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VERTICAL VERSUS DIAGONAL STRIPE PHASESIN CUPRATES�Krzysztof Ro±
iszewski and Andrzej M. Ole±Marian Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived July 10, 2002)Magneti
 and 
harge ordering in the stripe phases in the Hubbard modelare investigated in the regime of large on-site Coulomb repulsion, using
orrelated wave fun
tions. We have found that the appearan
e of stripesis a robust feature, while verti
al and diagonal stripe phases 
ompete withea
h other. The Hartree�Fo
k approximation yields qualitative informationon the hole and magnetization density in the stripes, but their stability 
anbe de
ided only by in
luding the ele
tron 
orrelations.PACS numbers: 74.20.Mn, 74.72.�h, 71.10.Pm, 71.27.+a1. Introdu
tionNonhomogeneous 
harge and spin ordering in real spa
e, so-
alled stripephases, were �rst predi
ted in the Hartree�Fo
k (HF) [1℄ 
al
ulations andlater observed in neutron s
attering experiments for La2�xSrxCuO4 [2℄ andYBa2Cu3O6+x [3℄. So far, the stripe phases were found using the Hubbardor t�J model in the HF 
al
ulations [4,5℄, by using the density matrix renor-malization group [6℄, in slave-boson approa
h [7℄, in the dynami
al mean �eldtheory [8℄, and also by using lo
al ansatz [9℄. In all these 
al
ulations thestripe phases oriented either along the (10) or along the (11) dire
tion werefound, independently of the applied method, when the Coulomb intera
tionU was su�
iently large as 
ompared with the hopping element t.The previous studies 
on
entrated on the weakly intera
ting (U < 4t)and intermediate (U ' 6t) regime. In the present 
ontribution we investigatethe question whi
h type of stripes, with verti
al or diagonal domain walls, aremore stable for the systems with very strong Coulomb intera
tions (U > 8t),as en
ountered in the 
uprates.� Presented at the International Conferen
e on Strongly Correlated Ele
tron Systems,(SCES02), Cra
ow, Poland, July 10�13, 2002.(537)



538 K. Ro±
iszewski, A.M. Ole±2. The model and variational methodWe study the standard nondegenerate Hubbard Hamiltonian H with on-site repulsion U , and 
onsider U=t = 8, 12 and 16, where t is the hoppingelement. The 
al
ulations were performed on two-dimensional 8� 8 
lusterswith periodi
 boundary 
onditions, with hole doping Æ = 1�n = 18 , where nis the ele
tron density. We use exponential ansatz for the 
orrelated groundstate j	i = exp��P� ��O�� j	HFi, where O� are the lo
al operators,�� are the 
orresponding variational parameters, and j	HFi stands for HFground state wave fun
tion. The operators O� are: O(2)i = ni"ni#�hni"ni#i,O(1)i" = ni" � hni"i, O(1)i# = ni# � hni#i, where h:::i denotes the average overHF ground state, and ni� are the ele
tron number operators. Thus, in totalthe subs
ript � runs from 1 up to 3� 64.To in
lude the e�e
t of nearest-neighbor antiferromagneti
 
orrelationswe used in addition the 
omposite operator Pij(ni"nj# � hni"nj#i), wherethe sum runs over all possible pairs fijg of nearest-neighbor sites. The latteroperator takes into a

ount all antiferromagneti
 
orrelations on average.The variational parameters �� are �xed by minimizing the energy Ein the 
orrelated ground state: E = h	 jHj	i=h	 j	i. To 
ompute E andone-parti
le densities one needs numerous averages of the type: hO�Hi,hO�O�i, hO�HO�i, and hO�ni"O�i. For the 
hara
terization of 
harge andmagnetization distribution it is 
onvenient to introdu
e two fun
tions whi
hare dire
tly related to the elasti
 
oherent s
attering experiments: C(k)and S(k). First of them, the X-ray elasti
 s
attering fun
tion C(k) is:C(k) = 1N Pijhniihnjieik(Ri�Rj), where Ri are the real spa
e latti
e ve
-tors. The se
ond fun
tion S(k) is related to the elasti
 neutron unpolarizedspin s
attering: S(k) = 1N PijhSzi ihSzj ieik(Ri�Rj).3. Numeri
al results and 
on
lusionsWe have performed HF 
omputations starting from di�erent initial
harge and spin 
on�gurations. As self-
onsistent solutions we obtained sev-eral stable and metastable (with higher energy) stripe phases. Most of themshowed distin
t symmetry. After in
luding the 
orrelation e�e
ts we veri�edthat 
harge and magnetization distribution for parti
ular stripe phases didnot 
hange signi�
antly in the presen
e of ele
tron 
orrelations. However,the energies of stripe phases were strongly modi�ed by the 
orrelations.For very large U a simple pi
ture emerged. The most typi
al phasesobtained were: (i) phase A: weakly ferromagneti
 half-�lled (on average onehole per two sites, forming a 
harge density wave) verti
al (01) walls (twoper used super
ell); (ii) phase B: similar diagonal (11) half-�lled weaklyantiferromagneti
 diagonal walls.
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Fig. 1. Left upper panel: phase A: weakly half-�lled ferromagneti
 verti
al stripesin 8 � 8 
luster, as obtained for Æ = 1=8 and U = 12t. Dots denote 
luster sites,the diameters of empty 
ir
les 
orrespond to the hole densities, while the lengths ofthin bars to the magnetization density (the spin arrows tips were omitted). Rightupper panel: phase B: weakly antiferromagneti
 half-�lled diagonal stripes. Lowerpanels: The s
attering patterns in the re
ipro
al spa
e: C(k) for X-rays (dots) andS(k) for neutrons (diamonds), 
orresponding to the phases shown in upper panels.The numbers denote the amplitudes. TABLE IThe a
tual HF energies (EHF) obtained for these two phases as well as total 
orrelatedenergies Ei (in units of t). The energies E1, E2 and E3 
orrespond to 
orrelation 
al
u-lations using only Gutzwiller type lo
al operators (E1), a set extended by one parti
leoperators (E2), and in
luding all (intrasite and intersite) operators (E3).Phase A (verti
al) Phase B (diagonal)U EHF E1 E2 E3 EHF E1 E2 E38 �38.37 �40.80 �41.13 �41.14 �38.22 �40.59 �40.90 �40.9112 �31.14 �33.13 �33.56 �33.58 �31.11 �33.10 �33.48 �33.5016 �27.38 �29.14 �29.67 �29.69 �27.42 �29.23 �29.68 �29.71



540 K. Ro±
iszewski, A.M. Ole±The stability of stripe phases 
hanges with in
reasing U . For U = 12(U = 16) the phase A (B) of Fig. 1 is the most stable (we take t = 1 as theenergy unit). However, at U = 8 by far most stable phase is formed by in-terse
ting (01) and (10) walls (this phase is not shown). Several other stripephases were also found to be lo
ally stable. In parti
ular we remark on verti-
al nonmagneti
 half-�lled stripes, su
h as found earlier in Refs. [1,9℄ whi
hwere stable for intermediate values of U and when using only Gutzwillertype operators (E1) (on top of it the important averages hO�HO�i were
omputed approximately by repla
ing H by its HF one-parti
le part [9℄).We have found that these verti
al nonmagneti
 half-�lled stripes are unsta-ble (for U = 12, 16) or metastable (for U = 8) for very large U , and alsowhen using more a

urate and elaborate treatment of 
orrelations.It might seem that the diagonal (11) stripes form the ground state inthe regime of large U (U > 12t). This is however not the 
ase. In realitythe energy distan
es between di�erent metastable phases are tiny. If onein
luded (as we did) more lo
al operators, the resulting total energy in
re-ments would be just as big as the above mentioned energy distan
es. A sim-ilar situation o

urs when taking into a

ount: (i) relatively small se
ond-nearest-neighbor hopping t0 in H; (ii) three- and four-parti
le ex
itations inlo
al operators (note that U is very large; at present no quantum-
hemistrymethod does exist whi
h would allow to obtain results for su
h a 
ase);(iii) small latti
e anisotropy whi
h 
ould be indu
ed by stati
 phonons [10℄.Therefore, 
on
lusive results about the stripe stability 
an be obtained onlyby in
luding all these e�e
ts and treating the 
orrelation e�e
ts in an a

u-rate way.This work was �nan
ially supported by the Polish State Committee ofS
ienti�
 Resear
h (KBN), Proje
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