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THE 2D MOTT�HUBBARD TRANSITION INPRESENCE OF A PARALLEL MAGNETIC FIELD�A. Avella and F. ManiniDipartimento di Fisia �E.R. Caianiello� � Unità INFM di SalernoUniversità degli Studi di Salerno, I-84081 Baronissi (SA), Italy(Reeived July 10, 2002)The half-�lled two-dimensional Hubbard model in presene of a uni-form and stati parallel magneti �eld has been studied by means of theComposite Operator Method. A fully self-onsistent solution, ful�lling allthe onstrains oming from the Pauli priniple, has been found. The rele-vant features of a metal-insulator transition in presene of a magneti �eldhave been analyzed. The results qualitatively agree with the ones reentlyobtained by means of experimental investigations.PACS numbers: 71.10.Fd, 71.27.+a, 75.10.�b, 71.30.+hThe response of a two-dimensional (2D) eletroni system to a paral-lel magneti �eld is very intriguing and several anomalous properties havebeen observed. There is a general agreement that the observed behavior isrelated to the spin polarization, but further studies, both theoretial and ex-perimental, are needed. In this paper we onentrate on the metal-insulatortransition (MIT) driven by a in-plane magneti �eld. Reent experiments onSi-MOSFET [1℄ and GaAs [2℄ have shown that by inreasing �eld the spinsystem polarizes and the system undergoes a MIT before reahing the full po-larization. Apparently, an important role is played by the eletron�eletroninteration, being rs = U=K (the ratio of Coulomb interation energy to themean kineti energy) very large.In order to make a qualitative and preliminary study of this phenomenonwe onsider the 2D Hubbard model in presene of a parallel external mag-neti �eld. Sine a parallel �eld does not ouple to the orbital motion ofeletrons, the Hamiltonian is given byH =Xij (�4t �ij � �Æij) y (i)  (j) + UXi n" (i) n# (i)� 12hXi n3 (i) ; (1)� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.(811)



812 A. Avella, F. Maniniwhere  (i) and y (i) are the annihilation and reation operators of eletronsin spinorial notation; i = (i; t) where i are vetors of a 2D Bravais lattie; �is the hemial potential; �ij denotes the projetor on �rst-neighbor sites;U is the loal Coulomb interation, n� (i) = y� (i) � (i) is the harge den-sity of the eletrons with spin �; n3 (i) is the third omponent of the spindensity operator; h is proportional to the intensity of the external magneti�eld. In the framework of the Composite Operator Method (COM) [3℄, weintrodue the basis  y(i) = ��y(i); �y(i)� where �(i) = (1� n(i)) (i) and�(i) = n(i) (i) are the Hubbard operators responsible for the transitionsj0i $ j�i and j�i $ j"#i, respetively. The omposite operator  (i) satis-�es the equation of motioni ��t (i) = � 12h�3 � �� (i)� 2t (1 + �3) � (i) + 12U (1� �3) � (i)� 4t �3� (i) (2)where ~� ats on the spin degree of freedom � =", # and ~� on the inter-nal degree of freedom  = � , �. ~� and ~� are Pauli matries. We alsouse the notation �� (i; t) = Pj �ij� (j; t). Moreover, we have �(i) =12�� n�(i) �(i) + �(i) �y�(i) �(i)� where �� = (1; ~�), �� = (�1; ~�) andn�(i) = y(i)�� (i) desribe the total harge- (� = 0) and spin- (� = 1, 2, 3)density operators.In the polar approximation [3℄ we linearize the equation of motion byprojeting the soure on the basis  (i). Then, the retarded Green's funtionS(k; !) = F 
R � (i) y(j)��, where F and R are the Fourier transform andthe usual retarded operators, respetively, has the following expressionS(k; !) = 4Xl=1 �(l) (k)! �E(l) (k) + i Æ ; (3)where the energy spetra E(l) (k) are the eigenvalues of the energy ma-trix " (k) = F 
�J (i; t) ;  y (j; t)	� I�1(k) and the spetral density ma-tries �(l) (k) are alulated by means of the formula �(l)��(k) = 
�l(k)P 
�1l (k) I�(k) where 
(k) is the matrix whose olumns are the eigen-vetors of the energy matrix " (k) and I(k) = F 
� (i; t) ;  y (j; t)	� is thenormalization matrix. The expliit expressions of E(l) (k) and �(l) (k) willbe given elsewhere. Calulations show that the Green's funtion depends onthe following set of parameters: �, m, ��, p�. m = 12 hn3 (i)i is the magne-tization per site. The parameters �� and p� desribe a onstant shift of thebands and a band width renormalization, respetively, and are de�ned as�� = D��� (i) �y� (i)E� D��� (i) �y� (i)Ep� = 14 �
n�� (i) n� (i)�+ 2 (�)� hn� (i) n3 (i)i��D[�" (i) �# (i)℄� �y# (i) �y" (i)E : (4)



The 2D Mott�Hubbard Transition in Presene of. . . 813The determination of these parameters is very ruial and wrong resultsare easily obtained as shown in Ref. [4℄. The parameters m and �� areexpressed in terms of the Green's funtion as m = 12 (C44 � C22), �" =C�11 � C�22 and �# = C�33 � C�44. We have de�ned the orrelation matriesC = 
 (i)  y (i)� and C� = 
 � (i)  y (i)�. The other parameters � andp� are not determined by the equation of motion and are �xed by hoie ofthe representation where the Green's funtions are realized [5℄. In the COMwe hoose the representation by requiring that all the relations among theoperators ditated by the algebra (Pauli priniple) are onserved also at thelevel of expetation values. In the present study, this requirement leads toC11 = C33 and C12 = C34 = 0. Beause we are interested in the study ofthe MIT, we onsider the speial ase of half �lling (n = hn (i)i = 1) where:� = U2 , �" = ��#, p" = p#�2m and C12 � C34 � 0. It is worth to note thatthese latter relations are a manifestation of the partile-hole symmetry whihis onserved owing to the hoie of the representation. Any other hoie ofthe representation will lead, in the ontext of the pole-approximation, to aviolation of the symmetry [4℄. Finally, we have a set of three oupled self-onsistent equations whih determine the three parameters whih are left:m, � = �", p = p".
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Fig. 1. (left) The magnetization m as a funtion of the external magneti �eld h forT = 0, n = 1 and various values of the Coulomb repulsion U ; (right) The ritialvalue U of the Coulomb repulsion U for the MIT as a funtion of the externalmagneti �eld h for T = 0 and n = 1. t is taken as unity.In Fig. 1 (left panel) we plot the magnetization m versus the magneti�eld h. The magnetization is an inreasing funtion of both the appliedmagneti �eld and the Coulomb interation U . It reahes the saturationvalue (i.e., 1=2) at a ritial value of the magneti �eld, whih depends onthe intensity of the Coulomb interation. At zero temperature T = 0, whenU approahes the bandwidth W2D = 8t, the magnetization experiments adisontinuous jump from zero up to the saturation value. We have also



814 A. Avella, F. Maniniinspeted the analytial behavior of the stati suseptibility by analyzingthe self-onsistent equations in the limit of very low magneti �elds. Resultsshow a divergene when the Hubbard repulsion approahes the bandwidthat zero temperature. The double oupany dereases when inreasing boththe interation and the magneti �eld. The latter provides the spins of theeletrons with an orientation and, due to the Pauli priniple, redues thedouble oupany. There is a quite good agreement between COM resultsand Gutzwiller ones [6℄.The MIT an be studied by looking at the density of states (DOS): theopening of a gap in the DOS is a signal of the transition from metalli to insu-lating phase. In Ref. [7℄ we have studied the MIT exhibited by the Hubbardmodel in absene of magneti �eld for the 2D and 3D ases. It was found thatthe transition is driven by the Coulomb interation: there is a ritial valueU where the MIT ours. In partiular, the value U = 1:68W (W2D = 8tand W3D = 12t for the 2D and 3D system, respetively) was reported. Inpresene of a magneti �eld the value of U is drastially in�uened. InFig. 1 (right panel) we plot the ritial value versus the magneti �eld atzero temperature. As we turn on a rather small magneti �eld, the ritialvalue U suddenly jumps from U = 1:68W to U = W . This disontinuityat zero �eld is related to the disontinuity of the magnetization, as shown inFig. 1 (left panel). By inreasing h, U dereases and vanishes when the �eldequates the bandwidth at zero temperature (i.e., U(h; T = 0) =W �h), inqualitative agreement with the experimental �ndings.In onlusion, our study shows that the 2D Hubbard model in preseneof a parallel magneti �eld an desribe the experimental evidene of a �eld-driven MIT. The transition is ontrolled by the �eld and disappears for someritial value of it. A more detailed disussion of the MIT and of the orderparameter ontrolling the transition will be reported elsewhere.REFERENCES[1℄ T. Okamoto, K. Hosoya, S. Kawaji, A. Yagi, Phys. Rev. Lett. 82, 3875 (1999).[2℄ J. Yoon, et al., Phys. Rev. Lett. 84, 4421 (2000). E. Tutu, E.P. De Poortere,S.J. Papadakis, M. Shayegan, Phys. Rev. Lett. 86, 2858 (2001).[3℄ F. Manini, S. Marra, H. Matsumoto, Physia C 244, 49 (1995); 250, 184(1995); 252, 361 (1995); A. Avella, F. Manini, R. Münzner, Phys. Rev.B63, 245117 (2001). V. Fiorentino, F. Manini, E. Zasinas, A. Barabanov,Phys. Rev. B64, 214515 (2001).[4℄ A. Avella, F. Manini, D. Villani, L. Siurakshina, V.Y. Yushankhai, Int. Journ.Mod. Phys. B12, 81 (1998).[5℄ F. Manini, A. Avella, ond-mat/0006377.[6℄ D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).[7℄ F. Manini, Europhys. Lett. 50, 229 (2000). F. Manini, V. Turkowski, AtaPhys. Pol. A 101, 505 (2002).


