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Magnetic and charge ordering in the stripe phases in the Hubbard model
are investigated in the regime of large on-site Coulomb repulsion, using
correlated wave functions. We have found that the appearance of stripes
is a robust feature, while vertical and diagonal stripe phases compete with
each other. The Hartree—Fock approximation yields qualitative information
on the hole and magnetization density in the stripes, but their stability can
be decided only by including the electron correlations.

PACS numbers: 74.20.Mn, 74.72.-h, 71.10.Pm, 71.27.4+a

1. Introduction

Nonhomogeneous charge and spin ordering in real space, so-called stripe
phases, were first predicted in the Hartree-Fock (HF) [1] calculations and
later observed in neutron scattering experiments for Las_,Sr, CuOy [2] and
YBayCu3Og44 [3]. So far, the stripe phases were found using the Hubbard
or t—J model in the HF calculations [4,5], by using the density matrix renor-
malization group [6], in slave-boson approach 7], in the dynamical mean field
theory [8], and also by using local ansatz [9]. In all these calculations the
stripe phases oriented either along the (10) or along the (11) direction were
found, independently of the applied method, when the Coulomb interaction
U was sufficiently large as compared with the hopping element £.

The previous studies concentrated on the weakly interacting (U < 4t)
and intermediate (U =~ 6t) regime. In the present contribution we investigate
the question which type of stripes, with vertical or diagonal domain walls, are
more stable for the systems with very strong Coulomb interactions (U > 8t),
as encountered in the cuprates.
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2. The model and variational method

We study the standard nondegenerate Hubbard Hamiltonian H with on-
site repulsion U, and consider U/t = 8, 12 and 16, where ¢ is the hopping
element. The calculations were performed on two-dimensional 8 >< 8 clusters
with periodic boundary conditions, with hole doping § =1—n = g, where n
is the electron density. We use exponential ansatz for the correlated ground

state |[¥) = exp (— Zu auOu) |¥yr), where O, are the local operators,

«,, are the corresponding variational parameters, and |¥yr) stands for HF

(2)

ground state wave function. The operators O, are: O;” = njn;| — (ningy),

= nip — (N, Oz(i) = n;, — (n;), where (...) denotes the average over
Hﬁ ground state, and n;, are the electron number operators. Thus, in total
the subscript g runs from 1 up to 3 x 64.

To include the effect of nearest-neighbor antiferromagnetic correlations
we used in addition the composite operator »_,.(ninj, — (nitnj))), where
the sum runs over all possible pairs {ij} of nearest-neighbor sites. The latter
operator takes into account all antiferromagnetic correlations on average.

The variational parameters «, are fixed by minimizing the energy E
in the correlated ground state: E = (U|H|¥)/(¥|¥). To compute E and
one-particle densities one needs numerous averages of the type: (O,H),
(0,0.), (O,HO,), and (O,ni+O,). For the characterization of charge and
magnetization distribution it is convenient to introduce two functions which
are directly related to the elastic coherent scattering experiments: C/(k)
and S(k) First of them, the X-ray elastic scattering function C(k) is:

Ck) =« ZZJ (ni)(n;)e ih(R; ~R;) where R; are the real space lattice vec-

tors. The second function S(k) is related to the elastic neutron unpolarized
spin scattering: S(k) = % Zij(Sfo]Z.)eZk(Ri—Rj)_

3. Numerical results and conclusions

We have performed HF computations starting from different initial
charge and spin configurations. As self-consistent solutions we obtained sev-
eral stable and metastable (with higher energy) stripe phases. Most of them
showed distinct symmetry. After including the correlation effects we verified
that charge and magnetization distribution for particular stripe phases did
not change significantly in the presence of electron correlations. However,
the energies of stripe phases were strongly modified by the correlations.

For very large U a simple picture emerged. The most typical phases
obtained were: (i) phase A: weakly ferromagnetic half-filled (on average one
hole per two sites, forming a charge density wave) vertical (01) walls (two
per used supercell); (i) phase B: similar diagonal (11) half-filled weakly
antiferromagnetic diagonal walls.
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Fig. 1. Left upper panel: phase A: weakly half-filled ferromagnetic vertical stripes
in 8 x 8 cluster, as obtained for § = 1/8 and U = 12t. Dots denote cluster sites,
the diameters of empty circles correspond to the hole densities, while the lengths of
thin bars to the magnetization density (the spin arrows tips were omitted). Right
upper panel: phase B: weakly antiferromagnetic half-filled diagonal stripes. Lower
panels: The scattering patterns in the reciprocal space: C(k) for X-rays (dots) and
S (k) for neutrons (diamonds), corresponding to the phases shown in upper panels.

The numbers denote the amplitudes.
TABLE I

The actual HF energies (Eur) obtained for these two phases as well as total correlated
energies F; (in units of ¢). The energies E1, E; and E3 correspond to correlation calcu-
lations using only Gutzwiller type local operators (E1), a set extended by one particle
operators (F-), and including all (intrasite and intersite) operators (Fs).

Phase A (vertical) Phase B (diagonal)

U | Ewr E, Es E; Eyur E, Es E;

8 | —38.37 | —40.80 | —41.13 | —41.14 | —38.22 | —40.59 | —40.90 | —40.91
12 | —-31.14 | —33.13 | —33.56 | —33.58 | —31.11 | —33.10 | —33.48 | —33.50
16 | —27.38 | —29.14 | —29.67 | —29.69 | —27.42 | —29.23 | —29.68 | —29.71
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The stability of stripe phases changes with increasing U. For U = 12
(U = 16) the phase A (B) of Fig. 1 is the most stable (we take t = 1 as the
energy unit). However, at U = 8 by far most stable phase is formed by in-
tersecting (01) and (10) walls (this phase is not shown). Several other stripe
phases were also found to be locally stable. In particular we remark on verti-
cal nonmagnetic half-filled stripes, such as found earlier in Refs. [1,9] which
were stable for intermediate values of U and when using only Gutzwiller
type operators (Fi) (on top of it the important averages (O,HO,) were
computed approximately by replacing H by its HF one-particle part [9]).
We have found that these vertical nonmagnetic half-filled stripes are unsta-
ble (for U = 12, 16) or metastable (for U = 8) for very large U, and also
when using more accurate and elaborate treatment of correlations.

It might seem that the diagonal (11) stripes form the ground state in
the regime of large U (U > 12t). This is however not the case. In reality
the energy distances between different metastable phases are tiny. If one
included (as we did) more local operators, the resulting total energy incre-
ments would be just as big as the above mentioned energy distances. A sim-
ilar situation occurs when taking into account: () relatively small second-
nearest-neighbor hopping ¢ in H; (i) three- and four-particle excitations in
local operators (note that U is very large; at present no quantum-chemistry
method does exist which would allow to obtain results for such a case);
(117) small lattice anisotropy which could be induced by static phonons [10].
Therefore, conclusive results about the stripe stability can be obtained only
by including all these effects and treating the correlation effects in an accu-
rate way.

This work was financially supported by the Polish State Committee of
Scientific Research (KBN), Project No. 5 P03B 036 21.
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