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Resistivity and specific heat measurements at low temperatures on
Celns_,Sn, samples with concentrations z = 0.6,0.65 and 0.7 demonstrate
that with increasing Sn-alloying, the antiferromagnetic ordering tempera-
ture decreases continuously down to 7' = 0 K and disappears at a quantum
critical point. We observe non-Fermi liquid (NFL) behavior in the resis-
tivity and the specific heat, however the temperature dependencies are
different from the predictions for a spin density wave (SDW) scenario. The
resistivity at the critical point shows e.g., a linear temperature depen-
dence, as expected for two dimensional fluctuations, which however can be
excluded in the cubic structure of Celns_,Sn,.

PACS numbers: 71.27.+a, 71.10.Hf

1. Introduction

In the presence of an antiferromagnetic (AF) quantum critical point
(QCP) where Ty — 0, clear deviations from the properties of a Landau
Fermi liquid (LFL) have been observed mostly in Rare Earth-based heavy
fermion systems (HF). Among the growing number of Ce-based HF com-
pounds showing Non-Fermi liquid (NFL) effects Celns takes in a special
position [1]. In contrast to many other NFL systems currently under inves-
tigation which have either orthorhombic, e.g., CeCus gAug.; [2] or tetragonal,
e.g., CeCusSis [3] and CeNiyGeg [4] crystal structure, in Celns the Ce-atom

* Presented at the International Conference on Strongly Correlated Electron Systems,
(SCES 02), Cracow, Poland, July 10-13, 2002.

(379)



380 J. CUSTERS ET AL.

site has a cubic symmetry. According to today’s theories, the dimension-
ality of the spin fluctuations plays a crucial role in the description of NFL
behavior. Predictions have been made for transport and thermodynamical
properties in case of 2D spin fluctuations, Ap & T and C/T  logT and 3D
fluctuations Ap o< T and C/T o y — b\/T, respectively [5,6]. Because of
the cubic symmetry, Celnz_,Sn, is of great interest, being an outstanding
candidate investigating the parameter “dimensionality” by comparison with
other NFL-systems and known theoretical descriptions.

2. Resistivity and specific heat results

Resistivity and specific heat measurements were performed on polycrys-
talline samples with concentrations z = 0.6, 0.65 (only p(7")) and 0.7 in order
to trace the vanishing of the AF transition and investigating the evolution
of NFL-behavior. Due to the high Sn-doping needed to tune the systems to-
wards the QCP the residual resistivity ratio (RRR= p3oox/p20mK) is rather
low, RRR ~ 1. In figure 1 p(T)/psoox versus T is plotted for low temper-
atures. The x = 0.6 doped compound shows a kink in the resistivity at
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Fig.1.  Low-temperature zero field resistivity p(T") wversus temperature of

Celnz_,Sn, with z = 0.6,0.65 and 0.7. The arrow marks the Néel temperature
estimated from an equal areas construction as shown in the inset.

Tx = 0.4 K. The singularity in p(T') is similar to those observed for lower
Sn-concentrations at the transition from the paramagnetic to the antiferro-
magnetic ordered state indicating that this kink is indeed related to the anti-
ferromagnetic transition. This is also confirmed by specific heat data which
shows a broad anomaly around Tx = 0.4 K (Fig. 2). At slightly higher con-
tent, z = 0.65 a small kink can still be resolved in p(T") at T = 0.1 K. The
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transition temperature has been determined using an equal areas construc-
tion as shown in the inset. At a doping concentration x = 0.7 no indication
of an AF transition could be found. The critical point therefore is localized
between 0.656 < z. < 0.70. Figure 1 clearly shows that the exponent in
the power law in the temperature dependence of p(T') is well below 2. For
z = 0.6 and z = 0.65 a best fit through the data for T' > Tx with Ap o« T*
yields € ~ 0.8, whereas for T' < Tx € ~ 1 is found. In Celns 3Sng 7 the
resistivity decreases linearly upon decreasing temperature from T = 0.8 K
down to the lowest investigated temperature. When applying a magnetic
field we found in all samples a Ap o AT? behavior, meaning a LFL state is
established. An analysis of the fitting shows a divergence of the A-coefficient
towards B — 0 T, while T*, the temperature where the T2-fit deviates from
the measurement increases with increasing field.
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Fig. 2. Electronic specific heat of Celny 4Sng.¢ (A) and Celnsy 3Sng 7 (O) plotted as
C/T versuslogT. The solid lines show the experimental data. Symbols present the
data after subtraction of a nuclear contribution which has been estimated from the
data below 0.1 K (see text). The dashed line is a C(T)/T o o — by/T-fit through
the data.

The specific heat data for £ = 0.6 and 2 = 0.7" are depicted in figure 2
in a C/T wversus logT representation (solid line). Below 0.1 K, C(T) is
dominated by a large nuclear contribution of In, making the determination of
the electronic contribution difficult. We estimated the nuclear contribution
from the data below 0.1 K and subtracted a corresponding «/T?-term from
the data above 0.1 K (open symbols). We tried to fit the data for z = 0.7

! The high temperature specific heat data (T > 0.4 K) measured in a commercial
Quantum Design PPMS has been multiplied by 1.05 in order to fall on top of the low
C/T-measurement.
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between 0.1 < T' < 2 K both with C/T = alog T and C/T = ~4y—bv/T. None
of these fits where in good agreement with the experimental data. In the
plot C/T wversus logT, the experimental data show a significant curvature

in disagreement with a pure logT-dependence, but the curvature is weaker
than for the C/T o o — bv/T fit (dashed line).

3. Concluding remarks

Our results demonstrate that in Celng_,Sn,, the antiferromagnetic state
disappears at a quantum critical point. The lowest transition we observed,
Tx = 0.1 K, is two orders of magnitude lower than Ty = 10 K at = = 0,
and at least one order of magnitude lower than the lowest Tx determined
in experiments on pure Celns under pressure [7]. The NFL signatures do
not agree with the prediction in the SDW-scenario [5] for a 3D-system. Ac-
cording to SDW-theory, the behavior in the resistivity would correspond to
a 2D-system. Similar T-dependencies have been reported for many other
NFL-systems. However, those systems show evidence for lower symmetry,
e.g., CeCug_pAu, for which a reduced dimensionality has been reported
[8]. In cubic Celns the argument of lower dimensionality can be excluded.
Furthermore, the linear behavior in resistivity violates even SDW-theory
predictions including a large disorder effect. Here, an exponent ¢ = 1.5 in
Ap(T) o< T¢ is expected, while for clean samples ¢ — 1 [9]. Surprisingly,
an exponent of € ~ 1.6 has been observed in pure Celng with a low resid-
ual resistivity ratio (RRR ~ 30) when tuned towards the quantum critical
point by pressure [7]. These results cast doubts on the applicability of the
SDW-scenario.
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