er] Y S f
H = EkClyCho T N CleCk'lTCk2¢Ck'2¢5k1+k2,k:’1+k:’2a (1)
k(T klk’l
kakl

where e is the Bloch electron energy with the momentum k, c;[w(c,m) is
the creation (annihilation) operator for the electrons with spin projection
o € {11}, U is the local Coulomb repulsion of two electrons of opposite
spins, IV is the number of lattice points, lattice spacing equals unity. For
a square lattice the single particle dispersion has the form

ex = —2t(cos ky + cosky) — 4t' cos ky, cos ky, . (2)

By means of the flow equation method [11] the Hamiltonian is trans-
formed into one of molecular-field type. This Hamiltonian is calculated in
second order in the coupling U [5]. Adopting the notations of Ref. [5], free
energy can be expressed by the order parameters Ay in the form
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where the first term is the energy contribution and the second term is the
entropy contribution, 8 = 1/(kgT), T is the temperature, ¢ is the hopping
integral of electrons between nearest neighbors of the lattice, V4 is effective
second-order interaction, and fg is an entropy coefficient. All quantities of
Eq. (3) are defined in Ref. [5].

We start from the symmetric state and investigate whether this state is
stable against fluctuations of the order parameters A. As soon as a non-
zero A yields a lower free energy in comparison with the symmetric state
A = 0, then the symmetric state is unstable and the system will approach
a symmetry broken state. This indicates a phase transition.
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2. Results and discussion

We perform numerical calculation on asquare lattice with 24 x 24 pointsin
the Brillouin zone for the various representations under the point group Cly,.
Initially, such numerical calculations have been performed in Refs. [5,12] for
the 2D Hubbard model, but they were sensitive to the lattice size at low
temperatures. Here we use an improved scheme (for details see Ref. [13]).

Apart from antiferromagnetism at small # and half-filling, one of the
leading instabilities at small doping is a Pomeranchuk instability with
dy2_,2-wave symmetry in the singlet channel (see Fig. 1). The correspond-
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Fig.1. Temperature phase diagram of the model at t' = —t/6 for n = 0.95 (a)
and n = 0.86 (b). SC stands for superconductivity, BS for band splitting, PI for
Pomeranchuk instability, FP for flux phase, and TFP for triplet flux phase.
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ing eigenvector signals a deformation of the Fermi surface which breaks the
point group symmetry of the square lattice from tetragonal to orthorhom-
bic. At high temperatures the system has a tetragonal structure and an
orthorhombic one at low temperatures. One can see from Fig. 1 that at
the values U > 6t the critical temperature of this transition decreases with
increasing the hole doping § = 1 — n (n is the electron concentration). It
means that the hole doping enhances the tendency towards an orthorhombic
distortion of the Fermi surface (or lattice). The d,»_,»-wave Pomeranchuk
instability dominates at the Van Hove filling (Fig. 1(b)).

The next instability, which is developed in the region of electron con-
centration around half-filling and is one of the strongest in that region, is a
particle-hole instability of singlet type with staggered p-wave symmetry. It
yields [5] a splitting into two bands and may lead to an energy gap in the
charge excitations spectrum. Other instabilities are the singlet and triplet
flux phases. In contrast to the case of # = 0, where the singlet and triplet
T of the particle-hole instabilities with staggered symmetry of d,2_,2-wave
character are degenerate (that is the flux phase), they are different at ¢’ # 0
and the triplet one is higher.

The superconducting dg2_,» instability is the strongest one at small dop-
ing and low temperatures. It is not destroyed at sufficiently large doping as
well as large values of |t'|. At weak coupling U < 5¢ and close to half-filling
the transition from a paramagnetic phase to superconducting one can occur
at very low temperatures (Fig. 1(b)). The peculiar feature of the supercon-
ducting phase should be noted. Away from the Van Hove filling (at the Van
Hove filling the density of states has a singularity, Fig. 1(b) corresponds to
this situation) when temperature approaches zero the curves corresponding
to superconducting phase are flat, whereas the curves corresponding to all
other phases observed become steep. Therefore, at very low temperatures
the transition from a paramagnetic phase to the superconducting one can
occur at very small values of the corresponding effective interaction in con-
trast with the transitions to other possible phases which require some finite
values of the effective interactions. One can see also that the critical tem-
peratures of all phases increase with the increase of correlation strength U/t.
Thus, electron correlations enhance the tendency towards the transition to
the phases observed by us.

In conclusion, we have presented a stability analysis of the 2D ¢t Hub-
bard model on a square lattice. We have found possible phases of the model
(d-wave Pomeranchuk and superconducting states, band splitting, singlet
and triplet flux phases), and studied the interplay of them. One phase may
suppress another phase. To which extend two order parameters can coexist
with each other is a question, which has to be investigated in the future.
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