ANOMALOUS PRESSURE RESPONSE OF MAGNETIC PROPERTIES IN RuSr₂GdCu₂O₈*

G. Oomi, I. Minamitake

Department of Physics, Faculty of Science, Kyushu University Fukuoka 810-8560, Japan

F. Honda

Department of Electronic Structures, Charles University Ke Karlovu 5, 121 16 Prague 2, The Czech Republic

M. Kosaka, N. Môri

Department of Physics, Saitama University, Saitama 338-0825, Japan

DO P. HAI, S. KAMIZAWA AND K. KADOWAKI

Institute of Materials Science, Tsukuba University, Ibaraki 305-8573, Japan

(Received July 10, 2002)

Electrical resistance and magnetization of RuSr₂GdCu₂O₈ have been measured at high pressure in order to clarify the interplay between the magnetic ordering and superconductivity. It is found that the magnetic ordering temperature (T_m) and the superconducting transition temperature (T_C) increase with increasing pressure. These results imply that the superconductivity coexists with magnetic ordering at least up to 2.1 GPa.

PACS numbers: 74.67.Pq, 75.50.Ee, 74.62.Fj

1. Introduction

The hybrid ruthenate-cuprate compound $\text{RuSr}_2\text{GdCu}_2\text{O}_8$ (abbreviated as Ru-1212), in which superconductivity ($T_{\text{C}} \sim 40 \text{ K}$) and magnetic ordering ($T_{\text{m}} \sim 130 \text{ K}$) coexist, has attracted much attention because of the possibility to find a new mechanism of superconductivity [1,2]. Since high pressure is

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES 02), Cracow, Poland, July 10-13, 2002.

well known as a good tool to control the electronic state, it is worthwhile to study the magnetic and electrical properties of Ru-1212 under high pressure. In the present work, we attempted to observe the electrical resistance and magnetization of Ru-1212 under pressure in order to clarify the interplay between magnetic ordering and superconductivity at high pressure.

2. Experimental

The specimens of Ru-1212 were prepared by solid state reaction. High pressure was generated by using piston-cylinder device and a mixture of Fluorinert FC70 and FC77 as a pressure transmitting medium. The details of the present apparatus were described previously [3]. Electrical resistance was measured using standard four-probe method. The magnetization was measured by means of micro high pressure clamp cell and SQUID magnetometer up to about 0.8 GPa [4].

3. Results and discussion

3.1. Effect of pressure on the magnetic transition and superconducting temperatures $(T_{\rm m} \text{ and } T_{\rm C})$

Temperature dependent electrical resistance R(T) of Ru-1212 is shown in Fig. 1 at various pressure. R(T) at ambient pressure decreases smoothly with decreasing temperature down to 150 K and shows a small anomaly near 130 K (= $T_{\rm m}$) due to magnetic ordering followed by a smooth increase in R(T), which is reminiscent of underdoped high $T_{\rm C}$ superconductors.

Fig. 1. Temperature dependence of the electrical resistance of Ru-1212 under high pressure. Magnetic ordering temperature $T_{\rm m}$ is shown by an arrow.

The magnetic transition temperatures $T_{\rm m}$ are defined as a temperature showing a maximum in dR/dT [5]. The same anomaly is found also in the temperature dependence of the thermal expansion coefficients $\alpha(T)$ [6]. After the smooth increase, the R(T) curve shows sudden decrease due to superconducting transition. $T_{\rm C}$ was determined as the temperature having the value of $R = 0.05 \,\mathrm{m\Omega}$.

 $T_{\rm C}$ and $T_{\rm m}$ are shown in Fig. 2 as a function of pressure. Both $T_{\rm C}$ and $T_{\rm m}$ are found to increase with pressure in almost linear fashion: $\partial T_{\rm m}/\partial P$ and $\partial T_{\rm C}/\partial P$ are estimated to be 5.7 K/GPa and 1.6 K/GPa, respectively. These results indicate that both the magnetic interaction and the superconductivity are enhanced by pressure.

Fig. 2. $T_{\rm C}$ and $T_{\rm m}$ of Ru-1212 as a function of pressure.

3.2. Effect of pressure on the magnetization

Fig. 3 shows the temperature dependence of magnetization M (emu/mol) at 1 kOe at high pressure up to 0.8 GPa. M(T) is almost zero above 170 K but increases steeply near $T_{\rm m}$ due to magnetic ordering. Here we define ΔM as the magnitude of discontinuous change in the magnetization M near $T_{\rm m}$, which reflects the small ferromagnetic component or the net magnetization of canted antiferromagnetic Ru moment. ΔM is found to decrease as pressure increases. Below 20 K, M(T) increases again due to the magnetic ordering of Gd moment. $T_{\rm m}$ is defined as the temperature where $\chi_{\rm m}^{-1}(=H/M)$ becomes zero. $T_{\rm m}$ increases with increasing pressure having the rate of about 17 K/GPa, which is larger than that mentioned above. This fact indicates

Fig. 3. Temperature dependence of magnetization of Ru-1212 under high pressure.

that ΔM decreases but $T_{\rm m}$ increases by the evolution of antiferromagnetism as pressure increases (see Fig. 4). This fact suggests that the angle between the canted moments decreases at high pressure.

Fig. 4. $T_{\rm m}$ and ΔM of Ru-1212 as a function of pressure. The solid lines are the guide of eyes.

REFERENCES

- C. Bernhard, J.L. Tallon, Ch. Niedermayer, Th. Blasius, A. Golnik, E. Brücher, R.K. Kremer, D.R. Noakes, C.E. Stronach, E.J. Ansaldo, *Phys. Rev.* B59, 14099 (1999).
- [2] J.L. Tallon, C. Bernhard, J.W. Loram, J. Low. Temp. Phys. 117, 823 (1999).
- [3] G. Oomi, T. Kagayama, *Physica B* **239**, 191 (1997).
- [4] Y. Uwatoko, T. Hotta, E. Matsuoka, H. Mori, T. Ohki, J.L. Sarrao, J.D. Thompson, N. Môri, G. Oomi, *Rev. High Press. Sci. Technol.* 7, 1508 (1998).
- [5] G. Oomi et al., Proceedings of 18th AIRAPT, 2001, Beijing, to be published.
- [6] G. Oomi *et al.*, to be submitted.