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We evaluate the Ginzburg-Landau functional for the case of a super-
conductor with spin—charge separation. We have obtained analytical results
for this functional when T" < T, in the limit of a spin—charge separation.
For this case and, in the presence of the mass renormalization, we derived
the form of the coherence length, (T), the penetration depth, A(T"), spe-
cific head jump, AC(T.)/T., at the critical point, and the magnetic upper
critical field, H.2(T'). The analytical results found here reduce to the BCS
limit for a two—dimensional s-wave symmetry superconductor. We compare
our results with recent works. In particular, we have performed a qualita-
tive comparison with experimental results trying to fix the validity range
of our spin—charge separation parameter, 5. The d-wave order parameter
symmetry does not change drastically the results presented here.

PACS numbers: 74.72.-h, 74.20.Mn, 74.60.—w

1. Introduction

The discovery of high temperature superconductivity (HTSC) in 1986 by
Bednorz and Miiller [1] has caused a lot of enthusiasm among the physicists.
Being a part of a largest family of strongly correlated electron systems, the
cuprates exhibit anomalous properties in both the normal and the supercon-
ducting phases. As a consequence, standard theories, such as the Landau
theory of the Fermi liquid and the BCS theory of the superconducting state,
fail to describe correctly the physical properties of those materials. As an
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alternative, in the case of the normal state, several phenomenological mod-
els have been proposed in order to explain their nonmetallic behavior [2].
Despite the fact that the superconducting transition occurs at a relatively
high temperatures, the characteristic of the ordered phase is the presence of
electron pairs, leading to the idea that a modified BCS theory is appropriate
for the description of their superconducting state.

For the description of the normal state we will follow Anderson |3, 4]
proposal based on the hypothesis that a two dimensional (2D) system can
be described by a Luttinger liquid type theory, similar to the one dimensional
(1D) case. The generalization of the Luttinger liquid for the 2D case involves
the use of the following Green’s function (GF):
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where w, is a cut-off frequency, n = u,/u, < 1 is the ratio of the spin and
charge velocities in the system, « is the non universal exponent related to
the anomalous Fermi surface, 8 = 2/(n + 1 — 2a) is the mass renormaliza-
tion factor, and g(a) = ma/[2sin(wa/2)]. Relations between the different
parameters entering Eq. (1) can be obtained by studying different general
properties of GF. g(«) was obtained by use of the first sum rule [5,6]. Based
on this formalism [7], the necessity of the mass renormalization factor was
predicted [6] using higher order sum rules. A similar NFL GF was proposed
in Ref. [8] with normalization factor depending on two parameters, g(3, ).
By using the time-reversal symmetry a charge—spin symmetric Green func-
tion comes out. Our g(«) depends on a single parameter. However, it also
satisfies time-reversal symmetry. Here, we investigate metals with spin—
charge separation in the superconducting state and we evaluate £.

G(k,iwy) =
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2. General formalism of the Ginzburg—Landau functional

Let us first consider a pure s-wave superconductor. The difference be-
tween the superconducting and normal state free energy can be written as:

B
FS(Q) —FN(Q) :A|Aq|2+q20|Aq|2+5|Aq|4 ) (2)

where the label S denotes the superconducting state, N the normal state,
Agq is the Fourier transform of the order parameter, and A, B,C are the
temperature dependent Ginzburg-Landau coefficients [9].

2.1. The spin-charge separation liquid: o =0, n # 1

Here, we will focus our attention on the spin—charge separation liquid
case, denoted by a =0 and n # 1.
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The critical temperature, T, (n), which also includes the mass renormal-
ization factor, leads to the following value:

29k 2wp T 1
exp | —
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where g is the Euler constant, wp is the Debye frequency, and K (k) is the
complete elliptic integral of the first kind.
A calculation of the G-L parameters leads to the following values:

A = M= 1),
B) = Seaphs (0.
Ol = I 1), )

where we introduced the following notations
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F(a, B;7; z) being the hypergeometric function. Making the limit n — 1 the
standard BCS results are recovered. We present only &:
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As we expect fr(n =1) — 1. In Fig. 1 we plot the n-dependence of the ratio
between the coherence length in the spin-charge separation liquid. We ob-
serve that, for  # 1, the value of the coherence length is lower than the one
in the standard BCS case. The considered values of the T'/T¢, are justified
by the range of the critical region around the transition temperature.
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Fig.1. The coherence length ratio as function of the spin-charge separation param-
eter n for different values of the T/T¢o ratio. The full line correspond to a value
T/Teo = 0.8, and the dashed line to T'/T¢o = 0.9.
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