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Exact ground state properties are presented by combining the exact
diagonalization in the Fock space (including the long-range Coulomb inter-
action) with an ab initio optimization of the single-particle (Wannier) func-
tions. The quasiparticle mass is almost divergent at the localization thresh-
old, where the particle distribution of the Fermi-Dirac type gets smeared
out. The analysis is performed using 1s-like Gaussian-type orbitals.

PACS numbers: 71.10.Fd, 71.10.Hf, 71.30.+h

1. Introduction

In spite of the development of the physics of one dimensional systems
such as nanotubes, quantum rings and wires, and organic metals, the un-
derstanding of these correlated fermionic systems is still lacking. This is
because in their description the role of the long-range Coulomb interaction
is crucial, as the charge screening becomes less effective. The exact solu-
tions of the parametrized models with inclusion of intersite interactions [1]
prove the existence of the metal-insulator transition for the half-filled-band
case, in contradistinction to the corresponding Hubbard-model solution [2],
for which the system is insulating even for an arbitrarily small Coulomb
repulsion. A separate question concerns the appearance of the Tomonaga—
Luttinger liquid behavior [3] in the metallic state, for which some evidence
has been gathered [4]. In brief, the delocalization of the states in d = 1
provides a crucial case for the analysis of the localization as a quantum
phase transition in a rigorous manner. Here we address the question of the
metallicity appearance in a correlated nanoscopic atomic chain or ring.
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2. Model Hamiltonian and the optimized ground state energy

We focus here on the so-called Eztended Hubbard Model with Hamiltonian
of the form

1 !
H = ezﬂ Z'ni—f—t Z (azo_aiﬂ + h.c.) +U Znnnu—f— 52 K;jon;onj, (1)
i io i ij

where on; =n; — 1, ! = ¢, + N1 Zi<j(2/Rij + Ki;) (Ry) is the effective
atomic level defined including the mean-field part of the Coulomb interac-
tion, t is the nearest-neighbor hopping integral, and U, K;; are the intra-
and inter-site Coulomb repulsion amplitudes, respectively.

The Hamiltonian (1) is diagonalized in the Fock space with the help of
Lanczos technique. As the microscopic parameters €<, ¢, U, and K;; are cal-
culated numerically in the Gaussian STO-3G basis, the inverse orbital size
« of the 1s-like state is subsequently optimized to obtain the ground state
energy Fqg. This procedure follows the idea of recently developed method
combining first- and second-quantization schemes [5,6]. We have already
shown [6] that such a combined exact diagonalization — ab initio study of
the one dimensional system leads to the precise values of the localization
threshold, the electron-lattice couplings, and the dimerization magnitude.
However, the convergence of the results obtained with the Slater-type or-
bitals is not sufficient to perform the finite-size scaling with the lattice size
N — oo. This is because, when calculating the microscopic parameters in
the single-particle (Wannier) basis, one ignores the three- and the four-site
interaction terms, that represents an uncontrolled approximation.

In contrast, for the Gaussian-type orbitals, we can treat the three- and
four-site terms exactly. Their effects on the convergence of the results for
the ground-state energy E¢ and the optimal inverse orbital size i, are
shown in Fig. 1 for N = 6 + 10 atoms. These results were used to extra-
polate the value of the variational parameter api, to larger N to speed up
the computations. Fig. 1 illustrates also the Hubbard localization criterion.
Namely, for the interatomic distance a =~ 3ag (ag is the Bohr radius) the
energy of the metallic state crosses over to that representing the Mott in-
sulating state. The critical value of a is very close to obtained for the 1s
Slater-type orbitals [6].

3. The quantum critical behavior

The the electron momentum distribution n, = (azg ajy) is shown in
Fig. 2 for N = 6 + 14 atoms. The continuous lines represent the formula

1
mho = 5 +sen(k — kp)lelk — kpl? + Blb = kel = 4], (2)
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Fig. 1. The ground state energy per atom for the linear chain of N = 6 + 10 with
periodic boundary conditions. The Gaussian-type orbitals (STO-3G basis) have
been used. The energies of the purely metallic (M) and insulating (INS) states are
shown for comparison [7]. The inset provides the optimal inverse orbital size amin.

with fitted parameters a, 8, and v. We obtain the critical distance in the
range aerit = 3.56 + 4.18 ag (c¢f. Table I), at which the interpolated Fermi-
ridge discontinuity Anp = 2+ disappears, signaling the electron localization.
No Luttinger-liquid effects were observed in the system with one-electron per
atom. A clear metallic behavior is evidenced by the presence of the Fermi
ridge, since the energy-level spread produces remarkably smaller variations
of ngy than Ang for a < aerit-

TABLE 1

The fitted parameters of the critical exponent formula for the quasiparticle mass
m*/mB = (Anp)_l = A|CL - acrit|_’y-

N A Qcrit vy N A Qcrit vy
8 [35+26 |418(1) |1.39(14) || 12 | 7.0+ 1.1 | 4.030(5) | 1.29(1
10 | 6.54+2.3 | 3.900(3) | 1.32(7) 14 | 7.44+0.4 | 3.56(2) | 1.58(7

0)|
)

With the help of the interpolation formula (2) we can determine the
quasiparticle mass enhancement m*/mp by equating it with (Ang)~!. The
resulting parameters of fitted critical formula m*/mp = Ala — aerit| 7 are
gathered in Table I. The values of critical exponent are in agreement with
those obtained for Slater-type orbitals [6]. It would be very important to
test experimentally this result, as it represents the critical behavior of the
Fermi discontinuity Anp ~ |a — acit|” at the localization border reached
from the metallic side.
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Fig.2. Momentum distribution ng, for electrons on a linear ring of N = 6 + 14
atoms; the interatomic distance a is specified in units of Bohr radius ag. The
continuous line represents the parabolic interpolation (2).

In summary, we have determined the microscopic criterion for the cross-
over transition from the nanoscopic metal to the localized spin system in
one dimension. The new method of optimizing the single-particle wave func-
tions in the correlated state proves thus executable in an exact treatment of
nanoscopic systems for both Slater- and Gaussian-type basis sets. A quan-
tum critical behavior at the metal-insulator boundary is suggested.
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