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We have recently proposed the s + g-wave model for superconducting
borocarbides. In spite of a substantial s-wave component, this order param-
eter exhibits the vH dependent specific heat and a thermal conductivity
linear in H in the vortex state. This is characteristic for nodal supercon-
ductors when T, I" <« A where I' is the quasiparticle scattering rate and
A the maximum superconducting gap. Here we investigate the thermal
conductivity parallel to the ¢- and a-axis in a magnetic field tilted by 6
from the c-axis and rotating within the a—b plane.

PACS numbers: 74.60.Ec, 74.25.Fy, 74.70.Dd

The superconductivity in the rare earth borocarbides LuNisBoC and
YNigBoC is of great interest [1,2]. We have proposed recently the supercon-
ducting order parameter [3,4]

A(k) = LA(1 + sin* 9 cos(4¢)) (1)

where 9 and ¢ are polar and azimuthal angle of k, respectively. Recent
thermal conductivity experiments [5] suggest that crystallographic [100] and
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[010] are the nodal directions, i.e. the order parameter of Eq. (1) is rotated
by 7 in the a—b plane. This gap function accounts for the V/H dependence of
the specific heat and the H-linear term in the thermal conductivity observed
recently [6-8]. The aim of this paper is to generalize an earlier result 3] for
Kz, Kgp and kgy for general magnetic field (H) orientation given by the
polar angle 6 with respect to the c-axis and the azimuthal angle ¢. First in
the absence of H the specific heat and the electronic thermal conductivity
for I' K T < A are given by
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where CO:(%)%[ln(% / %)]_% Note that kg, obeys the universal behaviour

while k,, does not. This is because the heat current operator j’; vanishes
on the four second order nodal points (J,¢) = (Z,+%) and (5,+3%) for

A(k) given in Eq. (1). Also this leads to a H? ln(ﬁ\/AeTJ dependence of &,

as discussed below.
In the presence of a magnetic field with general orientation defined by
(0, ¢) the specific heat and thermal conductivities in the vortex phase are

given by [3,10]
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where we have the identity I,,(6, ¢)=(1+cos? )1 (6, ¢) and

I.(0,¢) = % {[1 + cos? 6 + sin® fsin(2¢)] %}

+ {[1 + cos? 0 — sin® OSin(Zng)]%} . (4)

Here we have assumed the superclean limit defined by VAT < 9veH
with v = /vv. where v, . denote the anisotropic Fermi velocities. The
angular dependences of «,, and kg according to Eqgs. (3), (4) for the s+ g-
wave case are shown in the left panel of Fig. 1 and in Fig. 2. For comparison,

we also present the corresponding angular dependence of k., for the dy2_,»
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Fig.1. Angular dependence of I,,(f,¢) which determines k.. (8, ¢) in the super-
clean limit for s + g-wave and d-wave case (up to log-terms in Eq. (3)). Note the
different scale in the two cases.
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Fig.2. Upper panel: polar angle variation of I,,(0,45) for s + g- and d-wave case.
Lower panel: Angular dependence of the product I_(6,¢)- I,.(6,¢) for s + g-case
which determines the thermal Hall coefficient k., (6, ¢). It vanishes for field halfway
between the nodal directions due to current compensation.



2846 P. THALMEIER, K. MAKI

state with A(k) =A cos(2¢) as in high T, cuprates [10], CeColns [11] and -
(ET)2Cu(NCS)3 [12,13]. Of course, for d-wave superconductors the universal
zero-field behaviour is valid both for k;; and for k,,, and both exhibit
a similar angular dependence in the vortex phase [10]. In this case the
dependence on field angles 0, ¢ is given by

L0.6) = 5 [ dbIew)s 10,9 = o [ dult = cos20) - (0),

[NIE]
[NIE]

Ji(y) = [1 + %sin2 0(sin(2¢) — cos(21)))

@) sin /T2 :
+ [1 — % sin? 0(sin(2¢) + cos(21)))

1 . . :
+E sin(20) sin1)/1 + sm(2¢)} . (5)

Then k., and kg, are obtained from I4(6,¢) as in Eq. (3) but now for

d-wave:

% (eH)
A2

Rzz

L.(0.¢); IL.(0,¢) = I.(0,4)1(0,¢). (6)

1
Kn T

The ¢- dependence of k,, for various € is shown in comparison to the
s + g-wave case in Fig. 1. As is readily seen from Fig. 1 in the s + g-wave
case a pronounced cusp like feature develops for 6=90° and ¢ = +45° due
to the (second order) point node, while in the d,>_,» wave case with an
extended line node along ¢ no cusps appear and also the absolute value of
angular variation is much smaller. This is clearly visible from the upper
panel of Fig. 2 which also shows monotonic 8- dependence for s 4+ g-wave
and nonmonotonic behaviour for d-wave. The latter has a minimum at
0, ~ 47° which is due to a maximum Doppler shift for §=45° resulting in a
dominating term I,,(6,¢) ~ 1 — (5/64)sin?(20) + ... . Note that I,,(6, ¢)
in Fig. 1 exhibits a rather sharp minimum as function of ¢ at 6, wheras
for 8 = 90° the minimum is flat. Experimentally however the x,, thermal
conductivity shows very strong cusps at 6=90° (and ¢ = 0 due to rotated
order parameter) in YNisBoC [5]. This is a strong point for the s + g-wave
case being the appropriate one for YNisBoC and LuNigBoC . Therefore the
thermal conductivity in the superclean limit can discriminate s 4+ g-wave
against d-wave superconductivity.
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The angular dependence of the thermal Hall coefficient x4, in the s+ g-
wave case is shown in the lower panel of Fig. 2. It exhibits a sign change
as function of ¢ and varies smoothly with 6. In the d-wave case kg, looks
rather similar. As we have already discussed elsewhere [14] the thermal
conductivity provides a unique window to look at the nodal structure of
A(k) in unconventional superconductors.

We would like to thank Koichi Izawa and Yuji Matsuda for useful dis-
cussions on superconducting borocarbides.
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