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SUSY ATOMIC MODEL� ��J. Hopkinson and P. ColemanCenter for Materials Theory, Dept. of Physis and Astronomy, Rutgers University136 Frelinghuysen Rd., Pisataway, NJ, 08854, USA(Reeived July 10, 2002)We present the simplest model to whih one an apply the super-symmetri Hubbard operators reently introdued P. Coleman, C. Pépin,J. Hopkinson, Phys. Rev. B62, 3852 (2000). For the atomi model,H = �EdX00, where X00 = j0ih0j is a Hubbard operator and Ed is theenergy of the loalized spin level, we show how one an develop exat solu-tions for the entropy and heat apaity as a funtion of temperature. Withthis gold standard we are able to develop a ontrolled approximation shemeto �eld theoretially treat the SUSY approximation at the level of mean�eld + Gaussian orretions and test its auray against the widely usedslave boson and slave fermion approximations. We �nd that in addition toslave boson and slave fermion solutions, a new lass of solutions exists inthe physial ase Q = 1, N = 24 whih an be properly treated by neitherpreviously existing approah. The phase diagram generated by the mean�eld saddle-point bears a super�ial resemblane to the V-shaped phasediagram ommon to systems lose to a quantum ritial point and mayprovide a natural starting point for investigations of strongly orrelatedmodels apturing this physis.PACS numbers: 71.27.+a, 71.10.Hf, 75.20.Hr, 75.40.�s1. IntrodutionIn heavy fermion systems lose to an antiferromagneti quantum ritialpoint (AQCP) one now has the ability to tune from an antiferromagnetistate to a paramagneti state as a funtion of �eld [2℄, pressure [2, 3℄ ordoping [2, 3℄. In the region above suh a point, anomalous behavior is seenin measurements of heat apaity Cv=T � ln(T0=T ) and resistivity � � T .The question has arisen in the literature whether these exponents are due� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.�� This work was supported by NSF grant DMR 9983156. Thanks to C. Pépin andO.Parollet for disussions. (733)



734 J. Hopkinson, P. Colemanto a dynamial d = 2 loal QCP [4℄ or rather a symptom of a breakdown ofthe d = 3 Fermi liquid [5℄. In partiular, the observation of hypersaling inthese ompounds has been used to argue the need for a mirosopi theoryapable of desribing the breakdown of the Fermi surfae and the formationof antiferromagneti order as one tunes through this point.Susy Hubbard operators [1℄ with SU(1j1)�U(1) symmetry allow one totune from a bosoni desription of a spin (magneti) to a fermioni de-sription (Fermi surfae). For an atomi model, we show using ountingarguments how it is possible to generate exat solutions for the entropy andheat apaity as a funtion of temperature for the Hilbert spae of theseoperators. Comparison of these with �eld theoreti results (mean �eld +Gaussian �utuations) allows us to estimate the error endemi to this 1=Napproah, ontrasting it with slave fermion and slave boson approahes.2. An exat solutionTo �x an irreduible representation of the Hubbard operators, we setjaihbj = Xab = ByaBb + F yaFb ; (1)where Fa = (f1; : : : ; fN ; �) and Ba = (b1; : : : ; bN ; �) de�nes spin �elds tobe fermioni or bosoni respetively and their slave partners the onverse,while maintaining the onstraints Q = nb+n�+nf +n� and Y = n�+nf �(nb + n�) + 1=Q[�; �y℄ ; where � = P� by�f� � �y� is an operator inter-onverting fermions and bosons for the orner state. This generates a seriesof L-shaped Young tableaux, the simplest of whih (a single box) orrespondsto a single physial spin when N = 2. To �nd the exat free energy of thestate (Q;Y ) we simply ount the number of available states to the system ata given energy level. De�ning h = (Q+ Y + 1)=2 and w = (Q� Y + 1)=2,the number of states available are�N (h;w) = � Nh �� N + w � 1w � whN(w + h� 1) : (2)For an atomi model, the Hamiltonian is given byH = EdX�� = EdQ�EdX00 = �EdX00 ; (3)where Ed is the energy of the d or f -eletron state (we have dropped a ons-tant in the free energy), whih leads to a partition funtion of the formZ = h�1Xi=0 1Xj=0 �N (h� i; w � j)e�(i+j)Ed ; (4)



SUSY Atomi Model 735and the free energy F = �T ln(Z), entropy S = ��TF and heat apaityCv = T�TS immediately follow. Inluding onstraints, at the mean �eldlevel the Hamiltonian beomesH = � Ed(n̂� + n̂�) + �(n̂b + n̂f + n̂� + n̂� �Q0)+ �(n̂f + n̂� � (n̂b + n̂�) + 1Q0 h[�; �y℄i � Y0) ; (5)where we an only evaluate the last term at the level of Gaussian �utuations.Nonetheless, we inlude it in the saddle-point, as we additionally treat thee�ets of Gaussian �utuations in the bosoni/fermioni haraterF = NFf +NFb + F� + F� + F� � �Q0 � �Y0 + FÆ�f + FÆ�b ; (6)whih at the mean �eld level sets~nf + 1N n� + 1N (1� n�) = ~h ; (7)~nb + 1N n� + 1N n� = ~w ; (8)where n� = 1=(e2�� + 1), ~nf = 1=(e�(�f ) + 1), ~nb = 1=(e�(�b) � 1), n� =1=(e��(Ed��f ) � 1) and n� = 1=(e��(Ed��b) + 1). Analyti solution of theseequations leads to the phase diagrams shown in Fig. 1 for the speial aseN = 2. For general I shaped Young tableaux one reovers the mean �eldresults of slave fermions (vertial) and slave fermions (horizontal) althoughthe free energy ontains divergent terms in this limit.While the appearane of a mixed phase in the phase diagram of Fig. 1(b)is quite suggestive given that the mean �eld entropies also math along theselines, one is ultimately disappointed when one realizes that: (i) although weexpeted that the magneti phase would require a bosoni desription of thespins�slave fermions and orrespond to more tightly bound spins (Ed < 0)and slave bosons provide a natural andidate for a heavy Fermi surfaewhih might be expeted to appear lose to (Ed = 0) this does not seemto be the ase here; (ii) as the slave fermion mean �eld over-estimates theentropy at N = 2, at the mean �eld level the mixed phase (interpolating tothe slave boson mean �eld) ends up having a negative heat apaity. Thisproblem appears to be over-ome by inluding the Gaussian orretions,but in the limits h ! 1 or w ! 1 the Gaussian �utuations are not well-de�ned. If after removal of the non-physial divergenes the entropies ofthe mixed phase still math those of slave boson and slave fermion alongthe phase boundary lines (as was suggested by the mean �eld), then the
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Fig. 1. The analyti saddle�point (s�p) solutions at N = 2 allow two possible phasediagrams (lines indiate equal free energies): (a) The physial s�p piks the smallestfree energy of the saddle-point solutions. (b) A non-physial s�p whih piks thehighest free energy. While minimization of the free energy does hoose the orretphysial result, this seond solution illustrates how a non-trivial phase diagrammay arise from a symmetry of the underlying formalism. In an interating modelone might imagine that if the exat solution has Cv=T � ln(T0=T ) then perhaps inthat region a similar phase diagram to (b) may be the energetially favorable one.positive di�erene Sslave boson(T ! 1) � Sslave fermion(T = d= ln(2)) wouldimply a small, positive heat apaity for this interval, in aordane withthe exat result; (iii) even were this the ase, one would have to aept anansatz hoosing the maximal saddle-point free energy to admit Fig. 1(b).In onlusion, we have shown that for a simple atomi model one re-overs the mean �eld onstraints known from slave boson and slave fermiontreatments. We have shown that a non-trivial mixed solution exists evenin the physially relevant ase Q = 1, N = 2. Study of the properties ofmixed solutions in the ontrollable large N limit may be of interest, and forthe atomi model an be ompared with exat results shown here. A morethorough treatment will be given in the near future [6℄.REFERENCES[1℄ P. Coleman, C. Pépin, J. Hopkinson, Phys. Rev. B62, 3852 (2000).[2℄ O. Trovarelli et al., Phys. Rev. Lett. 85, 626 (2000).[3℄ B.C. Shroeder et al., Nature 407 351, (2000).[4℄ Q. Si, S. Rabello, K. Ingersent, J.L. Smith, Nature 413, 804 (2001).[5℄ P. Coleman, Physia B 259�261, 353 (1998).[6℄ J. Hopkinson, P. Coleman, ond-mat/0202060.


