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Real time femtosecond pump-probe spectroscopy is used to study col-
lective and single particle excitations in the charge density wave state of the
quasi-1D metal, blue bronze. Along with the previously observed collective
amplitudon excitation, the spectra show several additional coherent fea-
tures. These additional resonances can be excited selectively by applying
a sequence of pump pulses with intervals tuned to the period of the par-
ticular coherent excitation. A study of the pump power dependence shows
a non-linear response of the amplitudon mode, in contrast to the linear
power dependence of the single particle, phonon, and phason excitations,
which is ascribed to the electron—amplitudon elastic scattering.

PACS numbers: 73.20.Mf

1. Introduction

The instability of a one-dimensional Fermi surface to the formation of
a charge density wave (CDW) engenders the appearance of two collective
modes, related to the CDW order parameter A = |A|e®. The phase mode,
or phason, is associated with the sliding of CDW and has been extensively
studied in transport and optical measurements [1]. The amplitude mode,
or amplitudon, has received much less attention. In particular concerning
the interaction between the amplitudon and single particle excitations. The
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amplitude mode is an oscillation of the single particle gap A. It involves
an additional displacement of the underlying lattice, and its frequency wa
is substantially smaller than the gap value, A/k, making it a well defined
elementary excitation. The amplitudon has A, symmetry and has been ob-
served in Raman measurements [2]. Neutron experiments have shown that
the phase and amplitude modes arise from a Kohn anomaly at wavevector
2kr [3]. In the vicinity of the phase transition they are coupled and substan-
tially broadened. In the T' = 0 limit these modes become uncoupled and
well defined, with small broadening and w4 close to its mean-field value [1].

Here we report on femtosecond pump-probe measurements of the am-
plitude oscillation in the quasi-1D metal Ky3MoOgs, which undergoes the
CDW transition at 183 K. IR laser pulses can couple to Raman active ex-
citations through transient stimulated Raman scattering [4]. In comparison
to previous experiments [5| we apply 10*-10° more peak intensity, using the
same average pump power. With this high power we reach a much higher
level of population of amplitude and single particle excitations, allowing for
a more detailed study of their interactions.

2. Experimental

A regenerative Ti:sapphire amplifier seeded with mode-locked Ti:sap-
phire laser was used to generate 130 fs pulses at 800 nm (rep. rate 1 kHz).
The pump power was varied between 7 pW and 7 mW with a spot size of
100 pm, and a polarization parallel to the chains. The probe power was kept
below 2 4W. The sample was placed in a He flow cryostat, which allows to
vary the temperature between 10 and 300 K. In the experiment we excited
first the system with the strong pump pulse or train of pulses and measured
the real-time evolution of the reflectivity with the delayed probe pulse.

3. Results and discussion

Fig. 1 shows the transient reflectivity for different levels of pump power
at T' = 40 K. At each power level the response can be decomposed into
six constituents. Three components have purely exponential decay with the
time constants approximately 0.3 ps, 2 ps, and a long lasting process with
7 ~ ns. The other three components are damped oscillations with frequen-
cies 1.7, 2.2, and 2.5 THz (56, 74, and 85 cm~!). All three resonances can
be clearly seen in the Fourier spectrum F(v) in Fig. 2. The first resonance
was identified as an amplitudon mode [5]. We ascribe the last two modes
to the Raman active phonons, appearing due to the CDW deformations of
the lattice. The insert in Fig. 1 depicts the dependence of the amplitudon
frequency v4 and damping I'4 upon the pump power. The absolute values
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of vy and I'y agree very well with previous Raman [2,6] and pump-probe
experiments [5].
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Fig.1. Transient reflectivity for various pump powers. Insert: Amplitudon fre-
quency v4 and damping I'4 as a function of pulse power.
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Fig.2. Left panel: Fourier spectrum of the transient response for the single pulse
pump excitation (A), and the four pulse trains for two different pulse separations.
Left insert: transient reflectivity, induced by four-pulse trains. Right insert: cross-
correlation of the pump pulse train with the probe. Right panel: Normalized
pump-power dependence of the amplitudon (1.7 THz) and two Raman phonons
(2.2 THz and 2.5 THz).

Due to the non-linear power dependence of the amplitudon, discussed
below, the Raman modes become well resolved at relatively high power
only. This is probably the reason why they were not reported previously [5].
Another method to increase the sensitivity to particular modes is the use
of a pulse train with a spacing tuned to the period of the mode. A typical
pump-probe cross-correlation function of such a pulse train is shown in the
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right insert of Fig. 2. The top curve in the left panel of Fig. 2 shows a
Fourier spectrum of a single pulse response at high power. When the train
repetition rate is tuned to a resonance, we can suppress the other components
as demonstrated by the 600 fs spectrum (i.e. tuned to v4, the transient
reflectivity for this experiment is shown in the left inset).

Power dependent experiments were done with an intermediate tuning
(500 fs) between the phonons and the amplitudon. From the Fig. 1 one can
see that the oscillatory component, mainly determined by the amplitude
mode, initially increases with the pump power, reaches its maximum at
—5 dB, and falls back at higher power. The amplitude of the 1.7 THz reso-
nance normalized to the pump power, F'(v4)/P is plotted vs the pump power
in the right panel of Fig. 2 together with the other two resonances. As can
be seen, F(2.2THz)/P and F(2.5THz)/P remain fairly constant over a wide
range of pump power. In contrast, F'(v4)/P shows a strong P-dependence,
which results in a highly non-linear relation F(v4) ~ P log Py/P, where P,
is a constant.

It is unlikely that the observed effects are due to heating. Because vy
and especially I'4 are strongly temperature dependent, they can serve as a
measure of heating. From a comparison of the data in Fig. 1 to Raman and
pump-probe data [2,5] we conclude that the 4 % change in v4 and 30 %
change in I'4 observed in the present experiments would account for no more
than 20 K change in temperature. And thus, the temperature of the sample
remains well below the transition temperature 183 K and well below the
mean-field limit of the decoupling of the amplitude and phase ~ 100 K [3].

The most probable candidate for the observed strong decrease of the
amplitudon response is the quasiparticle-amplitudon interaction. Quasipar-
ticles (QP) excited by the pump pulse quickly relax to the single particle gap
at k ~ kg, where they strongly scatter from the 2kr periodic potential. Be-
cause the scattering occurs exactly by 2kp, the QP energy is unchanged and
the scattering is inevitably elastic. This type of scattering would lead to a
dephasing of the amplitudon excitations, consistent with the observed weak
broadening of the amplitudon response as a function of the pump power.
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