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Itinerant antiferromagnetic order can gradually be suppressed by mis-
matching the nesting of the Fermi surfaces and a quantum critical point is
obtained as Ty — 0. Within a renormalization group approach we study
the instabilities to spin- and charge-density waves and superconductivity,
the low-T' specific heat and the magnetic susceptibility. All quantities in-
crease on a logarithmic scale when T is lowered, similar to the non-Fermi-
liquid behavior observed in some heavy fermion compounds.

PACS numbers: 71.27.+a, 71.28.+d, 72.15.Qm, 75.20.Hr

Non-Fermi-liquid (NFL) behavior, e.g. in Ug2Y(gPds, UCus_,Pd, and
CeCus.9Aug 1, manifests itself in deviations from the Fermi liquid (FL) [1]
in the specific heat, the susceptibility and the resistivity, typically as a loga-
rithmic or power-law dependence with T'. The breakdown of the FL can be
tuned by hydrostatic or chemical pressure, or a magnetic field, and usually
takes place close to the onset of antiferromagnetic (AF) ordering.

Theoretical attempts to explain these properties fall into four scenar-
ios. (i) The vicinity of a T'= 0 quantum phase transition [2-5] or Griffith
phase [6]. (9i) A disorder induced distribution of Kondo temperatures [7, 8]
may lead to a In(T)-dependence in the susceptibility and the specific heat.
(1i) The quadrupolar Kondo effect also leads to a quantum critical point
(QCP) [9]. (iv) Two-dimensional critical ferromagnetic fluctuations coupling
to the conduction electrons was proposed for CeCug_,Au, [10].

Here we adopt the point of view of a QCP arising from AF correlations
(see [2]). We consider a band of heavy electrons with two nested parabolic
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pockets, one electron-like and the other hole-like, separated by a wavevec-
tor @, and a repulsive interaction between the electrons inducing itinerant
AF. A nesting mismatch is introduced by varying the chemical potential,
but the temperature, chemical disorder or a magnetic field lead to similar
results. With increasing mismatch Ty is reduced (long-range order is sup-
pressed) and a QCP is obtained as Ty — 0. We study the pre-critical region
using a multiplicative renormalization group (RG) approach [11].

The kinetic energy for electrons in the two isotropic pockets is

Hy= " elk)cy,cire (1)
1=1,2ko

where £1(k) = k?/2m and e9(k) = Ey — k*/2m. Here k is measured from
the center of the respective pocket and Fj is the energy difference between
the bottom of the electron and the top of the hole bands. The chemical
potential u partially fills both bands and is measured from the electron-hole
symmetric situation, |u| < Ey/2, and |k| is small compared to the size of
the Brillouin zone. The interaction of electrons between pockets is

Hiy, = Z [Vc{kﬂgclkgc;k,fqa,Ckagz + Ucik,+qacgk_qglClka’CQk’a] - (2)
kk'qoo’
Here V and U represent the interaction strength for small and large (of
the order of @) momentum transfer between the pockets, respectively. The
Hubbard limit is obtained for V = U.

The vertex corrections are logarithmic in the external energy parameter
and are summed to leading order using the multiplicative RG. The leading
vertex corrections are given by the zero-sound bubble diagrams (antiparallel
propagator lines). We consider only one external energy variable w and
project all others onto the Fermi level. This is valid for heavy fermions
where the w-dependence is more important than the k-dependence, but not
for transition metals. The energy w is small compared to the cut-off energy
FEy, and that the density of states for electrons and holes is constant, pp.

The notation in (2) is the same as for Luttinger liquids [12], although
the physics of this three-dimensional model is very different. For a Luttinger
liquid also the Cooper channel (bubble with parallel propagator lines) is log-
arithmically divergent [12]. The cancellations among diagrams then lead to
the renormalization of the group velocities and to charge and spin separation.
Hence, the present model is very different from a Luttinger liquid.

The logarithmic corrections to the interaction vertices yield renormalized
invariant couplings (here & = In[Ey/(Jw| + 2|u|)] with g (measured from
Ey/2) being the mismatch between the Fermi surfaces) [11]
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A divergent vertex indicates strong coupling and signals an instability.
The staggered spin susceptibility in the perturbative regime is [11]

xs(Q,w) = —2pp/(1 — Vprf) . (4)

The divergence signals the AF instability at Tn = Egexp[—1/(prV)] — 2|p|,
the condition for a QCP is Ty = 0, and if Ty < 0 the AF order has not yet
developed. The response to a charge density wave (CDW) is

Xe(Q,w) = =2pr¢/[1 — (V —2U)pr¢], (5)

such that T = Egexp{—1/[pr(V — 2U)]} — 2|p| for V' > 2U. The Hubbard
limit, V. = U > 0, is not unstable to CDW, but will exhibit AF if the
mismatch between the Fermi surfaces is small.

Due to the spin rotational invariance of the interaction the response to
singlet and triplet superconductivity is the same. Superconducting fluctua-
tions play an important role as the AF instability is approached, but since
the logarithms enter the perturbation series only two orders later than in
Eq. (4), we conclude that the system is dominated by AF correlations. NFL
behavior, AF order and superconductivity in the neighborhood of a QCP
have been observed in CePd,Siy and Celng under pressure [13].

The renormalization of a propagator to next leading order is [11]

1 QU-V)Pppé 3 VP
4 1+(2U—V),0Ff 4 1—V,0Ff'

Ind(w) = — (6)

The v-coefficient of the specific heat is given by [1 — 0X/0iw], which when
renormalized is just the inverse of d(w), so that /vy = [d(T)]~' = m*(T)/m,
where ~y refers to the noninteracting system and d(7') is (6) with w = 7T
in £&. Hence, v increases on a logarithmic scale as T is lowered. vy diverges
at T, but remains finite if the system does not order.

The magnetic susceptibility is obtained via FL relations [11]

X8 = pipr[m* (1) /m]{1 + U(T)[m* (T) /m]} . (7)

The first factor are the selfenergy insertions (7T-dependent effective mass),
while the second factor represents the vertex insertion. As the critical point
is approached, both m* and U diverge, signaling the breakdown of the FL.
The Wilson ratio is nonuniversal and T-dependent, (xB/xB0)/(7/7) =1+
Ulm*(T)/m]. At the QCP +, xg and the Wilson ratio all diverge.

The effective thermal mass and the magnetic susceptibility increase on
a logarithmic scale as T is reduced and diverge at the critical point, i.e. Tx.
The QCP is an unstable fixed point, i.e. it can only be reached by perfectly
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Fig.1. v, xp and Wilson ratio normalized to their noninteracting values for
Upr = Vpr = 0.2, D = 10, and several values of the nesting mismatch |u]|.

tuning the system (see Fig. 1). Otherwise, the RG flow will deviate to a
phase with long-range order or towards the heavy electron paramagnet.
The perturbative RG is limited to the weak coupling region and cannot
reach into the critical regime. As the coupling constants are renormalized
to larger values, loops to all orders have to be included. In the critical
regime collective bosonic modes (spinwaves) are formed, which cannot be
treated perturbatively, and the Hertz—Millis approach [5], based on an effec-
tive bosonic action, should be used. In the weak and intermediate coupling
regime the collective modes have a broad linewidth and are not relevant.
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