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The pseudospin-electron model (PEM) is considered in the case of the
weak pseudospin-electron coupling. It is shown that the transition to uni-
form and chess-board phases occurs when the chemical potential is situated
near the electron band edges and near the band centre, respectively. The
incommensurate phase is realized at the intermediate values of the chemical
potential.

PACS numbers: 63.20.Ry, 64.70.Kb, 71.10.Fd, 77.80.Bh

1. Introduction

To investigate the role of the interaction of electrons with a local an-
harmonic mode of lattice vibrations in the high temperature superconduc-
tors (HTSC) the pseudospin-electron model (PEM) [1, 2] was proposed.
The model Hamiltonian includes the electron transfer (¢-term), electron
correlation(U-term), pseudospin-electron interaction (g-term); energy of the
local (tunneling-like) level splitting (£2-term) and asymmetry of the local
anharmonic potential (h-term) are taken into account also:

H = (Unigniy — p(nig +niy) + 987 (nig +niy) — hS7 — 0287)
i
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The possibility of the first order phase transitions between uniform states

as well as the phase separation was established in the case 2 = 0 at the
large values of the interaction constant g both in the limit U — oo [3]| and
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at U = 0 [4]. The presence of the chess-board phase was established in the
case of the strong coupling at U = 0, 2 =0 [4].

The PEM has a similarity to the Falicov-Kimball (FK) model with
the interaction between localized and moving electrons. Recent investiga-
tions [5-7] revealed the presence of homogeneous or modulated phases and
transitions between them as well as the possibility of the phase separations.
However, in comparison with PEM there exists a difference in the regime
of thermodynamical averaging; the term with the transverse field {2 is ab-
sent in the FK model. Besides, in contradiction to the PEM, localized and
moving particles in the FK model possess usually the common chemical po-
tential [5]. The aim of this work is the investigation of the stable states of
the simplified (U = 0) PEM in the case of the weak coupling (the band does
not split in this case); the behaviour of the dielectric susceptibility and the
role of the transverse field (2 are analysed.

2. Susceptibility and thermodynamical instabilities

We will calculate the dielectric susceptibility using the Matsubara Gre-
en’s functions method. The dielectric susceptibility in the dipole approxi-
mation is determined by the Green’s function constructed of the operators
of the electric dipole momentum. In the case of isothermal response

B
(@ wn) / M (7)) geTdr — B(M)28(wn). 2)
0

The dipole momentum of the unit cell is as follows [2]:
M; = deni + dsS;. (3)

Consideration of the model in the weak coupling approximation will be car-
ried out analogously to the traditional scheme of the investigation of the
weak one-site correlation U in the Hubbard model. Constructing the zero-
order Hamiltonian, we use the mean field approximation (MFA)

gniS; — gniS7) + g(ni) S — g(ni)(S;7). (4)

The unperturbed Hamiltonian Hy has a diagonal form after an appropriate
transformation

Hy = —/\Za — 9N+ (91 — p+ te)nge
k,o
1 L LR
Hiy = g (55 > el ey —n)(SF —n). (5)
) okk’
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To calculate the susceptibility we use an approximation which is analogous to
the random phase approximation (RPA), that is usually applied in the case
of pseudospin systems with the direct interaction between pseudospins, or
to the generalized random phase approxamation (GRPA) elaborated at the
consideration of the strongly correlated electron systems. The contributions
from the pseudospin "boson" excitations, the band electron polarization
and pseudospin one-site correlations are taken into account. Finally, the
correlator (T'S*S%), has a form:

X
TS*S* = —————
< Jawn 1-¢2x11,’
1 n(tk) — n(tqu) / 1 2
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Let us investigate when the static susceptibility diverges. The numerical
calculations were used to calculate T, (square lattice is considered, direct
momentum summation is used; we put W =1, g = 0.5). At the fixed values
of the chemical potential the critical point can be defined as an upper point
of spinodal (on the (T, h) plane) with the highest temperature depending
on the wave vector ¢ value. Fig.1 shows the dependences of the critical
temperature and the corresponding wave vector on the chemical potential.
We can see that the case § = (m, 7) is realized when |u| < 0.25, that means

0.15 -
3.001 \ \
0.10 -
o 3] |
1.50 1 \
0.05 - ]
\
§
008 50040 0.80 T1.20 098 50040 6.80 " 7.20
M 121

Fig. 1. The dependences of the modulation wave vector § = (g, ¢) and the temper-
ature of absolute instability of high-temperature phase on the chemical potential,

£2 = 0 (solid lines); 2 = 0.2 (dashed lines). Dotted line denotes the boundary of
the instability region at 2 = 0.2.

that the system can pass into the chess-board phase. The case ¢ = 0 (the
transition into the uniform phase) is realized when 0.85 < |u| < 1.25 (1.25 =
W + g/2; this value corresponds to the upper edge of the band when (S*) =

%) The system undergoes the transition to the incommensurate phase at
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intermediate values of the chemical potential. The presence of the tunneling
splitting leads to the decrease of the temperature of the transitions and to
the narrowing the interval of values of i at which the mentioned transitions
take place; at high enough values of {2 the transition into the chess-board
phase occurs only [8]. The cases ¢ = 0 and ¢ = 7 were considered more
detaily in [8]. Analysing the behaviour of the grand canonical potential
it was shown that the system undergoes the first order phase transition
between two uniform phases with jumps of the electron concentration and
the pseudospin mean values. In the case ¢ = 7 the possibility of the first
or second order phase transition from the uniform to the chess-board phase
was revealed. In the regime n = const. the presence of phase separation was
established.

The obtained here results agree with the ones obtained for the Falicov—
Kimball model at the small values of the coupling constant describing the
interaction between the moving and localized particles (electrons). In addi-
tion to this we show that the tunneling-like splitting leads to the decrease
of the phase transition temperatures and narrowing of the interval of the
u values at which the transitions occur. We consider in this work the two
dimensional lattice. This gives an advantage at the interpretation of the
dielectric susceptibility divergences due to the explicit dependence of the
x7(q,0) function on the wave vector. In the d — oo limit such dependence
enters only through the function X(¢q) = 52? cos q; [5]; it leads to some
difficulties at the consideration of incommensurate ordering. The phase
transitions to the incommensurate phase in the PEM are present only at the
weak coupling; in the case of the strong interaction [4] the transitions to the
uniform or chess-board phase take place only.
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