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EXACT GROUND-STATES FOR THE PERIODICANDERSON MODEL IN RESTRICTED REGIONSOF THE PARAMETER SPACE�Zsolt Gulá
siUniversity of Debre
en, Department of Theoreti
al Physi
sH-4010 Debre
en, Poroszlay ut 6/C, Hungary(Re
eived July 10, 2002)Exa
t lo
alised ground-states are presented for the one- and two-dimen-sional periodi
 Anderson model at �nite U > 0 in restri
ted regions of theparameter spa
e, whi
h extends from the low U to the high U regions aswell. The physi
al properties of this phase are analysed in detail.PACS numbers: 71.10.Hf, 05.30.Fk, 67.40.Db, 71.10.Pm1. Introdu
tionThe periodi
 Anderson model (PAM) is a basi
 model des
ribing strongly
orrelated systems, largely applied in 
hara
terising heavy-fermion materi-als [1℄, intermediate-valen
e 
ompounds [2℄, and even high T
 super
ondu
-tors [3℄. In 
ontrast with other models used in the understanding of strong
orrelation e�e
ts, the exa
t solution of the model even in 1D is not known,so the physi
s provided by PAM is almost ex
lusively interpreted based onapproximations. Con
erning ground-state (GS) properties, notable ex
ep-tions from this rule are GS dedu
ed in restri
ted regions of the parameterspa
e for de
orated hyper
ubi
 latti
es [4℄ and one-dimensional 
ase withrestri
tions on parameter values [5℄, both obtained at U =1, and extendedlater on to higher dimensions [6℄. The advan
ement leading to exa
t GS at�nite and non-zero U be
omes to be possible almost after one de
ade [7�9℄.This has been a
hieved by a proper de
omposition of the Hubbard inter-a
tion 
ombined with the use of positive semide�nite operators 
olle
ting
ontributions from a dire
t spa
e region with the extension of an unit 
ell(I) [7℄. The pro
edure has been applied for 1D [7, 8℄, and 2D [9℄ 
ases aswell. The obtained GS solutions des
ribe highly non-trivial itinerant and lo-
alised wave-fun
tions. From these, the itinerant 
ase, presenting non-Fermi� Presented at the International Conferen
e on Strongly Correlated Ele
tron Systems,(SCES02), Cra
ow, Poland, July 10�13, 2002.(749)
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siliquid 
hara
teristi
s in normal phase has been des
ribed previously [7, 9℄.Herewith, we are 
hara
terising the properties of the lo
alised solutions ob-tained in 
onditions in whi
h all hopping matrix elements from the unit 
ellare taken into 
onsideration.2. The model, used pro
edure, and obtained resultsThe PAM Hamiltonian we use is de�ned asĤPAM = T̂
 + T̂f + Êf + V̂0 + V̂1 + Û ; (1)where T̂b = Pj;r;�(tb;r b̂yj;� b̂j+r;� + H:
:) are kineti
 energies for b = 
; fele
trons, Êf = EfPj;� n̂fj;�, is the on-site f -ele
tron energy, V̂0 = Pj;�(V0
̂yj;� f̂j;� + H:
:), and V̂1 = Pj;r;�(V1(r)
̂yj;�f̂j+r;� + H:
:) are the lo
aland non-lo
al hybridizations, and Û = UPj n̂fj;"n̂fj;#, U > 0, represents theintera
tion term. The r ve
tor has an unique value in 1D (latti
e spa
ing a),and in 2D it has 4 possible values: x;y;x+y;y�x, where x and y are theprimitive ve
tors of I. The presen
e of T̂f is motivated by experiments [10℄.
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Fig. 1. The parameter spa
e region where the des
ribed solution is present in D = 1dimension (a), and the ground-state energy per site Eg in D = 2 (b), and D = 1(
). The Ĥ parameter values are tf1=t
1 = 0:1; 0:25; 0:35 for 
urves 1; 2; 3 in (b);and V0=t
1 = 0:1; 0:2; 0:3 for 
urves 1; 2; 3 in (
).Let us 
onsider the operator Âi;� =Pi�;b a�;bb̂i+i�;�, where i�, startingfrom i1 = 0, is summed up over all sites of I, pla
ed at site i, and a�;bare numeri
al 
oe�
ients depending only on the position in I and b = 
; f .Furthermore, Û = UP̂ 0 + UPj;�(n̂fj;� � 1=2), where P̂ 0 = Pj P̂ 0j , andP̂ 0j = Q�(1 � n̂fj;�). P̂ 0 is a positive semide�nite operator, whose minimum



Exa
t Ground-States for the Periodi
 Anderson Model in. . . 751(zero) eigenvalue is obtained when there is at least one f -ele
tron on everylatti
e site. Using periodi
 boundary 
onditions, it 
an be observed thatĤ =Xi;� Âi;�Âyi;� + UP̂ 0 + C1N̂ + C2 = ĤPAM ; (2)if a�;b and the 
onstants Ci parametrise properly the parameters of ĤPAM.This parametrisation �xes the phase diagram region PH where the trans-formation ĤPAM = Ĥ is valid, and taking into a

ount that Âyi;�Âyi;� = 0,the GS inside PH at 3=4 �lling be
omes j	gi = Qi(Âyi;�Âyi;�F̂ yi )j0i, whereF̂i = P� �i;� f̂i;�, and �i;� are arbitrary 
oe�
ients. The lo
alised GS isobtained from j	gi by a proper 
hoi
e of the a�;b 
oe�
ients in forbiddingneighbouring Âyi;�Âyj;� operators to introdu
e parti
les in the same site ofthe latti
e. This is obtained when a�;
=a�;f = p for all �, and p is real. Inthis 
ase j	gi transforms in j	lo
i, whose properties are analysed in detailsbelow. �
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Fig. 2. The parameter spa
e region where the des
ribed solution is present in D = 2dimensions for t
2=t
1; tf1=t
1 < 1=2. For the possible V0=t
1 values see text.The PH region (in whi
h the solutions are present) is depi
ted in Fig. 1(a)for 1D and Fig. 2 for 2D square-latti
e 
ase. Con
erning the notations ofhopping matrix elements, we use (b; n) in the lower index, n = 1; 2 de-noting the 
oordination sphere. We mention that for 1D a given point of
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sithe presented 
urve in Fig. 1(a) represents the plain x + y = qjzj in the(x = U=t
1; y = Ef=t
1; z = V0=t
1) spa
e, where q = (1 � v)=pv andv = tf1=t
1. For 2D, the surfa
e presented in Fig. 2 
ontaining the solutionextends to 1 for u = t
2=t
1 ! 0, and on the surfa
e jV0=t
1j = 4upv. TheGS energies per site (Eg) are presented in Fig. 1(b) for 2D and Fig. 1(
)for 1D. As 
an be seen, the obtained behaviour is 
learly D dependent: in2D a 
usp like behaviour is present in Eg at u = 1=2, whi
h is absent in1D, where the 
urves smoothly start from a given point of the parameterspa
e. Leaving PH , the lo
alised phase is no more de�ned as a GS. InsidePH , the GS has a large spin degenera
y and globally is paramagneti
. TheGS wave fun
tion 
oherently 
ontrols all latti
e sites and maintains 
on-stant (3) the o

upation number on every latti
e site, produ
ing long-rangedensity-density 
orrelations and prohibits in the same time the hopping andnon-lo
al hybridization within the system. The f -ele
tron o

upan
y persite ex
eeds one and slightly in
reases with v, the lo
al f moments beingpresent, but randomly orientated. Further development of the pro
edure al-lowing the study of the 
ase in whi
h not all hopping matrix elements insidethe unit 
ell are nonzero 
an be found in [11℄. We mention that in prin
iplethe presented solutions are representing importan
e even if PH is repulsivefrom RG point of view [12℄.In 
on
lusion, we analysed in detail the exa
t lo
alized ground-statesdedu
ed for PAM at �nite U > 0 in D = 1; 2 dimensions.Resear
h supported by 
ontra
ts OTKA-T-037212, FKFP-0471 andHumboldt Foundation. The author kindly a
knowledge enlightening dis-
ussions on the subje
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