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We present the Bethe ansatz solution for the generalized Anderson im-
purity model, in which localized electrons carrying spin and orbital degrees
of freedom, interact in a shell via the Hubbard-like repulsion and Hund’s
rule exchange interaction. Depending on the relative position of the impu-
rity’s level with respect to the Fermi energy and strengths of Hubbard-like
and Hund’s couplings, a magnetic impurity can reveal either the Fermi-
liquid like behavior or the non-Fermi-liquid behavior.

PACS numbers: 75.20.Hr, 71.10.Hf, 71.27.4a

The behavior of hybridization impurities has been theoretically stud-
ied in the framework of the Anderson impurity model [1|. Usually it per-
tains to in-shell electrons with only spin internal degrees of freedom and
the Hubbard-like repulsion produces the Kondo effect. In the Kondo case
the magnetic impurity hybridized with conduction electrons manifests the
low energy Fermi liquid behavior, but with the large renormalized density of
states, which is determined by the Kondo temperature. However there exist
many materials in which the ground state of ions in the symmetric configu-
ration has an orbital degeneracy in addition to the Kramers (spin) degener-
acy. A multi-channel Kondo situation can appear, which main feature is the
non-Fermi liquid behavior [2]. Here we present the Bethe ansatz solution of
the generalized Anderson model, in which the Coulomb in-shell coupling re-
veals itself in the Hubbard-like interaction (U) and Hund’s exchange (.J) [3]
(our results can be applied to behaviors of two-impurity Kondo problem [4],

* Presented at the International Conference on Strongly Correlated Electron Systems,
(SCES 02), Cracow, Poland, July 10-13, 2002.

(351)



352 A.A. ZVYAGIN

some rare-earth and actinide compounds [5] and a split-gate quantum dot
or double-dot configurations [6]) with the Hamiltonian:
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where ’(ﬁInU(I) ( f};w) creates a conduction electron at site z (in-shell) with
the spin ¢ and orbital index m = —I,...,l, V are hybridization elements
(supposed to be independent on positions, spins and orbital indices) and the
Fermi velocity of conduction electrons is equated to 1. The counterterm with
the parameter A (then A — oo, see below), which measures the curvature
of the spectrum, is necessary to preserve the integrability at the position
of the impurity. A crystalline electric field D (magnetic field H) can lift
the degeneracy of orbitals, the latters becoming unequally populated (spin
degeneracy). Bethe equations (BE) are derived on a periodic interval of the
length L for quantum numbers (rapidities), which parametrize the eigen-
states of the Schrodinger equation: charge rapidities {kj}év:l, spin { A\ 1M,

and orbital ones {{SIT)}A{’” (with N, M, N, being the numbers of electrons,
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where f = 1,...,M,, £” = p; = kj/A, My = N, Moy = 0, §; =
2tan "1 [V2/4(k; — €)], ¢ = V(U — J)/2(2e + U — J), and ¢ = V(U +
J)/2(2¢ + U + J). The energy is equal to £ = —Z;VZI |kj|. Tt turns out
that different behaviors of scatterings in spin and orbital subspaces is not
novel in the theory of exactly solvable models and is similar to the situation
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in the multi-channel channel-asymmetric Kondo problem [7]. The solutions
to the BAE in the thermodynamic limit (with L, N, M, M,, — oo and finite
ratios N/L, M/L, M, /L) are classified in the framework of the “string hy-
pothesis” [1] in the following way: (a) real charge rapidities; (b) strings of
complex spin rapidities (bound spin states); (c) strings of complex orbital
rapidities (orbital bound states); (d) complex spin and charge rapidities
(bound states of electrons with different spin components); (e) complex or-
bital and charge rapidities (bound states of electrons with different orbital
components). Which classes are realized in the solution depends on signs
and values of U, J and ¢. For ¢, ¢’ < 0 the repulsion exists in both spin and
orbital subspaces. The solutions of the classes (a), (b) and (c) are valid. For
¢ >0, ¢ < 0 one has an effective repulsion in the spin subspace and the
effective attraction in the orbital subspace, with the solutions from classes
(a), (b), (¢) and (e). For ¢ < 0, ¢ > 0 the situation is opposite: there is
an effective repulsion in the orbital subspace and an effective attraction in
the spin subspace [classes (a), (b), (¢) and (d)]. Finally, for ¢,¢ > 0 all
of the classes are present, because of the effective attraction in both spin
and orbital subspaces. We derived integral equations for dressed energies,
densities of excitations and their holes, which describe the thermodynamics
of the model. The solution yields thermodynamic properties of the model
as a function of U, J, €, temperature 7', chemical potential y, H and D.
It is not difficult to show that the behavior of conduction electrons of the
model is the same as of a free electron gas, as it must be. For high energies
(T > V) the model also describes the high-T' behavior of a single nonin-
teracting impurity shell, which properties are well-known [1,3]. The most
interesting properties are revealed by the impurity in the ground state and
at low temperatures.

Consider, e.g., ¢ >0, ¢ <0 (for |¢| > |c/|) for I = 3. Here only solutions
of classes (a), (c) and (d) — spin-singlet orbital-triplet Cooper-like pairs
carrying charge —2e, spin zero and orbital moment 1, have Dirac seas for
any p, H and D. The way of solving the BE is, e.g., the fusion procedure [7],
which is the search of a solution to BE for charge rapidities within the class
of orbital bound states. Those of them, which have maximal spin, are only
important for the low-energy physics. One conduction electron, however, is
bound at the impurity (i.e., its charge rapidity is real, k; = ¢, with the fixed
ratio €/A). In the limit of 4 — oo all real parts of those string solutions can
be neglected, except of the rapidity of the conduction electron bound at the
impurity. For the behavior of an impurity two low energy scales are impor-
tant, one of which, Tk, is determined by ¢, and the smaller one, T, is deter-
mined by ¢ and ¢/c’. The solution of BE reveals that in the ground state the
mixed valence of the impurity increases with growth of the band filling of con-
duction electrons (i.e., the valence of the impurity explicitly depends on the
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total number of electrons in the system.) The ground state magnetization
of the impurity for H < T, < Tk is proportional to H/T, with standard
Kondo logarithmic corrections, i.e., M? ~ H/Ty(1 + |In H/aT,| "' — ...)
(a is some non-universal constant). It is usual for a single-channel Kondo
problem [1]. However for T, < H < Tk the magnetization of the impu-
rity reveals the logarithmic behavior M* ~ (H/T,)In(aTx/H), typical for
the two-channel Kondo problem. For low temperatures T <« T, < Tk
the Sommerfeld coefficient of the specific heat for the impurity is v ~
T — (3T, /nTx) In(T,/Tx)](1 + | InT/T,|~' — ...) and the finite ground
state susceptibility x ~ Ty ' In(T,/Tk) (14| InT/Tk|~' —...). This case per-
tains to the single-channel Kondo physics, though two different energy scales
for x and ¥ mean that the Wilson ratio differs from the Fermi liquid one. For
T, < T < Tx we have v < x ~ (Tx) ! In(Tk/T) and the remnant entropy
of the impurity S = In V2. For higher temperatures T' > Tk the magnetic
susceptibility of the impurity manifests the Curie-like behavior. The tem-
perature dependence of the resistivity is determined by the scattering of
conduction electrons off the spin of localized electron at low temperatures
by Ap(T) ~ A(T/T,)? for T < T, < Tk and Ap(T) ~ B(T/Tk)'/? for
T, < T < Tk. For ¢ <0, ¢ > 0 the situation is opposite to the above. One
has the formal similarity to the previous case with the interchange ¢ < ¢,
H/2 +» D and L* +» 25%. The case ¢,¢ > 0 pertains to all possible bound
states being the solutions of the BE. This case is similar to the case of the
degenerate Anderson model [1], but with different values of effective inter-
actions for orbital and spin degrees of freedom. For ¢, ¢’ < 0 only unbound
electron excitations, spinons and orbitons can have their Dirac seas. In this
case the situation is reminiscent of the Anderson impurity model with the
in-shell attraction of electrons [1].
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