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UBe13: PROTOTYPE OF A NON-FERMI-LIQUIDSUPERCONDUCTOR�N. Oeshler, F. Kromer, T. Tayamay, K. Tenyaz, P. GegenwartG. Sparn, F. SteglihMax Plank Institute for Chemial Physis of SolidsNöthnitzer Str. 40, 01187 Dresden, GermanyM. LangInstitute of Physis, University of Frankfurt/Main60054 Frankfurt/Main, Germanyand G.R. StewartDepartment of Physis, University of Florida, Gainesville, FL 32611, USA(Reeived July 10, 2002)We review pronouned non-Fermi-liquid (NFL) e�ets in the low-tem-perature normal state of the heavy-fermion superondutor UBe13 (T �0:9K). We argue that these NFL e�ets may presumably be related toshort-range antiferromagneti (AF) orrelations whih are manifested inthe superonduting (SC) state by a �line of thermodynami anomalies�,B�(T ), between T � 0:7K (B = 0) and B � 4T (T ! 0). These anomaliesare shown to mark the preursor of the lower of the two phase transitions(at T1 and T2) in U1�xThxBe13, x1 � 0:019 < x < x2 � 0:0455. Forx2 < x < x < 0:07, a single SC transition is stated whih due to thermalexpansion, �(T ), and spei� heat, C(T ), measurements, oinides withthis lower transition at T2. We disuss two possible senarios both of whihimply an intimate interrelation of superondutivity with the symmetry-broken state that forms below T2. Finally, we address two other lines ofthermal expansion anomalies in the T�x phase diagram of U1�xThxBe13whih show an only weak dependene on magneti �eld: (i) A positive�(T ) peak, along with a C(T ) peak, is found in pure UBe13 at Tmax � 2K.� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.y Present address: Institute for Solid State Physis, University of Tokyo, Kashiwa,Japanz Present address: Hokkaido University, Sapporo 060-0810, Japan(255)



256 N. Oeshler et al.Upon Th doping, Tmax(x) is depressed linearly and vanishes lose to theupper ritial Th onentration x2 at whih the two phase transitionsmerge to one. (ii) A negative anomaly in �(T ) develops for x > x2 atTmin. Tmin(x) inreases by more than a fator of two when raising the Thontent to x = 0:1. Similar to previous results by Aliev et al. [F.G. Alievet al., J. Phys.: Condens. Matter 8, 9807 (1995)℄, an almost temperature-independent non-linear suseptibility, �(3)(T ), is found for U0:9Th0:1Be13,at striking variane to �(3)(T ) for pure UBe13. The impliations of thisobservation for the assignment of the valene state of Uranium at x = 0and x = 0:1 are also addressed.PACS numbers: 74.25.Bt, 74.70.Tx1. IntrodutionStrongly orrelated eletron systems in a metalli environment remainone of the outstanding problems in ondensed-matter physis. Certainlanthanide- and atinide-based intermetallis, the so-alled heavy-fermionmetals, are partiularly well suited to study strongly orrelated eletron sys-tems. While at high temperatures these materials ontain a dense lattieof loal 4f=5f moments only weakly oupled to the Fermi sea of itinerant(s; p; d) ondution eletrons, well below some harateristi temperatureT � (� 10�100K), the loal moments beome progressively redued, and si-multaneously new quasipartiles are formed. These �heavy fermions� (HF)resemble the ondution eletrons of a simple metal but aquire a huge ef-fetive mass m�, up to a thousand times greater than the free-eletron massas estimated from the large eletroni spei� heat at low T . HF might bealled �omposite fermions� onsisting of a dominating loal f (the �heavy�)omponent with some admixture of deloalized ondution-eletron (�light�)ontributions.Residual interations between HF frequently appear to result in broken-symmetry states at low T . For example, a heavy Landau�Fermi-liquid (LFL)state is found to oexist with small-moment antiferromagneti (AF) orderbelow TN (� 10K) [1℄. At even lower temperatures (T � 1K), the LFL statein these systems beomes unstable against a superonduting (SC) transitionand HF superondutivity oexists with AF order below T (� 1K) [1℄.An inreasing number of HF metals, however, do not ahieve a LFLstate but rather exhibit strong non-Fermi-liquid (NFL) properties at lowtemperatures [2℄. In most ases NFL behaviour an be related to the viin-ity of an AF quantum-ritial point (QCP). Examples are CeCu2Si2 andCeCoIn5, the �rst [3℄ and one of the most reently [4℄ disovered HF super-ondutors. For suh systems, the possibility of a spin-�utuation-mediatedpairing mehanism is urrently the subjet of ontroversial disussion.



UBe13: Prototype of a Non-Fermi-Liquid Superondutor 257The ubi ompound UBe13 is a partiularly fasinating example of a�NFL superondutor� [5℄. Its HF-SC state forms below T � 0:9K out of anormal state that is dominated by strong inoherent sattering haraterisedby an extremely large and strongly T -dependent eletrial resistivity and arather low magneti suseptibility [5℄. This has led to the proposal [6℄ that (i)the valene state of Uranium is 4+ (5f2) with a low-lying non-magneti � 3rystal �eld (CF)-derived doublet state, and (ii) a two-hannel quadrupolarKondo e�et is responsible for UBe13 behaving as an �inoherent metal�. Onthe other hand, CF e�ets studied via spei� heat [7℄ and Raman-sattering[8℄ experiments as well as measurements of the non-linear suseptibility [9℄seem to support a trivalent (5f3) on�guration. Speial interest in UBe13arose beause of the omplex T�x phase diagram of U1�xThxBe13, with theourrene of a double-phase transition for low Th onentration [10℄. Thiswill be explored in Set. 3. following a brief disussion of the exoti normal(N)-state and SC properties of un-doped UBe13 (Set. 2). The paper isonluded in Set. 4.2. Low-T properties of UBe13Two variants of UBe13 with markedly di�erent SC and N-state propertieshave been reently identi�ed [11℄: While �H-type� UBe13 exhibits T valuesbetween 0.85K and 0.9K, �L-type� UBe13 is haraterised by T � 0:75K.Most polyrystalline samples reported are of type H, while all L-type samplesare single rystals. In the following we disuss the low-T properties of high-quality UBe13 single rystals of the �H-type� variant.As shown in Fig. 1(a), the spei� heat of UBe13 shows an anomalousenhanement in the SC state that develops below about 0.7K. Assuming anaxial symmetry of the SC order parameter [12℄, we an �t the spei� heatdata for 0.7K � T � T (dotted line in Fig. 1(a) [13℄) and by extrapolatingthis to low T an obtain an estimate for the additional ontribution (inset ofFig. 1). The latter would be even larger at low temperatures if one would as-sume an isotropi SC order parameter for whih the low-T spei� heat variesexponentially instead of showing a ubi T dependene. Our measurementsof the linear thermal expansion oe�ient �(T ) shown in Fig. 2 providemore diret evidene for an additional anomaly below T. By projetingthe width of the SC transition from the C(T ) onto the �(T ) data (vertialdotted lines in Fig. 2) we �nd that upon ooling, the SC transition manifestsitself in the steep derease in �(T ) at T ' 0:9K, thus leaving the broadenedminimum as an independent anomaly [14℄. This assignment is orroboratedby a thermodynami analysis of the SC transition. Employing the onstru-tion as indiated in Fig. 2 to extrat the �(T ) disontinuity at T, ��s,we are able to alulate the initial hydrostati-pressure dependene of T
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 Fig. 1. Spei� heat�C = C � Cnulear of a UBe13 single rystal as�C=T vs T on alinear sale (B = 0) (a) and on a logarithmi sale for the same sample at B = 0 and12T (b). Dotted line in (a) indiates the quasipartile ontribution Cax assumingan axial SC order parameter [13℄. Inset shows the extra ontribution observed inthe quasipartile spei� heat, ÆC = �C � Cax, as ÆC=T vs T . Solid and dottedlines in (b) represent �C=T � log (T0=T ) and �C=T = 0 � �pT , respetively.
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Fig. 2. Low-T spei� heat and thermal expansion of a UBe13 single rystal. Widthof SC transition is indiated by the vertial dotted lines. Vertial arrows indiatethe position of the �2K maximum� (see text). Inset shows � vs T at varying �elds.



UBe13: Prototype of a Non-Fermi-Liquid Superondutor 259by means of the Ehrenfest relation, (�T=�p)p!0 = Vmol T (3��s=�Cs),where Vmol = 81:3 m3=mol is the molar volume. The so-derived pressureoe�ient of (�T=�p)p!0 = �(13 � 4)mK/kbar is in exellent agreementwith the results of pressure studies, �(13 � 4)mK/kbar [15℄. An investi-gation of the �eld dependene of �(T ) reveals that the minimum in �(T )is almost ompletely suppressed by a �eld of 4T whih has, however, littlee�et on the SC transition (inset of Fig. 2).As in the �(T ) data, f. inset of Fig. 2, the anomaly in spei� heat mea-surements performed as a funtion of temperature at B = 2T an be seenmore learly [13℄. In Fig. 3, we display C(B;T = onst:)=T data taken atvarious temperatures and indiate that, like the SC�N transition at B2, theobserved features may be replaed by idealised jumps. From these isother-mal �eld sans of the spei� heat as well as from the �(T ) measurementsat onstant �elds shown in the inset of Fig. 2, a line of anomalies B�(T ) hasbeen established in the B�T phase diagram of UBe13 (Fig. 3(b)).
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Fig. 3. (a) Low-temperature spei� heat as C=T vs B at varying temperaturesof single-rystalline UBe13. (b) Corresponding B�T phase diagram inluding theupper ritial �eld, B2(T ), as determined by spei� heat (open squares) andthermal expansion (open triangles) as well as positions of anomalies observed as afuntion of either temperature in �(T;B = onst:) (solid triangles) or magneti�eld in C(T = onst:; B)=T (solid squares), giving rise to a line of anomalies,B�(T ).



260 N. Oeshler et al.In the following we onentrate on the N-state properties of UBe13. Inaddition to the harateristi sale T � whose estimates range from 8K [7℄ to30K [16℄, aounting for the extremely large e�etive arrier masses, thereexists at least one more low-energy sale in UBe13. The latter manifestsitself in a distint maximum in the thermal expansion oe�ient and a lesspronouned shoulder in the spei� heat around 2K, see Fig. 2. Our mea-surements of the thermal expansion oe�ient �, disussed below, show thatthese �2K �utuations� are reminisent of loal spin �utuations in disor-dered Kondo systems. The �2K �utuations� manifest themselves also in apronouned maximum in the resistivity around 2K [16℄.From the maximum value of �(T ), an inelasti mean free path as shortas a few lattie spaings an be inferred. As demonstrated in Fig. 4(a), al-ready moderate �elds are apt to suppress this �utuation ontribution verye�iently. In a wide �eld range, 4T � B � 10T, we are able to sale the
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Fig. 4. (a) � vs T for a UBe13 single rystal at B = 0 and di�ering �elds; (b) thesame data as in (a), normalised to the respetive �(T ) value at T = 1K. Dashedline is an extrapolation to T = 0 of the data for T � 0:8K.various �(T ) urves within T(B) � T � 1:2K to a universal urve, by nor-malising �(T ) by its respetive value at 1K (Fig. 4(b)). Above T ' 0:8K, alinear �(T ) dependene is found that an be extrapolated to � = 0 for T ! 0.At lower temperatures the data follow a �(T ) = �0 + b T 3=2 dependene [17℄.Apparently, this T dependene is in full aord with the theoretial predi-tion for a three-dimensional system of itinerant AF spin �utuations in theviinity of a QCP [18℄. As shown in Fig. 1(b), the spei� heat oe�ientfollows C=T � � log T for T > 0:3K and gradually deviates to smaller val-ues at lower T before a upturn sets in at lowest T . In the limited T range



UBe13: Prototype of a Non-Fermi-Liquid Superondutor 2610:15K � T � 0:4K, the spei� heat oe�ient an be satisfatorily de-sribed by the dependene �C=T = 0 � �pT that would orrespond tothe T 3=2 behaviour observed in ��(T ) = �(T ) � �0 [18℄. A more detailedanalysis of the �C(T )=T results is prevented by the up-turn below 0.2Kwhose origin is not yet resolved, as the nulear ontribution due to theZeeman splitting of the 9Be spin states has already been subtrated fromthe raw data. For �elds larger than 14T, the low-T resistivity turns toa �� � T 2 behaviour below 0.3 K, indiative of a magneti �eld-induedLandau�Fermi-liquid state with a giganti oe�ient A. The latter is de-reasing with inreasing B from 52�
m at 14T to 45�
m at 15.5T [17℄.To summarize, the NFL properties found for UBe13 are onsistent withthe nearness of an AF QCP at magneti �elds of about 4T. Remarkably,this �eld oinides with the line of anomalies, B�(T ), for T ! 0 whih hasbeen established in the B�T phase diagram of Fig. 3(b). Thus, one wouldspeulate that the pronouned NFL e�ets observed in the N-state propertiesare related to the QCP (TL ! 0 at about 4T). A more detailed analysis ofthe low-T N-state properties of UBe13 is, however, hampered by the largevalue of the upper ritial �eld neessary to suppress superondutivity.3. T�x phase diagram of U1�xThxBe13By substituting a small amount of Th for U in UBe13 one observes un-usual phenomena, suh as a non-monotoni evolution of T and the our-rene of a seond phase transition in a ritial onentration range x1 =0:019 < x < x2 = 0:0455. The most reent version of the phase diagramof U1�xThxBe13 [19℄ is shown in Fig. 5. Superondutivity ours in pureUBe13 at T ' 0:9K, followed by the seond anomaly at TL < T as dis-ussed in the previous setion. For x < x1 doping with Th leads to a linearderease of T upon inreasing x. Between x1 and x2 two phase transitionsshow up. The �rst one at T1 marks the appearane of superondutivity,while the nature of the seond is not yet resolved. The existene of verysmall magneti moments of �s = 10�3 �B=U below T2 has been dedued bylooking at muon-spin-relaxation (�SR) studies [21℄. Ultrasound-attenuationmeasurements reveal indiations for an AF, i.e. a spin-density-wave, transi-tion whih oexists with superondutivity [22℄. On the other hand, a SCnature of the transition below T2 has been laimed on the basis of lower-ritial-�eld results [23℄.Theoretial models have been proposed based on the assumption of SCstates with di�erent anisotropies for the di�erent regions of the phase di-agram [24℄. The onset of small magneti moments below T2 is explainedeither by assuming an AF transition oexisting with superondutivity [24℄or by broken time-reversal symmetry [25℄. In these models it is assumed that
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UBe13: Prototype of a Non-Fermi-Liquid Superondutor 263polyrystals with 0:017 � x � 0:03 using a ommon temperature sale.The same proedure to extrat the �TL anomaly� as desribed in the previ-ous setion is applied to the results of the doped sample U0:983Th0:017Be13.Upon inreasing x towards x1, this low-T feature beomes progressivelymore pronouned and shifts to lower temperatures.
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266 N. Oeshler et al.also inreasing as x approahes x1, but this inrease beomes even strongerat higher onentration. ��2(x) turns to ��(x) = j��(T)j for x > x2.The orresponding urve shows a global deline for x > 0:038 with a loalminimum prior at x = x2, i.e. where ��1 ! 0.3.2. The anomalies at TmaxAnother anomaly has been observed in resistivity, spei� heat, and ther-mal expansion experiments performed on pure UBe13 [16,31,32℄. In spei�heat and thermal expansion measurements, the low-T N-state is dominatedby a broad nearly �eld-independent maximum struture around 2K. In ther-mal expansion measurements on U1�xThxBe13 with inreasing x (� 0:03),this anomaly is found to shift to lower temperatures (f. Fig. 9), and Tmax(x)is depressed in a linear funtion [32℄ (f. Fig 5). Tmax(x) and T1(x) were
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UBe13: Prototype of a Non-Fermi-Liquid Superondutor 267shifted to higher T , if the �eld is inreased (Fig. 9(b)). If we extrapolatethis �eld-dependene to B = 0, we �nd the peak position to agree withinexperimental unertainty with the ontinuation of the Tmax(x) straight lineestablished for x � 0:03 [19℄, f. Fig 5.Compared to the related maximum at T ' 2K in the T dependene ofthe eletrial resistivity [16,33℄, the 2K anomalies in C(T ) and �(T ) of pureUBe13 show (i) a very weak magneti �eld dependene, (ii) are less stronglyshifted to lower T upon doping with Th, but (iii) exhibit a similar responseto hydrostati pressure, i.e. a shift to higher T . The mirosopi origin of theanomalies at Tmax is not resolved yet. Knetsh et al. [16℄, based upon theirresistivity results, proposed itinerant magneti �utuations while Kromer etal. [28℄, due to the positive sign of the �(T ) peak (Fig. 9), suggested moreloalized (Kondo-like) magneti �utuations. Alternatively, the anomalymight be asribed to a non-magneti, e.g. quadrupolar, origin due to itsweak response to the appliation of a magneti �eld.3.3. The nature of the phase below T2In Fig. 10 the thermal expansion and spei� heat results are presentedfor 0:038 � x � 0:052 displaying the evolution of the two phase transi-tions through the seond ritial point x2 � 0:0455. In addition, results ofAC-suseptibility measurements indiating the onset of superondutivityare also shown in Fig. 10. The jump at T2 reahes a maximum value forx = 0:038 and dereases upon further inreasing x. The disontinuity at theSC transition at T1 in both thermodynami quantities beomes strongly re-dued when x exeeds 0.03, see also Fig. 8(b). For x = 0:038 �C1 and ��1are already strongly redued [34℄. For x � 0:043 they annot be resolvedanymore, though the �AC(T ) data reveal the onset of superondutivity atT� > T2. At x > 0:0455, T� is oiniding with T2 as is illustrated inFig. 10 for x = 0:052 and is labeled T in the following. Superondutivityis ompletely suppressed in U0:93Th0:07Be13 [28℄.The shape of the single phase-transition anomaly at T for x > x2 inboth �(T ) and C(T ) looks very similar to the anomaly at T2(x1 < x < x2). Saling the transition temperature and the jump heightof the anomalies below and above x2 to the position and absolute valueof the negative peak, Tp and �pj, respetively, one �nds that they all fallroughly on top of eah other, see Fig. 11. This demonstrates learly that the�T2 anomaly� still exists beyond the seond ritial point [28℄. Moreover,AC-suseptibility measurements show that the phase transition at T� is aSC one. For x > 0:03, the anomaly at T1 is indiated only by a tiny anomalywhih disappears as x! x2. A SC transition at whih no anomaly in either
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UBe13: Prototype of a Non-Fermi-Liquid Superondutor 269the spei� heat or the thermal expansion is observed points to gapless su-perondutivity due to strong pair breaking. It is straightforward to assumethat the pair-breaking e�et is aused by the �utuations above Tmax.As desribed above, these �utuations leading to the maximum strutureat Tmax may be onsidered loal Kondo �utuations. They seem to freezeout gradually below Tmax. Thus, no signi�ant in�uene on the SC state isexpeted for x � 0:03. For x = 0:03 where T1 attains a loal maximumthe Tmax(x) line intersets the T1(x) line. The redution of both T1 aswell as of the aompanying phase-transition anomalies in C(T ) and �(T )upon further inreasing x, strongly suggest the onset of a very e�etive pair-breaking mehanism.3.4. Normal state of U1�xThxBe13 (x > x2)While the thermodynami properties of the low-T N-state ofU1�xThxBe13 with x � 0:03 are governed by a broad maximum struture,for x > x2, a negative thermal expansion peak shows up at low T (f.Fig. 12(a)). The temperature at whih the minimum ours, Tmin, inreaseswith inreasing x. These values are inluded in the phase diagram of Fig. 5.By ontrast, the absolute size of this minimum, �min, dereases with inreas-ing x, and relative weight is shifted to higher temperatures. In Fig. 12(b)the �eld dependene of �n(T ) is shown for x = 0:07. While Tmin is almost�eld independent, the absolute value of �n(T ) is suppressed steadily. Evenat B = 8T, the highest �eld aessible, the expansion remains negative. As
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270 N. Oeshler et al.reported in [19℄, in a plot �n(T )=j�minj vs T=Tmin all urves fall on top ofeah other. j�minj is suppressed in a non-linear manner by magneti �elds.Low �elds hardly a�et �n(T ), whereas intermediate �elds are e�ient instrongly reduing j�minj. For x = 0:0455 and 0.052 �min(B) saturates athigh �elds. In [19, 28℄, this negative �n(T ) anomaly has been related tointer-site orrelations involving extremely small magneti moments. In thissenario, the SC transition at T oinides with the �T2 transition�, i.e. along-range AF one. The short-range AF orrelations beome, upon inreas-ing the Th onentration, progressively frozen out at Tmin, i.e. well abovethe long-range ordering transition.Assuming that for x ' 0:1, the 5f2 (U4+) on�guration with a low-lying non-magneti �3 CF-driven doublet state and the 5f3 (U3+) on�g-uration with a magneti �6 doublet ground state are almost degenerate, anegative �n(T ) anomaly may be explained alternatively, in the ontext ofa two-hannel Kondo model, by virtual f2-f3 �utuations [35℄. The �eld-indued suppression of the negative N-state ontribution �n(T ) observed inU1�xThxBe13 with x � 0:038 may in this senario be related to the Zeemansplitting of the magneti 5f3 level whih lifts the 5f2/5f3 degeneray. Thismay result in a suppression of the valene �utuations due to the stabiliza-tion of the 5f3 ground-state on�guration at the ost of the 5f2 valenestate [19℄.
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UBe13: Prototype of a Non-Fermi-Liquid Superondutor 271This latter senario may also explain [19℄ the almost temperature-indepen-dent small (negative) non-linear suseptibility �(3) found for U0:9Th0:1Be13whih strikingly ontrasts with the apparent negative divergene of �(3)(T )in pure UBe13, f. Fig. 13. In fat, Shiller et al. [35℄ showed that, at leastat higher T , a T -independent �(3) may originate in an intermediate-valeneground state of Uranium with 70% weight of the 5f2 on�guration. On theother hand, a pure U-5f2 on�guration as proposed in [36℄ is unlikely sine,owing to the �(3)(T ) results of Fig. 13(b), the expeted quadrupolar orderingours � if at all � at extremely low temperatures, T < 50mK [19℄.4. EpilogueWe have disussed the low-T behaviour of the heavy-fermion metal UBe13and of its thoriated variant U1�xThxBe13 (x � 0:1). In the pure om-pound, an unonventional (not yet fully identi�ed) SC ground state om-petes with an also unonventional N-metalli state. The latter an be stud-ied only in applied magneti �elds at lower temperatures, where it showsstriking similarities to the N-state of other NFL superondutors, e.g. S-type CeCu2Si2 [37℄ and CeNi2Ge2 [38℄. This hints at the viinity of anAF QCP [39℄. We propose that the low-lying 3D AF spin �utuations re-sponsible for the NFL properties of N-state UBe13 are those assoiated withthe �eld-indued suppression of the �TL anomaly�, i.e. TL ! 0 at B � 4T(f. Fig. 3(b)).The �TL anomaly� in �(T ) (x < x1) seems to indiate the freezing outof AF short-range orrelations � due to its magneti-�eld dependene andits negative sign. As is evident from Figs. 6 and 8b, this unique feature hasto be onsidered the preursor of the lower of the two seond-order phasetransitions that our at T1 and T2 for x1 < x < x2. It is, therefore,tempting to assume that long-range AF order (with extremely low orderedmoment [21℄) forms below T = T2, in agreement with onlusions drawnfrom early ultrasound-attenuation measurements [22℄. Further, as suggestedin Fig. 6, the SC states below and above x = x1 are not neessarily di�erent,and the strong T depression observed at this onentration may be due tosome ritial �utuations near the long-range ordered (AF) phase transitionwhih ours at x1 [20℄.It was shown that, in addition to TL, T2 and T, T1, there exists a har-ateristi temperature, Tmax, at whih a pronouned positive �(T )maximumours. Tmax ' 2K (in pure UBe13) is depressed in a linear funtion upondoping with Th (Fig. 5). Though its origin is presently unlear, this uniquefeature has two important onsequenes: (i) As Tmax ! 0 near x = x2,the SC transition at T1, and the transition at T2 merge. For x > x2, onlyone (SC) transition an be resolved, whose outward appearane (aording



272 N. Oeshler et al.to our thermal expansion experiments) is very similar to that of the �T2transition� in the ritial onentration range, f. Fig 11. (ii) Tmax(x) inter-sets the T1(x) �dome� at its loal maximum (x ' 0:03). When inreasingthe Th onentration further (Tmax < T1), the thermodynami (�;C) sig-natures of the SC transition at T1 beome less pronouned and disappearompletely as x ! x2 (Fig. 10). This implies either a vanishing of the T1transition as a whole or a vanishing of the SC gap in the presene of a �-nite SC order parameter (�gapless superondutivity�). In the �rst ase (T1transition vanishes), the �T2 anomaly� would presumably have a SC om-ponent not only for x > x2, but already in the ritial onentration rangex1 < x < x2. In the seond ase (transition into a gapless SC state at T1persists), the �T2 transition� is pinned to the SC one at T = T for x > x2.T is gradually depressed and vanishes near x ' 0:07. However, a broadnegative �n(T ) that develops at Tmin > T and appears to be intimatelyrelated to the �T2 transition� is stabilized upon inreasing x. Tmin inreasesby more than a fator of two when going to x = 0:1. Though Tmin(x) seemsto be the ontinuation of the TL(x) and T2(x) line in the phase diagram ofFig. 5 and despite its negative sign, this �n(T ) anomaly shows a magneti�eld dependene that di�ers from that of TL(x); T2(x): while the latter aredepressed by the �eld, Tmin is almost �eld-independent.Finally, in an intermediate-valene senario, the U-5f3 on�guration ispresumably the dominating one for x = 0, while the U-5f2 on�gurationseems to dominate for x = 0:1. Suh an assignment is suggested by the verydi�erent temperature dependenes of the non-linear suseptibilities of UBe13and U0:9Th0:1Be13 (Fig. 13). This appears somewhat ounter-intuitive inview of the volume expansion aused by the doping with Th, whih wouldfavor the 5f3 state. We suspet, therefore, that this valene hange is gov-erned by the hange in the hemial potential when substituting Th4+ forU3+ ions.In onlusion, it is fair to state that the low-T properties of the NFL su-perondutor UBe13 as well as the rih T�x phase diagram of U1�xThxBe13pose a number of new hallenges for and will, therefore, remain on the agendaof future researh.One of us (FS) gratefully aknowledges a fruitful onversation withFrithjof B. Anders. Work at Dresden was arried out within the ESF projet�FERLIN� while work at Florida was supported by the US Department ofEnergy, ontrat No. De-FG05-86ER45268.
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