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We have applied our novel numerical scheme combining Lanczos diagonali-
zation in the Fock space with an ab initio renormalization of the single-particle
(Wannier) functions, to study the ground state properties of the Ertended Hub-
bard Model. Through the finite-size scaling we determine the discontinuity of the
momentum distribution Fermi surface. Our results imply Fermi-liquid behavior
for lattice parameter a < 3ao (ao is the Bohr radius) and zero-temperature tran-
sition to the localized spin system for larger a. Possible further applications of
the method are listed at the end.

PACS numbers: 71.15.Dx, 71.30.-+h, 71.10.Fd

One of the central issues in the physics of strongly correlated electron
systems (which relevance is crucial in the modeling of high-T. superconduc-
tors [1]), is the question whether the electron behavior in such system is or
is not Fermi-liquid-like. This problem also appears in recently studied one-
dimensional systems (1D), which range from organic metals [2| to quantum
rings and wires [3]|, and to nanotubes [4]. In their canonical description,
provided by the Hubbard-model-methodology [5], the non-Fermi-liquid be-
havior is predicted (away from half-filling) by the renormalization group
mapping onto the Tomonaga—Luttinger model [6]. Numerical evidence for
this behavior has also been gathered [7]. However, as the exact solutions of
the modified Hubbard model with inclusion of intersite interactions [8] prove
the existence of the metal-insulator transition (MIT) even for the half-filled-
band case, the role of the long-range interactions has to be crucial in the
theoretical understanding of the correlated 1D systems. The existence of
such MIT has also been discussed [9] within the density-matrix renormaliza-
tion group (DMRG) method when the second-neighbor hopping is included.

In this paper we complement our previous study [10] of the electron local-
ization in 1D, 1s-band system with both the long-range (Coulomb) interac-
tions and the nearest-neighbor hopping [11]. Finite-size scaling is applied for
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the first time to determine whether the system shows Fermi- or non-Fermi-
liquid-like behavior at the localization threshold. But first, let us briefly

summarize the basic features of the homogeneous conductors, following [7].
In a Fermi liquid quasiparticles are well defined, which implies: (1) a
nonzero quasiparticle pole strength Z in a single particle propagator

Z

G(k,W) = o — (Ek — EF) + Z(Ssgn(k — kF)

+ Gincon(k,w) (1)

(with standard notation), and (i) a finite discontinuity Ang of the mo-

mentum distribution ng = a;[cak at the Fermi ridge (k = k). Moreover,

in a Fermi-liquid the discontinuity Ang is equal to the inverse quasiparticle
mass renormalization Z.

In a system of finite size N, however, Ang(N) is always nonzero due
to the finite distance between neighboring states in the first Brillouin zone.
Nevertheless, its asymptotic behavior for N — oo can belong to one of three
categories: (a) Ang(N) = AN (insulator), (b) Ang(N) = N (marginal
conductor), (¢) Ang(N) — const (normal conductor). Although it is, in
principle, straightforward to justify whether a correlated electron liquid is
a Fermi liquid, provided finite-size scaling can be performed on Ang(N),
one should carefully check the condition (i), concerning the quasiparticle
pole strength Z in Eq. (1). This part of an analysis can also be done with
the help of Lanczos diagonalization technique [12], and will be presented

elsewhere [13].
For the Fermi-liquid regime (c), one can expand Ang(N) in powers of
1/N, to obtain the following extrapolation formula for large lattice size N:

Ang(N) = Ang + a(1/N) +b(1/N)* +... . (2)
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Fig.1. The finite-size scaling of the Fermi-ridge discontinuity Ang(N). The ex-
trapolation with 1/N — 0 is performed separately for N = 4k and N = 4k + 2.
The lattice parameter a is expressed in the units of Bohr radius aq.
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A sample of numerical results for N = 4 + 14 with corresponding ex-
trapolation parabolas of the form (2) are shown in Fig. 1. All the results
were obtained for Eztended Hubbard model [11]|, within a combined exact
diagonalization-ab initio approach [10]. The extrapolated values of Anyg for
1/N — 0, are presented in Fig. 2 as a function of the lattice parameter a.
The source data for N = 414, used for finite-size scaling, are provided with
the inset. Both curves for N = 4k and N = 4k+2 shows clear transition-like
behavior for acit &~ 3ap in contradistinction to the corresponding numerical
results for pure Hubbard model [7]. The values of a..; are in agreement
with the Hubbard localization criterion [10].
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Fig. 2. Fermi-ridge discontinuity Ang obtained through the finite-size scaling with
1/N — 0, and the original data (inset) for N = 4 + 14.

In summary, we presented a first numerical evidence for the possible
metal-insulator transition in one-dimensional, ls-band system with long
range Coulomb interactions using the finite-size scaling. The results, ob-
tained via the combined exact diagonalization — ab initio approach [10]
are in agreement with an exact solution of the modified Hubbard model by
Strack and Vollhardt [8]. Among the future applications of our method are
the following problems:

(i) A direct treatment of the realistic 1D systems with the single-band extended
Hubbard model. This most straightforward application concerns only a lim-
ited class of materials. However, as the Hilbert space of various organic
conductors can be effectively reduced by choosing only the highest occupied-
(HOMO) or the lowest unoccupied molecular orbital (LUMO) per structural
unit, this direction seems realizable [14].
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(i) The combination of the approximate methods of solving parametrized Hamil-
tonians with an ab initio readjustment of the Wannier functions. This ap-
proach, i.e. for the case of Gutzwiller method (possibly combined with a few
Lanczos steps) will allow us to consider 3-dimensional systems of a larger
size. The study of the correlated electrons in such materials as the metallic
hydrogen, or truly 1D systems (e.g. carbon nanotubes), looks possible.

(#i) The use of the Gaussian-type orbitals (GTO) provides us with an insight
into a system containing heavier atoms or ions (such as CuO planar cluster
in a high-T. superconductor). However, the computational complexity of the
method increases with the fourth power of the number of Gaussians per site,
so this particular application seems to be limited to small clusters, even with
modification ().

It would also be very interesting to test experimentally presented results
on a “toy” nanoscopic systems, such as linear chains of single-electron quan-
tum dots (with steered gate potential), or K/Na atoms wrapped with Cgg
fullerenes.
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