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A STRONG EFFECT OF DISORDER ON MOTT
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We include atomic disorder in correlated narrow-band systems by as-
suming that the atomic level position fluctuates according to the Lorentzian
distribution. We use the Lloyd ezxact form of the averaged single-particle
Green function when the electronic correlations are absent or treated in the
saddle-point slave-boson (or Gutzwiller) approximation. The weak disorder
reduces drastically the threshold for the Mott—Hubbard localization.

PACS numbers: 71.27.+a, 71.30.+h, 71.23.-k

The effect of atomic and thermal disorder on electronic properties of cor-
related electronic systems is of great interest, particularly close to a quantum
critical point, where a non-Fermi liquid behavior or the Mott—Hubbard lo-
calization are observed. The disorder is so influential in the critical regime
because the system is at a threshold of an instability and therefore, a weak
perturbation produces a disproportionate effect by changing the nature of
the quantum macro state.

We propose a physical model, which allows for a simple (and partly exact)
analysis of the atomic-disorder role on the physical properties of almost
localized systems. Namely, we consider first the mean-field (saddle-point
Gutzwiller) picture of quasiparticle states and then determine the drastic
influence on them of a weak disorder treated exactly.

We start with a half-filled narrow-band system of correlated electrons
characterized by the quasiparticle energies E = qeg, where €f is the bare
band energy and ¢ is the band narrowing factor [1]. Explicitly, for a half-filled
band configuration (n = 1) ¢ = 8d?(1 — 2d?), where d? is the probability of

* Presented at the International Conference on Strongly Correlated Electron Systems,
(SCES 02), Cracow, Poland, July 10-13, 2002.

(399)



400 J. SpareEk, W. WAOJCIK

having a double occupancy on a single atomic site. We introduce the atomic
disorder in the system by assuming that the atomic level position fluctuates
around the mean value €p = 0. In result, the starting effective Hamiltonian
for N sites in real space takes the form

H= Z €iNio + qz 'tija;raajg +Ud*N (1)

io ijo

where t;; is the hopping integral and U is the magnitude of intraatomic inter-
action 7. In this manner, we assume that the disorder is weak and therefore,
the mean-field-like quasiparticle states with energies gey, are formed first [2].
Furthermore, we assume that the disorder is represented by the Lorentzian
distribution of the atomic-level portion € = {¢;}, i.e.

€1 1
= e ?

where 1 is the distribution width. Under these circumstances, the Hamilto-
nian (1) is exactly soluble and the expression for the single-particle Green
function takes a very simple form [3]

1 1
Gi(FE) = =
k(P) E—qgep—c+iey, E—(ep—p)—%" 3)

where € = eg+u, and p is the chemical potential. The disorder introduces the
quasiparticle lifetime 7/, whereas the correlations renormalize the particle
mass mg — m* = myg/q [1]. This is because the selfenergy in (3) is X(E) =
—(1 — q)E —iey. The spectral density function Ag(FE) is then given by

1 1 €1
Ap(E) = ——ImGg(FE) = — . 4
k(E) —ImGy(E) T (4)

Thus, the spectral density function is also of Lorentzian form. The density
of states (per one spin direction) for this system is, in turn, determined from
the relation

w/2 ()
&1 pol\E
B)=2 [ 4
pp) == | ey (5)
—W/2

where pg(e) is the density of states in the bare band. For the modeling
purposes, we take a constant density of states (po(e) = 1/W, for —W/2 <
e < W/2), as Eq. (5) involves an integration and thus should not depend
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much on the detailed band shape (within a numerical factor). In result, the
density of states at the Fermi level (F =& =0) is

Wyq 2 W for V1
arctan | — | ~ —— €1 2e1 6
<261) qu{ 5 3% for %>>1. (6)

p(0) = — a7 B
The upper limiting situation corresponds to the strong-disorder case, whereas
the lower will represent the weak-disorder limit.

Taking the density of states (6) we can calculate the ground state energy
Eq. Using the condition 0Eq/dq = 0, we obtain the equation for g (or d?)
in the closed form:

2eq qW U qW
[ garc an<261)] V q+UC 5 0, (7)

where U. = 2W is the localization threshold when the disorder is absent.
The explicit form (4) of the spectral density function allows us also to
calculate statistical distribution function at T' = 0, which is

I

1 1 —
o = / dEAg(F) = = — —arctan KLl (8)
2 7 €1
—00

This is a general formula, with the band shape €. Only in the case ¢y =0
do we recover the Fermi-Dirac distribution fige = @(p — geg). Therefore,
in this respect our system is certainly a non-Landau (non-Fermi) liquid, as
the ImX(E) does not vanish for £ = p and thus for Ey — pu, gleg| < e1,
even though ¢ /W <« 1.

To illustrate our results, we have plotted in Fig. 1 the localization thresh-
old (for which d? = 0), which is strongly reduced for relatively small value
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Fig. 1. Critical interaction U/U. for the localization threshold vs e; /.
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of e1/W. The density of states determines directly the electronic specific
heat coefficient . The static paramagnetic susceptibility x(0) has the form
provided earlier [4]. Therefore, one can determine the dimensionless value
of the Wilson ratio R = (x/x0)/(7/7), where g and xq are the values for
the uncorrelated pure systems.

In Fig. 2 we have plotted this ratio as a function of the relative interaction
strength. In the pure system (¢; = 0) the ratio evolves from unity at U = 0
to the value R =4 at U = U, |4]. The disorder washes out systematically
that dependence and makes the system look like less correlated, even though
the density of states is strongly enhanced.
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Fig.2. The Wilson parameter vs U/U, for several values of g1 /W.

In summary, we have devised a simple physical model describing a non-
Fermi liquid behavior induced by the atomic disorder in almost localized
systems. A weak disorder sharply reduces the localization threshold and the
Wilson ratio in the correlated state.
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