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Both perturbation approach in the Hubbard operator representation
and the exact Lehmann representation proves that the electron quasiparti-
cle in SCES has spin S = 1/2, electric charge e, QP energy and QP spectral
weight split over various QP bands. General theory and its application to
the hole doped CuOQ; layer are considered.

PACS numbers: 71.10.Fd, 71.20.Be, 71.27.+a, 71.15.Mb

1. Introduction

Conventional single electron approach (LDA-like) fails to describe elec-
tron properties of strongly correlated electron systems (SCES). Several per-
turbation approaches on t/U starts from the Hubbard papers [1] use pro-
jection operators or the Hubbard X-operators technique. This approaches
include strong Coulomb interactions in the Hamiltonian Hy and treat the in-
teratomic hopping by a perturbation method. The main conclusion of these
perturbation methods is that electron in SCES is considered as a sum of
quasiparticles (QP) with charge e, spin 1/2, renormalized energy and spec-
tral weight [2]. Application of Hubbard ideas to realistic multiorbital mod-
els of transition metal oxides results in a generalized tight-binding (GTB)
method [3]| that combines exact diagonalization of the intracell part of H
with the perturbation treatment of the intercell part. In this paper we use
the exact Lehmann representation for a single electron Green function (GF)
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to compare the notion of the quasiparticle in SCES developed in the pertur-
bation approach to the exact one. The Lehmann representation treats an
electron as a sum of QP with spin S = 1/2, charge e and renormalized energy
and spectral weight without any indications on spin—charge separation. We
show that the GTB method gives the practical realization of the Lehmann
representation. Some results of GTB calculations of the QP energy spectra
for copper oxides and ARPES data are given in [4,5].

2. Lehmann representation and GTB method

Single electron GF G, = <<akg ‘ a,’;»w can be written as [6]

Golh) = 3 <A+(k,w) . Bm(k,w)) | Q

w— 2% w— 2,

m

where the QP energies are given by
0y, = Eq(N +1) = Eo(N) — p, 2, = Eo(N) = En(N —1) — p,
and the QP spectral weight is equal to
A (k,w) = [0, N] ago |m, N + 1), B (k,w) = [(m, N — 1] ag, |0, N)|>.

Here |m,N) is the m-th eigenstate of the system with N electrons,
H|m,N) = E,, |m,N). The index m numerates QP with spin § = 1/2,
electrical charge e, energy 27 (£2,,), and spectral weight A, (By,). The
Eq. (1) may be considered as a sum over different QP bands with m being
a QP band index. In practical calculations the Lehmann representation is
useless because the multielectron eigenstates |m, N) for the crystal are not
known.

Let write the multiorbital generalized Hubbard model (or p—d model for

oxides) in the form

H = Ho+Hy, Ho=") He(i), Hi =Y Hec(i,]), (2)

where H.(7) is the intracell part of H with the unit cell index i, Hec(i,7)
is the intercell hopping and interaction between cells ¢ and j. The GTB
method consists of the 3 steps:

(a) the intercell multielectron molecular orbital |p) = |m, N.) is calcu-
lated by the exact diagonalization of Hc(i) for different sectors of Hilbert
space numerated by the number of electrons in the cell N,.

(b) the intracell Hubbard X-operators are constructed,

X7 = p){g| = m, No) {m/, N} . 3)
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We assume here that the eigenstates |p) of neighboring cells are orthogonal.
If not, for example in cuprates where two CuQOg cells share a common oxygen
ion, the special procedure of orthogonalization is required. For cuprates in
the 3-band p—d model it has been done in [7-9] and for the 6-band p—d model
see [4]. To simplify the notations of X-operators we relate each pair of initial
and final states in Eq. (3) to root vector [10], a set of these root vectors is
discrete, so we just numerate them by index n:

a(p,q) n (p,q)
XM X © X, X (4)
With this notation we can write the exact representation

Ajg = Z’YU Xz ) ’YU( ) <p|aiU|Q> = <maNc| Qo ‘mlaNc + 1> - (5)
The exact intracell electron GF in X-representation is equal to

_ F(n)
= zﬂ: |%(n)|2ma (6)

n

where local QP energy (2, = E,y (Nc+1) — E,,(N.), F(n) is a filling factor,
F(n) = (XPP) + (X9). Thus n is the QP band index, and |y, (n)[* F(n) is
the QP spectral weight.

(c) in the X-representation the total Hamiltonian has the form

H= ZEXPP+Z > X”X” (7)

ij nn'

and looks similar to the Hubbard model in the X-representation. All per-
turbation methods in ¢/U < 1 known for the Hubbard model can be used.
These methods are considered in detail in [11]. The Hartree—Fock approxi-
mation in the diagram technique is equivalent to the Hubbard-I decoupling

for the intercell hopping and results in the following dispersion equation for
the QP bands

det [|0pp (w — §2,,) [ F (n) — tpw (K)|| = 0. (8)

The structure of the Eq. (8) is similar to the tight-binding dispersion equa-
tion with the following differences: (i) local QP energy (2, includes exactly
the Coulomb interaction inside the cell. (i7) n is not a number of atomic or
molecular single electron orbital, it is a band index of QP, (%ii) filling factor
F(n) is absent in the single electron theory. In the Eq. (8) the fitting fac-
tor provides dependence of the QP bands on temperature, doping, external
fields. There is no rigid band situation for the QP bands in SCES.
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The QP bands of undoped and hole doped CuQOs layer has been calcu-
lated by GTB method in [4] using CuOg unit cell (CuO4Cly for SroCuO4Cly).
In the undoped antiferromagnetic insulator there is a charge transfer gap, the
dispersion of the top of the valence band is in a good agreement with ARPES
data on SroCuO49Cly [12]. At the top of the valence band an impurity-like
band appears due to spin fluctuations and doping. A pseudogap between
the impurity-like band and the main valence band has a dispersion similar
to “remnant Fermi surface” in SroCuO4Cls and to a pseudogap in the under-
doped Bi-2212 samples [5]. The Fermi level is pinned inside the impurity-like
band and very weakly depends on doping in the underdoped region.

3. Conclusion

In the perturbation approach of GTB the structure of GF is the same as
in the exact Lehmann representation. There is a splitting of electron given
by the Eq. (5) on different QP bands characterized by spectral weight redis-
tribution over QP bands. Only summing all QP spectral weights one gets
free electron spectral weight. Thus spectral weight splitting and removing
its large part far away from the Fermi level is the most essential effect of
strong correlations.
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