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Electronic Raman scattering has been employed to examine a number
of different correlated insulators, including the high-temperature supercon-
ductors, Kondo insulators (like FeSi), and intermediate-valence compounds
(like SmBg). The experimental data all share a number of common fea-
tures: in the By, channel (crossed polarizers) one finds (i) a sudden onset
of low energy spectral weight transfered from a higher charge-transfer peak,
which rapidly increases as T increases; (i) the appearance of an isosbestic
point (where the Raman response is independent of T') separating the re-
gions where the spectral weight shifts; and (%) a large ratio of the spectral
range over which spectral weight increases as T increases (representative of
the charge gap) to the onset temperature, where the gap appears to first
open. We solve for the Raman response exactly using dynamical mean
field theory for the Falicov—Kimball model and the Hubbard model. Our
solutions illustrate all three of these experimental features. In addition,
we calculate the inelastic light scattering from X-rays, which allows the
photon to transfer both energy and momentum to the electronic charge
excitations. We find that the charge transfer peak and the low energy peak
both broaden and disperse through the Brillouin zone similar to what is
seen in experiments in materials like CasCuO5Cls.
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1. Introduction and experimental summary

Light scattering has long been used as a bulk probe of the electronic
charge excitations in solids. It is particularly interesting to study strongly
correlated metals and insulators, since their charge dynamics are signifi-
cantly renormalized and do not appear nearly free electron like. The most
common form of light scattering is an elastic optical conductivity measure-
ment, which usually proceeds by measuring the reflectivity and performing a
Kramers-Kronig transformation to determine the optical conductivity (this
normally requires extrapolations of the reflectivity for small and large fre-
quency). Since the scattering is elastic, one adjusts the photon energy (color)
to determine the energy dependence of the electronic charge excitations. Re-
cently, there has been renewed interest in inelastic light scattering, named
electronic Raman scattering when optical (g = 0) light is used. Here one
shines an intense monochromatic beam of light on the sample and studies
the reflected light that emerges at a different energy, due to the inelastic
scattering from the electronic charge excitations. By employing polarizers
on the incident and reflected light, one can project the scattering onto dif-
ferent symmetry channels, thereby probing charge excitations of different
symmetries. The three most common symmetries chosen are A, which has
the full symmetry of the lattice (is s-like), By, which is a d-like symmetry,
and Bg, which is another d-like symmetry. In addition, there have been
a number of recent experiments probing inelastic X-ray scattering in corre-
lated insulators. Here the photon can exchange both momentum and energy
with the electronic charge excitations. These experiments usually require a
resonant enhancement of the scattered signal by tuning the X-ray energy to
lie close to a core edge transition.

Experimental electronic Raman scattering results on correlated insula-
tors are plotted in figure 1. Each of these experimental systems share com-
mon features: (i) there is a sudden onset of low energy spectral weight
transfered from a higher charge-transfer peak, which rapidly increases as
T increases; (i1) there is an isosbestic point (where the Raman response is
independent of T') separating the regions where the spectral weight shifts;
and (7ii) the ratio of the spectral range over which spectral weight increases
as T increases (representative of the charge gap) to the onset temperature,
where the gap appears to first open is much larger than the weak-coupling
value of 3.5. The top panel shows SmBg [1], which has the added feature of
developing a sharp peak at 130 cm ™! (that does not disperse in frequency)
when the temperature is lower than 30 K. The FeSi data is shown in the mid-
dle panel [2]. Tt displays the cleanest signature of these anomalous features.
Note how the isosbestic point only develops at temperatures below 150 K.
The bottom panel shows smoothed data in the LSCO high-temperature su-
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perconductor [3] (other HTSC experiments have also been performed [4,5]).
The isosbestic point is somewhat harder to see here (because of the noise
in the data), but it does develop at about 2100 cm ™! as the temperature is
lowered.

Raman response [arbitrary units]

. ] . ] . ] .
0 1000 2000 3000 4000

Frequency [cm™']

Fig.1. Experimental B;, Raman response for correlated materials (a) SmBg [1];
(b) FeSi [2]; and (c) underdoped Las_,Sr, CuQy4 [3] with 2 = 0.08. All of the exper-
imental data show the development of a low-temperature isosbestic point, which
occurs due to the transfer of spectral weight from low energy to high energy as the
temperature is lowered, indicating the proximity to the quantum-critical point of a
metal-insulator transition. The individual curves are labeled by the temperature
in K where the measurement was taken. In panel (c) only the high temperature
(300 K) and the low temperature (50 K) are labeled. The two intermediate curves
are at 100 and 200 K, respectively.

In addition, resonant inelastic X-ray scattering experiments have been
performed on insulating compounds like LagCuO4 and SroCuOoCly [6],
CagCuO2Cly [7], NaVOs [8], Nd2CuOy [9], and SroCuOz and SrCuOq [10].
These experiments require a tuning of the photon energy to lie close to the
Cu K or V L3 edge in order to get a large enough inelastic scattering sig-
nal. They then can be scanned through momentum space to examine the
frequency and momentum dependent charge excitations in a correlated in-
sulator. We concentrate here on the CagCuO2Cly data [7]. As a function
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Fig. 2. Experimental resonant inelastic X-ray scattering in CagCuQ5Cl, [7] along
(a) the zone diagonal and (b) the zone edge. The label X is defined to be X =
(cosq, + cosq,)/2 for photon scattering that transfers momentum gq.

of momentum one finds a charge transfer peak and a lower energy peak
(these experiments use a linear polarizer for the incident light, so different
symmetry channels are mixed together and the temperature is held at room
temperature). As one scans through the Brillouin zone, the charge transfer
peak hardly disperses, while the low-energy peak shows significant disper-
sion which tracks well with the parameter X = (cosq, + cosq,)/2. It is
hard to say what happens to the width of the peaks as one scans through
the Brillouin zone, as the data is too noisy (because of the low intensity
of the inelastic scattered signal). Note as well, the results for X = 1 are
not identical along the zone edge and zone diagonal because the use of po-
larizers projects onto different mixtures of the symmetry channels (these
experiments have a fixed relation between the polarization of the electric
field and the transferred momentum).

2. Theoretical formalism

We will examine two different model systems here: the Hubbard model [11]
and the Falicov—Kimball model [12]. The Hubbard Hamiltonian [11]| con-
tains two terms: the electrons can hop between nearest neighbors (with
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hopping integral ¢*/(2v/d) on a d-dimensional hypercubic lattice [13]), and
they interact via a screened Coulomb interaction Uy when they sit on the
same site. All energies are measured in units of t*. The Hamiltonian is

t*
Hyyp, = _2\/6_1 Z CZUCJ'U +Upn ZniTniia (1)
( 1

Z7j>7U

where c;-ra (cis) is the creation (annihilation) operator for an electron at

lattice site 4 with spin ¢ and n;, = c;racig is the electron number operator.
We adjust a chemical potential p to fix the average filling of the electrons
to half filling (u = Ug/2).

The Falicov—Kimball Hamiltonian contains two types of electrons: itin-
erant band electrons and localized (c or f) electrons. The band electrons can
hop between nearest neighbors in the same way as in the Hubbard model
and they interact via a screened Coulomb interaction with the localized elec-
trons (that is described by an interaction strength Upk between electrons
that are located at the same lattice site). The Hamiltonian is

t*
Hrpk = —m g czc]' + Ey g w; — b E c;-rci + Urk E c;-rciwi, (2)
(4.3) i i i

where c;-r (¢;) is the spinless conduction electron creation (annihilation) op-

erator at lattice site ¢ and w; = 0 or 1 is a classical variable corresponding
to the localized f-electron number at site <. We will adjust both F; and
i so that the average filling of the c-electrons is 1/2 and the average filling
of the f-electrons is 1/2 (u = Urk/2 and E; = 0). Note that if we do not
allow the down-spin electrons in the Hubbard model to hop, then we get the
spinless Falicov—Kimball model.

We focus here on nonresonant inelastic light scattering. In this case, the
photon-electron vertex function does not depend on the photon frequency.
It corresponds to the generic picture of light scattering, but is unable to pre-
dict additional properties associated with resonant enhancements of signals,
which are often seen experimentally. We use the Kubo formula to relate the
response function to the corresponding current—current correlation function.
The currents for the different symmetry sectors each take the following form

Jo(@) = D2 vk +a/Dep o e, (3)
o k

with 7, (k) the corresponding current vertex function and the sum over spin
needed only for the Hubbard model. For conventional Raman scattering, we
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work with optical light so ¢ — 0, but the finite-g case is needed for X-ray
scattering. The inelastic light scattering vertex is

86k+q/2)
I
Yalk +a/2) = Z Ok 0k 5 ~okdhy P )

where the e vectors denote the incoming and outgoing photon polarizations
and e(k) is the noninteracting bandstructure (we examine a hypercubic lat-
tice here).

The Dyson equation for the current-current correlation function takes the
form given in Fig. 3. Note that there are two coupled equations illustrated
in Figs. 3 (a) and (b); these equations differ by the number of v, factors in
them. The irreducible vertex function I is the dynamical charge vertex [14]
which takes the form

1Yy — Em—l—l

—_Zm_Zmi 5
" T Gy — G (5)

I (iwpm, twp; ivi20) = 6

on the imaginary axis for the Falicov—Kimball model [iw,, = i7T(2m + 1) is
the Fermionic Matsubara frequency and iv; = 2477 is the Bosonic Matsub-
ara frequency|. Here X, = X(iw,,) is the local self energy on the imaginary
axis and Gy, = G(iwy,) is the local Green’s function on the imaginary axis.
An explicit expression for the irreducible charge vertex is not known for the
Hubbard model, but it also possesses the full symmetry of the lattice. If the
vertex factor v, does not have a projection onto the full symmetry of the
lattice, then there are no vertex corrections from the local dynamical charge
vertex [15].

AN\
N
i
-

Fig.3. Coupled Dyson equations for the inelastic light scattering current-current
correlation functions described by the vertex function «,. Panel (a) depicts the
Dyson equation for the interacting correlation function, while panel (b) is the
supplemental equation needed to solve for the correlation function. The symbol
I' stands for the local dynamical irreducible charge vertex given in Eq. (5) for the
Falicov—Kimball model. In situations where there are no charge vertex corrections,
the correlation function is simply given by the first (bare-bubble) diagram on the
right-hand side of panel (a).
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There are traditionally three main symmetries considered in Raman scat-
tering experiments: (i) Ai, which has the full symmetry of the lattice; (i7)
By, which has a d-wave symmetry and (iii) Bo, which is another d-wave
symmetry. Each symmetry is chosen by different polarizations for the in-
cident and scattered light. If we sum over the d pairs of polarizations,
where e/ = ¢© and each vector points along each of the different Carte-
sian axes, then we have the A, sector. If we choose e/ = (1,1,1,...) and
e = (1,—1,1,—1,...), then we have the By sector. And if we choose
el = (1,0,1,0,...) and e® = (0,—1,0,—1,...) then we have the By, sector.
If we have just nearest-neighbor hopping, then the By, response vanishes be-
cause yp,, = 0. Following the form given in Eq. (4), we find y4,,(q) = —¢(q)
and p,, (q) = #* S22, cos q;(~ 1) /V/d.

A straightforward calculation, shows that the Bj, response has no ver-
tex corrections on the zone diagonal ¢ = (¢,¢,¢,q,...). Hence, the By,
response is the bare bubble and can be determined in both the Falicov—
Kimball model and the Hubbard model. The Ay, response everywhere and
the By, response off of the zone diagonal, do have vertex corrections, and
can only be determined for the Falicov—Kimball model. The calculation of
each response function is straightforward, but tedious. One needs to first
solve the coupled equations depicted in Fig. 3 on the imaginary axis and
then perform the analytic continuation as in the Raman scattering case [16].
The end result is cumbersome and will not be given here. Instead we show
the (bare-bubble) Bj, result on the zone diagonal

X (@) = = [ dw{f@xelw Xp) — flo+ DX

= [f(w) = flw+v)]xo(w; X, v)} (6)
with
Xo(w; Xov) = _/dg'o(g)w—i—,u—lﬂ(w)—e\/liW
X Fog <W+V+M—1E_(§;V)—X€> , (7)
and
. 7 1 1
XO(w;XaV) = _/dgp(g)w+u_2*(w)_€m

o

- - X

XFoo<w+1/+,u (w+v) €>. (8)
1—- X2
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Here we have used the following notation: f(w) = 1/[1 + exp(w/T)] is the
Fermi-Dirac distribution, p(g) = exp(—¢2)//7 is the noninteracting density
of states; X(w) is the local self energy on the real axis; X = cosq for the
zone-diagonal wavevector ¢ = (¢, ¢, q, -..,q); and Fxo(2) = [dep(e)/(z—¢) is
the Hilbert transform of the noninteracting density of states. Techniques for
finding the self energy for the Hubbard model [17] and the Falicov-Kimball
model [18] have appeared elsewhere.

3. Theoretical results

We plot results for the inelastic X-ray scattering in the Hubbard model
in Fig. 4. Three cases are considered: (a) a correlated metal, (b) a material
undergoing a metal-insulator transition, and (c) a correlated insulator. The
curves have been shifted vertically for clarity. The lowest set of curves X =1
correspond to Raman scattering with optical photons [19].

Consider first the correlated metal in panel (a). At ¢ = 0, we see the
development of a characteristic Fermi peak at low energy that narrows and
moves towards v = 0 as the temperature is lowered. As we move away from
the zone center, the Fermi peak broadens and has its maximum lie at a
finite frequency. This is exactly what one would expect, since the damping
increases dramatically as scattering in the particle-hole continuum becomes
possible (for larger g values). Note also that the charge-transfer peak has
little T-dependence at X = 0. In panel (b), we show the results for a
system that undergoes a temperature-dependent metal-insulator transition
at T = 0.011. Note how low-energy spectral weight is initially depleted as
T is lowered, but then returns as the system becomes more metallic. The
temperature dependence is reduced as we move towards the zone corner. In
addition, the isosbestic point disperses to higher energy as q is increased.
Finally, there is a small low-energy peak that emerges at low-7', and is
present with only slight dispersion in the Brillouin zone but with growing
weight as the zone corner is approached. In panel (c¢), we plot results for
a correlated insulator. Here all momenta allow the development of low-
energy spectral weight as 7" increases and there is an isosbestic point, but
the isosbestic point does not disperse with g anymore. Also, we see the
broadening of the charge-transfer peak as we move toward the zone corner.

In Fig. 5 we plot the inelastic X-ray scattering at Upg = 2 (a) for the
B4 channel along the zone diagonal, (b) for the By, channel along the “zone
edge” [here we have q = (¢,0,4¢,0,...,q,0) for 1 < X = (1 +cosq)/2 <0
and q = (m,q,7,q,...,m,q) for 0 < X = (=14 cosq)/2 < —1], and (c) for
the A4 channel along the zone diagonal. The correlation strength Upk was
chosen to be 2, which is just on the insulating side of the metal-insulator
transition. Note how the results are all identical at the (m,7,..., ) point.
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Fig.4. Inelastic X-ray scattering response in the B, channel along the Brillouin
zone diagonal for the half-filled Hubbard model on a hypercubic lattice. Panel
(a) shows a correlated metal (T = 0.353, 0.150, 0.064, 0.039), panel (b) shows a
material that undergoes a metal insulator transition as a function of temperature
(T = 0.282, 0.172, 0.039, 0.009, 0.003) and panel (c) shows a correlated insulator
(T =0.566, 0.424, 0.283, 0.071). The different thicknesses of the curves correspond
to different temperatures (thinnest being the lowest temperature).

This occurs due to the local approximation. Any variation in the signal
at the zone corner in different symmetry channels must be due to nonlocal
many-body correlations. Note also how the Ay, results have no low-energy
spectral weight for ¢ = 0. The vertex corrections remove all remnants of the
low-energy response here, but it enters for any finite value of g. The main
qualitative feature is that the charge-transfer peak broadens significantly as
we move through the Brillouin zone, and the results along the zone edge
are quite similar to those along the zone boundary, when plotted with the
corresponding X-values. We can see a small amount of dispersion of the
low-energy peak through the Brillouin zone, but it is not strong effect for
when the gap in the insulator is small. Finally, the isosbestic point seen at
q = 0 appears for all gq.
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Fig. 5. Inelastic X-ray scattering response in the By, channel along (a) the Brillouin
zone diagonal and (b) along the zone edge and (c) in the A;, channel along the
zone diagonal for the half-filled Falicov—Kimball model on a hypercubic lattice.
The correlation strength is Upg = 2 which is just on the insulating side of the
metal-insulator transition for the FK model. The different curves correspond to
different temperatures ranging from thickest to thinnest curve as follows: 7" = 1.0,
0.5, 0.25, 0.1.

We should also point out that all of the anomalous features seen in
experiment for Raman scattering (g = 0) are also seen here. Low-energy
spectral weight emerges at low temperature in the By, channel but not the
A4 channel; there is an isosbestic point; and the ratio of twice the charge-
gap =~ 1 to the transition temperature = 0.2 is about 10.

4. Conclusions

We have examined inelastic light scattering in correlated materials
through the metal-insulator transition for two different models of electron
correlations: the Hubbard model and the Falicov-Kimball model. In the
Hubbard model we could only determine results that were not renormalized
by the irreducible charge vertex (along the Brillouin zone diagonal), but
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we could determine results everywhere in the Falicov-Kimball model. We
found a number of interesting features in the solutions including the pres-
ence of three well-known anomalies in the g= 0 Raman scattering case. In
addition, for finite q, we saw new features emerge including the following:
the absence of symmetry dependence at the zone corner; the occurrence of
isosbestic points throughout the Brillouin zone; and a generic broadening
of the charge transfer peak as one moves from the zone center to the zone
corner. Many of these latter results have not yet been seen in inelastic
X-ray scattering. We believe it would be quite interesting to examine inelas-
tic X-ray scattering at different temperatures and with polarizers for both
the incident and scattered light. We believe that a number of new and in-
teresting features of charge excitations in correlated systems are likely to
emerge if this can be accomplished.
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