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SUSY ATOMIC MODEL� ��J. Hopkinson and P. ColemanCenter for Materials Theory, Dept. of Physi
s and Astronomy, Rutgers University136 Frelinghuysen Rd., Pis
ataway, NJ, 08854, USA(Re
eived July 10, 2002)We present the simplest model to whi
h one 
an apply the super-symmetri
 Hubbard operators re
ently introdu
ed P. Coleman, C. Pépin,J. Hopkinson, Phys. Rev. B62, 3852 (2000). For the atomi
 model,H = �EdX00, where X00 = j0ih0j is a Hubbard operator and Ed is theenergy of the lo
alized spin level, we show how one 
an develop exa
t solu-tions for the entropy and heat 
apa
ity as a fun
tion of temperature. Withthis gold standard we are able to develop a 
ontrolled approximation s
hemeto �eld theoreti
ally treat the SUSY approximation at the level of mean�eld + Gaussian 
orre
tions and test its a

ura
y against the widely usedslave boson and slave fermion approximations. We �nd that in addition toslave boson and slave fermion solutions, a new 
lass of solutions exists inthe physi
al 
ase Q = 1, N = 24 whi
h 
an be properly treated by neitherpreviously existing approa
h. The phase diagram generated by the mean�eld saddle-point bears a super�
ial resemblan
e to the V-shaped phasediagram 
ommon to systems 
lose to a quantum 
riti
al point and mayprovide a natural starting point for investigations of strongly 
orrelatedmodels 
apturing this physi
s.PACS numbers: 71.27.+a, 71.10.Hf, 75.20.Hr, 75.40.�s1. Introdu
tionIn heavy fermion systems 
lose to an antiferromagneti
 quantum 
riti
alpoint (AQCP) one now has the ability to tune from an antiferromagneti
state to a paramagneti
 state as a fun
tion of �eld [2℄, pressure [2, 3℄ ordoping [2, 3℄. In the region above su
h a point, anomalous behavior is seenin measurements of heat 
apa
ity Cv=T � ln(T0=T ) and resistivity � � T .The question has arisen in the literature whether these exponents are due� Presented at the International Conferen
e on Strongly Correlated Ele
tron Systems,(SCES02), Cra
ow, Poland, July 10�13, 2002.�� This work was supported by NSF grant DMR 9983156. Thanks to C. Pépin andO.Par
ollet for dis
ussions. (733)
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al d = 2 lo
al QCP [4℄ or rather a symptom of a breakdown ofthe d = 3 Fermi liquid [5℄. In parti
ular, the observation of hypers
aling inthese 
ompounds has been used to argue the need for a mi
ros
opi
 theory
apable of des
ribing the breakdown of the Fermi surfa
e and the formationof antiferromagneti
 order as one tunes through this point.Susy Hubbard operators [1℄ with SU(1j1)�U(1) symmetry allow one totune from a bosoni
 des
ription of a spin (magneti
) to a fermioni
 de-s
ription (Fermi surfa
e). For an atomi
 model, we show using 
ountingarguments how it is possible to generate exa
t solutions for the entropy andheat 
apa
ity as a fun
tion of temperature for the Hilbert spa
e of theseoperators. Comparison of these with �eld theoreti
 results (mean �eld +Gaussian �u
tuations) allows us to estimate the error endemi
 to this 1=Napproa
h, 
ontrasting it with slave fermion and slave boson approa
hes.2. An exa
t solutionTo �x an irredu
ible representation of the Hubbard operators, we setjaihbj = Xab = ByaBb + F yaFb ; (1)where Fa = (f1; : : : ; fN ; �) and Ba = (b1; : : : ; bN ; �) de�nes spin �elds tobe fermioni
 or bosoni
 respe
tively and their slave partners the 
onverse,while maintaining the 
onstraints Q = nb+n�+nf +n� and Y = n�+nf �(nb + n�) + 1=Q[�; �y℄ ; where � = P� by�f� � �y� is an operator inter-
onverting fermions and bosons for the 
orner state. This generates a seriesof L-shaped Young tableaux, the simplest of whi
h (a single box) 
orrespondsto a single physi
al spin when N = 2. To �nd the exa
t free energy of thestate (Q;Y ) we simply 
ount the number of available states to the system ata given energy level. De�ning h = (Q+ Y + 1)=2 and w = (Q� Y + 1)=2,the number of states available are�N (h;w) = � Nh �� N + w � 1w � whN(w + h� 1) : (2)For an atomi
 model, the Hamiltonian is given byH = EdX�� = EdQ�EdX00 = �EdX00 ; (3)where Ed is the energy of the d or f -ele
tron state (we have dropped a 
ons-tant in the free energy), whi
h leads to a partition fun
tion of the formZ = h�1Xi=0 1Xj=0 �N (h� i; w � j)e�(i+j)Ed ; (4)
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 Model 735and the free energy F = �T ln(Z), entropy S = ��TF and heat 
apa
ityCv = T�TS immediately follow. In
luding 
onstraints, at the mean �eldlevel the Hamiltonian be
omesH = � Ed(n̂� + n̂�) + �(n̂b + n̂f + n̂� + n̂� �Q0)+ �(n̂f + n̂� � (n̂b + n̂�) + 1Q0 h[�; �y℄i � Y0) ; (5)where we 
an only evaluate the last term at the level of Gaussian �u
tuations.Nonetheless, we in
lude it in the saddle-point, as we additionally treat thee�e
ts of Gaussian �u
tuations in the bosoni
/fermioni
 
hara
terF = NFf +NFb + F� + F� + F� � �Q0 � �Y0 + FÆ�f + FÆ�b ; (6)whi
h at the mean �eld level sets~nf + 1N n� + 1N (1� n�) = ~h ; (7)~nb + 1N n� + 1N n� = ~w ; (8)where n� = 1=(e2�� + 1), ~nf = 1=(e�(�f ) + 1), ~nb = 1=(e�(�b) � 1), n� =1=(e��(Ed��f ) � 1) and n� = 1=(e��(Ed��b) + 1). Analyti
 solution of theseequations leads to the phase diagrams shown in Fig. 1 for the spe
ial 
aseN = 2. For general I shaped Young tableaux one re
overs the mean �eldresults of slave fermions (verti
al) and slave fermions (horizontal) althoughthe free energy 
ontains divergent terms in this limit.While the appearan
e of a mixed phase in the phase diagram of Fig. 1(b)is quite suggestive given that the mean �eld entropies also mat
h along theselines, one is ultimately disappointed when one realizes that: (i) although weexpe
ted that the magneti
 phase would require a bosoni
 des
ription of thespins�slave fermions and 
orrespond to more tightly bound spins (Ed < 0)and slave bosons provide a natural 
andidate for a heavy Fermi surfa
ewhi
h might be expe
ted to appear 
lose to (Ed = 0) this does not seemto be the 
ase here; (ii) as the slave fermion mean �eld over-estimates theentropy at N = 2, at the mean �eld level the mixed phase (interpolating tothe slave boson mean �eld) ends up having a negative heat 
apa
ity. Thisproblem appears to be over-
ome by in
luding the Gaussian 
orre
tions,but in the limits h ! 1 or w ! 1 the Gaussian �u
tuations are not well-de�ned. If after removal of the non-physi
al divergen
es the entropies ofthe mixed phase still mat
h those of slave boson and slave fermion alongthe phase boundary lines (as was suggested by the mean �eld), then the
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Fig. 1. The analyti
 saddle�point (s�p) solutions at N = 2 allow two possible phasediagrams (lines indi
ate equal free energies): (a) The physi
al s�p pi
ks the smallestfree energy of the saddle-point solutions. (b) A non-physi
al s�p whi
h pi
ks thehighest free energy. While minimization of the free energy does 
hoose the 
orre
tphysi
al result, this se
ond solution illustrates how a non-trivial phase diagrammay arise from a symmetry of the underlying formalism. In an intera
ting modelone might imagine that if the exa
t solution has Cv=T � ln(T0=T ) then perhaps inthat region a similar phase diagram to (b) may be the energeti
ally favorable one.positive di�eren
e Sslave boson(T ! 1) � Sslave fermion(T = d= ln(2)) wouldimply a small, positive heat 
apa
ity for this interval, in a

ordan
e withthe exa
t result; (iii) even were this the 
ase, one would have to a

ept anansatz 
hoosing the maximal saddle-point free energy to admit Fig. 1(b).In 
on
lusion, we have shown that for a simple atomi
 model one re-
overs the mean �eld 
onstraints known from slave boson and slave fermiontreatments. We have shown that a non-trivial mixed solution exists evenin the physi
ally relevant 
ase Q = 1, N = 2. Study of the properties ofmixed solutions in the 
ontrollable large N limit may be of interest, and forthe atomi
 model 
an be 
ompared with exa
t results shown here. A morethorough treatment will be given in the near future [6℄.REFERENCES[1℄ P. Coleman, C. Pépin, J. Hopkinson, Phys. Rev. B62, 3852 (2000).[2℄ O. Trovarelli et al., Phys. Rev. Lett. 85, 626 (2000).[3℄ B.C. S
hroeder et al., Nature 407 351, (2000).[4℄ Q. Si, S. Rabello, K. Ingersent, J.L. Smith, Nature 413, 804 (2001).[5℄ P. Coleman, Physi
a B 259�261, 353 (1998).[6℄ J. Hopkinson, P. Coleman, 
ond-mat/0202060.


