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Exact localised ground-states are presented for the one- and two-dimen-
sional periodic Anderson model at finite U > 0 in restricted regions of the
parameter space, which extends from the low U to the high U regions as
well. The physical properties of this phase are analysed in detail.
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1. Introduction

The periodic Anderson model (PAM) is a basic model describing strongly
correlated systems, largely applied in characterising heavy-fermion materi-
als [1], intermediate-valence compounds [2], and even high T, superconduc-
tors [3]. In contrast with other models used in the understanding of strong
correlation effects, the exact solution of the model even in 1D is not known,
so the physics provided by PAM is almost exclusively interpreted based on
approximations. Concerning ground-state (GS) properties, notable excep-
tions from this rule are GS deduced in restricted regions of the parameter
space for decorated hypercubic lattices [4] and one-dimensional case with
restrictions on parameter values [5], both obtained at U = oo, and extended
later on to higher dimensions [6]. The advancement leading to exact GS at
finite and non-zero U becomes to be possible almost after one decade [7-9].
This has been achieved by a proper decomposition of the Hubbard inter-
action combined with the use of positive semidefinite operators collecting
contributions from a direct space region with the extension of an unit cell
(I) [7]. The procedure has been applied for 1D [7,8], and 2D [9] cases as
well. The obtained GS solutions describe highly non-trivial itinerant and lo-
calised wave-functions. From these, the itinerant case, presenting non-Fermi
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liquid characteristics in normal phase has been described previously [7,9].
Herewith, we are characterising the properties of the localised solutions ob-
tained in conditions in which all hopping matrix elements from the unit cell
are taken into consideration.

2. The model, used procedure, and obtained results

The PAM Hamiltonian we use is defined as
Hoamy =T+ Ty + Ef + Vo + Vi + U, (1)

where T, = Yol
electrons, E’f =FE;y . is the on-site f-electron energy, Vo = >

t, Tb b_7—|—1‘0' + H.c.) are kinetic energies for b = ¢, f

f
g0 o 3,0
(Voé; ofio +He), and Vi = 3. (Vi(r )A; gfﬁ_r » + H.c.) are the local
and non-local hybridizations, and U=U ZJ nj Tn; L U > 0, represents the
interaction term. The r vector has an unique value in 1D (lattice spacing a),

and in 2D it has 4 possible values: z,y,z +y,y — @, where & and y are the
primitive vectors of I. The presence of Ty is motivated by experiments [10].
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Fig. 1. The parameter space region where the described solution is present in D = 1
dimension (a), and the ground-state energy per site E, in D =2 (b), and D =1
(c). The H parameter values are ty1/tan = 0.1, 0.25, 0.35 for curves 1, 2, 3 in (b);
and Vp/tc; = 0.1, 0.2, 0.3 for curves 1, 2, 3 in (c).

Let us consider the operator flip = Zia,b aa,b?’i+ia,a, where 2,, starting
from 2; = 0, is summed up over all sites of I, placed at site %, and aqy
are numerical coefficients depending only on the position in I and b =cf.
Furthermore, U = UP’ + UZ]-’U('rAL;.c7(7 — 1/2), where P' = 7. P, and

PJ’ =11, - f o) P’ is a positive semidefinite operator, whose minimum
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(zero) eigenvalue is obtained when there is at least one f-electron on every
lattice site. Using periodic boundary conditions, it can be observed that

H= Z AMA;U +UP' + C N +Cy = Hppn (2)

1,0

if a,p and the constants C; parametrise properly the parameters of Hpawm.
This parametrisation fixes the phase diagram region Py where the trans-
formation Hpay = H is valid, and taking into account that A;[ UAIU =0,
the GS inside Py at 3/4 filling becomes |¥,) = HZ(AI J/Al;[ aFiT)|O), where
F; = Do ui’gfi’g, and ji; , are arbitrary coefficients. The localised GS is
obtained from |¥,) by a proper choice of the aq coefficients in forbidding

neighbouring AI UA; , operators to introduce particles in the same site of
the lattice. This is obtained when aq./aq,r = p for all a, and p is real. In
this case |¥,) transforms in |W,.), whose properties are analysed in details

below.

Fig.2. The parameter space region where the described solution is present in D = 2
dimensions for tcs/te1,tf1/tcr < 1/2. For the possible Vp/tc1 values see text.

The Py region (in which the solutions are present) is depicted in Fig. 1(a)
for 1D and Fig. 2 for 2D square-lattice case. Concerning the notations of
hopping matrix elements, we use (b,n) in the lower index, n = 1,2 de-
noting the coordination sphere. We mention that for 1D a given point of
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the presented curve in Fig. 1(a) represents the plain z +y = g¢|z| in the
(x = Ultcr,y = Effta,z = Vo/tar) space, where ¢ = (1 — v)/y/v and
v = tf1/tc1. For 2D, the surface presented in Fig. 2 containing the solution
extends to oo for u = te/te1 — 0, and on the surface |Vp/te1| = 4uy/v. The
GS energies per site (F,) are presented in Fig. 1(b) for 2D and Fig. 1(c)
for 1D. As can be seen, the obtained behaviour is clearly D dependent: in
2D a cusp like behaviour is present in £, at u = 1/2, which is absent in
1D, where the curves smoothly start from a given point of the parameter
space. Leaving Py, the localised phase is no more defined as a GS. Inside
P, the GS has a large spin degeneracy and globally is paramagnetic. The
GS wave function coherently controls all lattice sites and maintains con-
stant (3) the occupation number on every lattice site, producing long-range
density-density correlations and prohibits in the same time the hopping and
non-local hybridization within the system. The f-electron occupancy per
site exceeds one and slightly increases with v, the local f moments being
present, but randomly orientated. Further development of the procedure al-
lowing the study of the case in which not all hopping matrix elements inside
the unit cell are nonzero can be found in [11]. We mention that in principle
the presented solutions are representing importance even if Py is repulsive
from RG point of view [12].

In conclusion, we analysed in detail the exact localized ground-states
deduced for PAM at finite U > 0 in D = 1,2 dimensions.
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