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ON METAL�INSULATOR TRANSITIONFOR A ONE-DIMENSIONALCORRELATED NANOSCOPIC CHAIN�Adam Ryerz and Jozef SpaªekMarian Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived July 10, 2002)We have applied our novel numerial sheme ombining Lanzos diagonali-zation in the Fok spae with an ab initio renormalization of the single-partile(Wannier) funtions, to study the ground state properties of the Extended Hub-bard Model. Through the �nite-size saling we determine the disontinuity of themomentum distribution Fermi surfae. Our results imply Fermi-liquid behaviorfor lattie parameter a . 3a0 (a0 is the Bohr radius) and zero-temperature tran-sition to the loalized spin system for larger a. Possible further appliations ofthe method are listed at the end.PACS numbers: 71.15.Dx, 71.30.+h, 71.10.FdOne of the entral issues in the physis of strongly orrelated eletronsystems (whih relevane is ruial in the modeling of high-T superondu-tors [1℄), is the question whether the eletron behavior in suh system is oris not Fermi-liquid-like. This problem also appears in reently studied one-dimensional systems (1D), whih range from organi metals [2℄ to quantumrings and wires [3℄, and to nanotubes [4℄. In their anonial desription,provided by the Hubbard-model-methodology [5℄, the non-Fermi-liquid be-havior is predited (away from half-�lling) by the renormalization groupmapping onto the Tomonaga�Luttinger model [6℄. Numerial evidene forthis behavior has also been gathered [7℄. However, as the exat solutions ofthe modi�ed Hubbard model with inlusion of intersite interations [8℄ provethe existene of the metal-insulator transition (MIT) even for the half-�lled-band ase, the role of the long-range interations has to be ruial in thetheoretial understanding of the orrelated 1D systems. The existene ofsuh MIT has also been disussed [9℄ within the density-matrix renormaliza-tion group (DMRG) method when the seond-neighbor hopping is inluded.In this paper we omplement our previous study [10℄ of the eletron loal-ization in 1D, 1s-band system with both the long-range (Coulomb) intera-tions and the nearest-neighbor hopping [11℄. Finite-size saling is applied for� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.(655)



656 A. Ryerz, J. Spaªekthe �rst time to determine whether the system shows Fermi- or non-Fermi-liquid-like behavior at the loalization threshold. But �rst, let us brie�ysummarize the basi features of the homogeneous ondutors, following [7℄.In a Fermi liquid quasipartiles are well de�ned, whih implies: (i) anonzero quasipartile pole strength Z in a single partile propagatorG(k; !) = Z! � (�k � �F) + iÆsgn(k � kF) +Ginoh(k; !) (1)(with standard notation), and (ii) a �nite disontinuity �nk of the mo-mentum distribution nk = DaykakE at the Fermi ridge (k = kF). Moreover,in a Fermi-liquid the disontinuity �nk is equal to the inverse quasipartilemass renormalization Z.In a system of �nite size N , however, �nk(N) is always nonzero dueto the �nite distane between neighboring states in the �rst Brillouin zone.Nevertheless, its asymptoti behavior for N !1 an belong to one of threeategories: (a) �nk(N)! A�N (insulator), (b) �nk(N)! N�� (marginalondutor), () �nk(N) ! onst (normal ondutor). Although it is, inpriniple, straightforward to justify whether a orrelated eletron liquid isa Fermi liquid, provided �nite-size saling an be performed on �nk(N),one should arefully hek the ondition (i), onerning the quasipartilepole strength Z in Eq. (1). This part of an analysis an also be done withthe help of Lanzos diagonalization tehnique [12℄, and will be presentedelsewhere [13℄.For the Fermi-liquid regime (), one an expand �nk(N) in powers of1=N , to obtain the following extrapolation formula for large lattie size N :�nk(N) = �nk + a(1=N) + b(1=N)2 + : : : : (2)�n k a=a0 = 2a=a0 = 3 a=a0 = 4a=a0 = 5
N = 4kN = 4k + 2

Fig. 1. The �nite-size saling of the Fermi-ridge disontinuity �nk(N). The ex-trapolation with 1=N ! 0 is performed separately for N = 4k and N = 4k + 2.The lattie parameter a is expressed in the units of Bohr radius a0.



On Metal�Insulator Transition for a One-Dimensional Correlated. . . 657A sample of numerial results for N = 4 � 14 with orresponding ex-trapolation parabolas of the form (2) are shown in Fig. 1. All the resultswere obtained for Extended Hubbard model [11℄, within a ombined exatdiagonalization-ab initio approah [10℄. The extrapolated values of �nk for1=N ! 0, are presented in Fig. 2 as a funtion of the lattie parameter a.The soure data for N = 4�14, used for �nite-size saling, are provided withthe inset. Both urves for N = 4k and N = 4k+2 shows lear transition-likebehavior for arit � 3a0 in ontradistintion to the orresponding numerialresults for pure Hubbard model [7℄. The values of arit are in agreementwith the Hubbard loalization riterion [10℄.
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Fig. 2. Fermi-ridge disontinuity �nk obtained through the �nite-size saling with1=N ! 0, and the original data (inset) for N = 4� 14.In summary, we presented a �rst numerial evidene for the possiblemetal�insulator transition in one-dimensional, 1s-band system with longrange Coulomb interations using the �nite-size saling. The results, ob-tained via the ombined exat diagonalization � ab initio approah [10℄are in agreement with an exat solution of the modi�ed Hubbard model byStrak and Vollhardt [8℄. Among the future appliations of our method arethe following problems:(i) A diret treatment of the realisti 1D systems with the single-band extendedHubbard model. This most straightforward appliation onerns only a lim-ited lass of materials. However, as the Hilbert spae of various organiondutors an be e�etively redued by hoosing only the highest oupied-(HOMO) or the lowest unoupied moleular orbital (LUMO) per struturalunit, this diretion seems realizable [14℄.



658 A. Ryerz, J. Spaªek(ii) The ombination of the approximate methods of solving parametrized Hamil-tonians with an ab initio readjustment of the Wannier funtions. This ap-proah, i.e. for the ase of Gutzwiller method (possibly ombined with a fewLanzos steps) will allow us to onsider 3-dimensional systems of a largersize. The study of the orrelated eletrons in suh materials as the metallihydrogen, or truly 1D systems (e.g. arbon nanotubes), looks possible.(iii) The use of the Gaussian-type orbitals (GTO) provides us with an insightinto a system ontaining heavier atoms or ions (suh as CuO planar lusterin a high-T superondutor). However, the omputational omplexity of themethod inreases with the fourth power of the number of Gaussians per site,so this partiular appliation seems to be limited to small lusters, even withmodi�ation (ii).It would also be very interesting to test experimentally presented resultson a �toy� nanosopi systems, suh as linear hains of single-eletron quan-tum dots (with steered gate potential), or K/Na atoms wrapped with C60fullerenes.This work was supported by the Polish State Committee for Sienti�Researh (KBN) Grants No. 2 P03B 050 23 and No. 2 P03B 064 22.REFERENCES[1℄ See, e.g.: J. Spaªek, in: Enylopedia of Physial Siene and Tehnology 16,251, Aademi Press, San Diego, 2002, and referenes therein.[2℄ D. Jerome, H.J. Shulz, Adv. Phys. 31, 299 (1982); f. also Correlated EletronSystems, edited by V.Emery, World Sienti�, Singapore 1993.[3℄ L. Jaak, P. Hawrylak, A. Wójs, Quantum Dots, Springer Vg., Berlin, 1998;F. Ge, et al., Ann. Phys. (Leipzig) 9, 1 (2000); A. Sekiyama, et al., Phys. Rev.B51, R13899 (1995); A. Goni, et al., Phys. Rev. Lett. 70, 1151 (1993).[4℄ J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992).[5℄ J. Hubbard, Pro. Roy. So. London, Ser. A 236, 237 (1963); Pro. Roy. So.London, Ser. A 281, 401 (1964).[6℄ J. Solyom, Adv. Phys. 28, 201 (1979).[7℄ S. Sorella et al., Europhys. Lett. 12, 721 (1990).[8℄ See Ref. [1℄ in A. Ryerz et al., these proeedings.[9℄ S. Daul, R.M. Noak, Phys. Rev. B61, 1646 (2000).[10℄ See Ref. [6℄ in A. Ryerz et al., these proeedings.[11℄ See Eq. (1) in A. Ryerz et al., these proeedings.[12℄ E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).[13℄ A. Ryerz, J. Spaªek, unpublished.[14℄ T. Luty, private ommuniation.


