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DMFT SOLUTION OF THE FALICOV�KIMBALLMODEL WITH AN INTERNAL STRUCTURE�Veljko Zlati¢Institute of Physis, Bijeni£ka . 46, 10 001 Zagreb, Croatiaand Jim FreeriksDepartment of Physis, Georgetown University, Washington, DC 20057, USA(Reeived July 10, 2002)Dynamial mean �eld theory is used to solve the Faliov�Kimball modelin the ase where the f -ions have an internal struture. The solution pro-vides a qualitative desription of the properties of Eu-based intermetalliompounds whih show anomalies due to a valene-hange transition.PACS numbers: 71.10.�w, 71.30.+h, 72.10.�d1. Introdution and de�nition of the modelExperimental studies [1�5℄ of a number of Eu intermetalli ompounds,like Eu(Pd1�xPtx)2Si2 and EuNi2(Si1�xGex)2, show that the valene state ofEu ions an hange abruptly from Eu2+ (f7) to Eu3+ (f7) as the temperatureor the magneti �eld is varied. The transition takes plae at ambient pressureabove 50 K, and the state of the system appears to be ompletely di�erentabove and below Tv. In the low-temperature phase the physial propertiesare nearly temperature-independent. Here, the Eu ions are non-magnetiand the ondution band is a Fermi liquid (FL) with a large harateristi FLsale T ? � Tv. A magneti �eld of about H ' kBTv=�B Tesla destabilizesthe FL ground state and indues a transition into a paramagneti (f7) state.Similarly, at a temperature Tv there is a zero �eld transition into a semi-metalli state. For T � Tv or H � H, the Eu ions behave as 'almostfree spins' and the linear and non-linear magneti response is well explainedby the single-ion theory whih assumes that Eu2+ is a pure spin-7/2 state,and that Eu3+ has a non-magneti ground state and two exited magneti� Presented at the International Conferene on Strongly Correlated Eletron Systems,(SCES02), Craow, Poland, July 10�13, 2002.(931)



932 V. Zlati¢, J. Freeriksstates. The high eletrial resistane of these ompounds above Tv is di�ultto assoiate with exhange sattering, beause the logarithmi terms areabsent and �elds up to 40 Tesla have very little e�et. Thus, above Tv orH � H, it seems that we are dealing with magneti Eu2+ ions embeddedinto a bad metal with the hemial potential in a pseudo-gap or a small gap.The thermopower of EuNi2(Si1�xGex)2 [6℄ has a positive hump, indiatingeletron-like transport.A qualitative desription of these e�ets is provided by the Faliov�Kimball (FK) model [7℄ whih takes into aount the interation between a2-fold degenerate ondution band and a lattie of Eu ions with an internalstruture. The Eu2+ ion is modeled by a spin S = 7=2 Hund's rule state,while the Eu3+ ion is desribed by a S = 0 Hund's rule ground state and twoexited states (an exited triplet state at energy ES=1 and an exited quintetat ES=2). All other exited states of the Eu ions are negleted. The f -statesare loalized and neither the number of Eu3+ and Eu2+ ions nor the internalstate of an ion an hange, exept by thermodynami �utuations, i.e. thequantum mehanial �utuations of the f -states are negleted. The ondu-tion eletrons an hop between nearest-neighbor sites on the D-dimensionallattie, with a hopping matrix �tij = �t�=2pD; we hoose a saling of thehopping matrix that yields a nontrivial limit in in�nite-dimensions [8℄. Fi-nally, we assume that the additional eletron of the f7 on�guration givesrise to a Coulomb interation U between the d- and f -eletrons that oupythe same lattie site. Thus, the Faliov�Kimball model for the lattie Euions is de�ned by the Hamiltonian [9, 10℄HFK = H0d +Hd�f +Hf7 +Hf6 ; (1)where H0d = Xij;�(�tij � �Æij)dyi�dj� ; (2)Hf7 = Xi;� (E7=2 � �)f yi�fi� ; (3)Hd�f = UXi;�� dyi�di�f yi�fi� ; (4)and Hf6 = Xi (1� nif7)HSi : (5)The ondution eletrons are reated or destroyed at site i by dyi� or di�,and loalized eletrons are reated or destroyed at site i by f yi� or fi�. Weuse � to denote the spin of the d-eletrons, and � for the f7 states. The f7Hund's rule state is represented by a single fermion with an in�nite mass



DMFT Solution of the Faliov�Kimball Model : : : 933and spin 7/2. The d- and f7-number operators at eah site are nd =P� nd�and nf7 = P� nf� � 1, Sine the Eu ions an only assume the Eu3+ orthe Eu2+ on�gurations, a hemial potential � is employed to onserve thetotal number of eletrons nd + nf 7 = ntot. The term Hf6 desribes themultiplets of Eu3+ ions (the non-magneti ground state, an exited triplet,and an exited quintet) and it vanishes at sites oupied by Eu2+. Thesestates do not ouple diretly to other states and do not ontribute to thedynamis of the system but have to be taken into aount when alulatingthe partition funtion or the magnetization. The numerial alulations areperformed for a hyperubi lattie with a Gaussian noninterating densityof states �(") = exp[�"2=t�2℄=(p�t�); and t� is taken as the unit of energy(t� = 1). We onsider only the homogeneous phase, where all quantitiesare translationally invariant. In the presene of a magneti �eld the mag-neti degeneray is lifted and for the �eld oriented along the z-diretion, theHamiltonian (1) is supplemented by a Zeeman term. Using the basis thatdiagonalizes simultaneously the single-ion Hamiltonian in zero �eld and thez-omponent of the spin operator, we haveHZ = gd�BHXi� �dyi�dj� + gf7=2�BHXi� �f yi�fi�+gf1�BHXi�1 (1� nif7)�1 + gf3�BHXi�3 (1� nif7)�3 ; (6)where gd and gfS are the g-fators, � is the spin label of the d-eletron, and�, �1 and �3 are the spin labels of the f7-otet, f6-triplet and f6-quintet,respetively. 2. Exat solution in in�nite dimensionsThe DMFT of an in�nite-oordination lattie is based on the observationthat the self energy of the ondution eletrons is loal [8℄ and is a funtionalof the loal Green's funtion only. Hene, as noted by Brandt and Mielsh [9℄,the lattie self energy of the FK model oinides with the self energy of anatomi d-state oupled to an atomi f -state by the same Coulomb interationas on the lattie, and perturbed by an external time-dependent �eld, �(�; � 0).The lattie problem redues to �nding the Green's funtions of the FK atomin the presene of an arbitrary external �eld and, then, hoosing the �eld insuh a way that the loal d-eletron Green's funtion of the lattie oinideswith the Green's funtion of the atomi d-state, G�lo(z) = G�at(z), and theloal f -eletron propagator oinides with the atomi f -state propagator,F �lo(z) = F �at(z).



934 V. Zlati¢, J. FreeriksThe atomi problem is solved by using the funtional derivative tehniqueof Kadano� and Baym [11℄. That is, the atomi partition funtion Zat(�) iswritten as a funtional of an external �eld � and the funtional derivativesare used to generate G�at(z) and F �at(z). The equations of motion (EOM)are used to determine integral operators G�at and F �at for a given �-�eld, andthe partition funtion is obtained from the inverse of the Green's funtionas Zat(�) = det j[G�at℄�1j.The generating funtional (the partition funtion of the FK atom) isde�ned in the interation representation as,Zat(�; �) = Trdf hT� e��HatS(�)i ; (7)where the Hamiltonian of the FK atom,Hat = ��X� dy�d�+(Ef��)X� f y�f�+UX�� dy�d�f y�f�+(1�nf7)HS; (8)de�nes the time evolution of the operators, and the external �eld de�nes thetime-evolution operator for the state vetors,S(�) = T� exp0�� �Z0 d� �Z0 d� 0X� ��(�; � 0)dy�(�)d�(� 0)1A : (9)The term HS desribes the exited states within the non-magneti f6 on�g-uration. In the presene of the magneti �eld, we add to (8) the Zeeman termthat is obtained from (6) in an obvious way. The statistial sum runs over allpossible f - and d-on�gurations and depends on ��(�; � 0) for �; � 0 2 (0; �).We assume that ��(�; � 0) is time-translation invariant and anti-periodi inimaginary time. The unperturbed atomi Hamiltonian (8) onserves thenumber of f - and d-eletrons, and the evolution operator gives rise only to�utuations in the d-oupany. Thus, the f -oupany (the number of f7ions) is a onstant of motion and the Hilbert spae an be deomposed intoinvariant subspaes with respet to nf7 . The matrix elements in (7) anbe evaluated within eah invariant subspaes by replaing P� f y�f� by itseigenvalue (0 or 1), whih gives,Zat(�; �) = Zf6Z0(�; �) + Zf7Z0(�� U; �) : (10)Here, Z0(�; �) is the partition funtion of a simpli�ed d-state deoupled fromthe f -state and oupled only to the �-�eld, and Zf6 = 1 +P� e��E(1)� +P� e��E(2)� and Zf7 =P� e��E(7=2)� are the partition funtions of f6 and f7



DMFT Solution of the Faliov�Kimball Model : : : 935ions deoupled from the lattie. In the presene of the magneti �eld, � and� label the Zeeman levels of f6 and f7 ions, respetively. We have, in theinteration representation,Z0(�; �) = Y� Z�0 (�; �); (11)where Z�0 (�; �) = Trd hT� e��H�0S(�; ��)i (12)and H0 = ��X� dy�d�: (13)The fatorization (11) holds beause the time evolution due to H0 is suhthat the operators with di�erent �-labels ommute regardless of their timearguments, and the S-matrix (9) does not hange the �-label of a givenstate vetor. Thus, the Hilbert spae an be deomposed into invariant�-subspaes and the trae in (12) is over eah non-degenerate d�-state.To �nd the funtional derivatives of Z�0 (�; ��) we shift the �-�eld froman initial on�guration ��(�; � 0) to a �nal on�guration ��(�; � 0)+Æ��(�; � 0),�nd the variation Æ S(�; ��) due to Æ ��, and obtain,Æ lnZ�0 = �Z0 d� �Z0 d� 0Æ��(�; � 0)G�0 (� 0; �) : (14)The funtional derivative is, by de�nition, the oe�ient of Æ��(�; � 0),G�0 (�; � 0) = � Æ lnZ�0Æ��(� 0; �) ; (15)and is given by the expression,G�0 (�; � 0) = � 1Z�0 Trd nT�e��H0d�(�)dy�(� 0)S(�; ��)o ; (16)whih is the d-eletron propagator for the U = 0, � 6= 0 problem. Thederivative with respet to � gives the EOM for G�0 (�; � 0),�� ��� + ��G�0 (�; � 0)� �Z0 d� 00��(�; � 00)G�0 (� 00; � 0) = Æ(� � � 0); (17)where the Æ-funtion arises from the disontinuity in G0 at � = � 0. The �rstorder di�erential equation (17), supplemented by the boundary ondition



936 V. Zlati¢, J. FreeriksG�0 (�; � 0) = G�0 (� + �; � 0) has a unique solution. The inverse of [G�0 ℄ is adi�erential operator, whih an be written as,[G�0 ℄�1(�; � 0) = [g�0 ℄�1(�; � 0)� ��(�; � 0); (18)where, [g�0 ℄�1(�; � 0) = �� ��� + �� Æ(� � � 0); (19)is the inverse of the Green's funtion for the U = 0 and � = 0 problem. Byde�nition,g0�(�; � 0) = � 1Z�0 (�; � = 0)Trd DT� e��H�0 d�(�)dy�(� 0)E ; (20)where Z�0 (�; � = 0) = 1 + e��; (21)is the partition funtion of a d-eletron desribed by H0. Using d�(�) =d�(0) exp(��) we �nd,g0�(� � � 0) = �(1� f0)e�(��� 0 ); for � > � 0;g0�(� � � 0) = f0 e�(��� 0 ); for � < � 0; (22)where f0 = 1=(1 + e���) is the thermal oupation fator.Next, we notie that the �-�eld is ompletely arbitrary and the samefuntional derivative is obtained if the �-�eld is shifted with respet to someonstant �eld. In other words, the variation of lnZ�0 (�; �) is not hanged if��(� 0; �) is rede�ned as ��(� 0; �) � [g0℄�1(� 0; �) and we take Æ�� = Æ(�� �[g0℄�1) = �Æ[G�0 ℄�1. This gives,Æ lnZ�0 (�; �) = �Z0 d�(G�0 Æ[G�0 ℄�1)(�; �); (23)and, sine G�0 is the inverse of [G�0 ℄�1,Æ lnZ�0 (�; �) = �Z0 d�Æ lnf[G�0 ℄�1g(�; �): (24)Thus, Æ lnZ�0 follows from the variation of Tr lnf[G�0 ℄�1g and, up to anarbitrary onstant, we havelnZ�0 (�; �) = Tr lnf[G�0 ℄�1g: (25)



DMFT Solution of the Faliov�Kimball Model : : : 937The matrix identity Tr lnA = lndetA allow us to write the partition fun-tion as a ontinuous determinant,Z�0 (�; �) = det j[G�0 ℄�1j (26)or, equivalently, Z�0 (�; �) = detjg�10� j detj1� g0� ��j; (27)where det jg�10� j = Z�0 (�; � = 0). This provides the solution for the FKatom with no f partiles. The partition funtion in the nf7 = 1 subspaeis obtained from the nf7 = 0 solution simply by replaing � by � � U inZ�0 (�; �).The fully renormalized Green's funtion of the FK atom desribes therenormalization e�ets due to the Coulomb interation and is given byG�at(�; � 0) = � 1Zat(�; �)Trdf DT�e��Hatd�(�)dy�(� 0)S(�)E : (28)G�at is obtained from Zat by funtional di�erentiation,G�(�; � 0) = � 1Zat(�; �) ÆZat(�; �)Æ��(� 0; �) : (29)where Zat is given by Eq. (10). Using (15) we �ndG�at(�; � 0) = Nf6 G�0 (� � � 0) +Nf7G�0 (� � � 0)j��U ; (30)where Nf6 = Zf6Z0(�; �)=Zat, Nf7 = Zf7Z0(� � U; �)=Zat, and where weindiated that the hemial potential in the seond term is to be shifted byU. The weights Nf6 and Nf7 give the average number of Eu3+ and Eu2+ions, respetively. Sine G�0 is the Green's funtion of the U = 0 problem,we an de�ne the self-energy as,�� = [G�0 ℄�1 � [G�at℄�1: (31)The matrix elements of [G�0 ℄�1, [G�at℄�1, �� and �� depend on the timedi�erene only and satisfy the imaginary-time boundary ondition f(0) =�f(��). Thus, they an all be expressed in terms of Fourier omponents as,f(� � � 0) = TPn fne�i!n(��� 0); where !n = (2n + 1)�=� is the Matsubarafrequeny. The Matsubara representation redues the EOM to a set of de-oupled algebrai equations for the diagonal omponents of G�at in (disrete)frequeny spae,G�at(i!n) = Nf6[G�0 (i!n)℄�1 + Nf7[G�0 ℄�1(i!n)� U ; (32)



938 V. Zlati¢, J. Freerikswhere [G�0 ℄�1(i!n) = [g�0 ℄�1(i!n) � ��n and [g�0 ℄�1(i!n) = i!n + ���BgdH,and we inluded the magneti �eld. Sine ��n, [g�0 ℄(i!n) and [g�0 ℄�1(i!n) arediagonal matries, the U = 0 partition funtion is an in�nite produt,Z�0 (�; �) = (1 + e��)Yn �1� ��ni!n + �+ ��BgdH� (33)and the full partition funtion follows from Eq. (10).The numerial solution on the imaginary axis is obtained by solving (31),(32), and (33) together with the self-onsisteny ondition, G�at(z) = G�lo(z),whih an be written as,G�at(z) = Z �(")z + �+ ��BgdH � ��(z)� "d"; (34)where z is a omplex variable. For an appropriate �-�eld the funtionaldependene of �� on G�at(z) is exatly the same as in the lattie ase, i.e.,the DMFT replaes the lattie problem by a loal time-dependent �eld andprovides exat results for the lattie model [10, 12℄. Furthermore, one thenumbers Nf6 and Nf7 are obtained (for a given hoie of parameters) byperforming iterations on the imaginary axis, we an iterate (31), (32) and(34) on the real axis and �nd the retarded quantities. In in�nite dimensionsthe vertex orretions to transport oe�ients disappear and the eletrialresistivity and the thermopower of the FK-model an be obtained from thed-eletron's Green's funtion [13℄. Note, beause of the in�nite-dimensionalsaling of the hopping matrix elements, the eletrial ondutivity is of theorder of 1=D, where D is the dimensionality of the lattie. In what follows,use the DMFT to alulate the thermodynami and transport properties ofthe model. 3. Results and disussionThe temperature dependene of the average oupation of magneti Eu2+ions is de�ned by Nf7 and is shown in Fig. 1 for Ef = �0:6, for U = 2,and for several band-�llings. We onsider a ondution band that is morethan half-�lled at T = 0; the less than half-�lled ase is obtained by aneletron�hole transformation. For U = 2 there is a small gap (pseudo-gap)in the ondution band of the hyperubi lattie. The main feature of theNf7 urves is the ross-over from a low-temperature state in whih there areno Eu2+ ions into a high-temperature state with a substantial oupation ofmagneti Eu2+ ions. The e�et of the exited states of Eu3+ on the averageoupation of Eu2+ is small, at low temperatures, while the e�et of theband-�lling is pronouned. The transition sharpens as the total number



DMFT Solution of the Faliov�Kimball Model : : : 939of eletrons is redued and the ondution band approahes half-�lling atT = 0. Similar behavior (a sharpening of the transition and a redutionof the transition temperature) is obtained if we shift the f7-state loserto the hemial potential, so as to inrease the average high-temperatureoupation of the Eu2+ ions [12℄. If we assume that pressure or hemialpressure redue the average Eu2+ oupation, we �nd the same qualitativefeatures as in the experimental data [2�5℄. The temperature dependene of
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940 V. Zlati¢, J. Freeriksthe linear magneti suseptibility �f (T ) of the Eu ions is shown in Fig. 2 forthe same parameters as in Fig. 1. The ontribution due to the ondutionband has been subtrated and the Eu-ontribution is well desribed by theCurie law, �f (T ) / Nf7=T . The transition is seen more learly in �f (T )than in Nf7 , and if we de�ne Tv as the temperature at whih �f (Tv) is halfthe maximum value we �nd, Tv = 0.015, 0.009, 0.006, 0.004, and 0.003 forntot = 1.7, 1.6, 1.5, 1.4, and 1.3, respetively. The data in Fig. 2 show thata small inrease of the Curie onstant an lead to a large redution in Tv.
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DMFT Solution of the Faliov�Kimball Model : : : 941The DC resistivity and the thermopower obtained for the same param-eters as used in Fig. 1 are shown in Figs. 3 and 4, respetively. The re-sistivity is de�ned in units of �0 = hDaD�2=e2�2 (whih is ill-de�ned inin�nite dimensions but is approximately 2:3 � 10�4
-m in D = 3 witha � 3� 10�8 m). The thermopower is plotted in units kB=jej ' 86 �V/kB.The resistivity and the thermopower exhibit a broad maximum whih is re-lated to a pseudo-gap in the ondution eletron density of states (DOS).That is, at low temperatures, the hemial potential is lose to the enterof the ondution band, where the DOS is large, and the system is a goodmetal. As the temperature inreases � shifts into the pseudo-gap region [12℄and the resistivity and the thermopower inrease. At very high temperatures� is above the pseudo-gap, and the resistivity and the thermopower dereaseagain. Note, the pseudo-gaps or the gaps we are disussing here are not dueto the details of the band-struture but are the many-body e�ets aused bylarge oupling for any non-interating DOS. The hanges in the band �llingthat lead to a huge variation of Tv have only a small e�et on the position ofthe maximum in the transport oe�ients. It is interesting to observe thatthe resistivity and the thermopower maxima shift in opposite diretions. Forsmall Tv the resistivity shows a steep rise, that follows the rapid inreaseof Nf7 . Above the maximum, the Faliov�Kimball interation leads to aresistivity that has the same shape for all band-�llings. The thermopowerdoes not show any signi�ant variation around Tv.Finally, we disuss the meta-magneti transition indued by magneti�elds. We onsider the z-omponent of the full magnetization of the FKlattie, mz(H) = 1ZFKTrf [e��HFK(H)mzf ℄; (35)where, the trae is over all the states of the lattie. In the DMFT this isequivalent to an e�etive atomi problem in whih the �-�eld mimis thelattie, mz(H) = 1ZatTrf [e��Hat(H)S(�)mz℄; (36)where Hat ontains the atomi Zeeman terms, S(�) is de�ned by Eq. (9)and the trae is performed in the basis whih diagonalizes simultaneouslyHat at H = 0 and the z-omponents of the spin operators. We �nd,mz(H) = gd�B[nd"(H)� nd#(H)℄ + Z0(�� U)Zat 7=2 7=2X�=�7=2 �e��(E7=2� (H)��)+Z0(�)Zat 8<:1 1X�=�1 �e��E(1)� (H) + 3 2X�=�2 �e��E(2)� (H)9=; ; (37)



942 V. Zlati¢, J. Freerikswhere the �rst term desribes the response of the ondution band, theseond term desribes the ontribution due to Eu2+ ions, and the last twoterms desribe the ontribution due to Eu3+ ions. The partition funtionZ0(�) inludes the Zeeman energy of the ondution eletrons, E(S)� (H) isthe �eld-dependent eigenvalue of an isolated Eu-ion, � 2 (�S; S) is the spinlabel, and S = gfS�B. Introduing the �eld-dependent magnetizations ofisolated Eu-ions, mzS(H) = SP� � exp[��E(S)� (H)℄=Zf we �ndmzEu(H) = Nf6 f1B1(1H�) + 33B3(33H�)g+Nf7 77=22 B7=2�727=2H�� ; (38)where BS(x) is the Brillouin funtion.The Faliov�Kimball interation between an additional eletron of thef7 on�guration and the ondution band gives rise to a temperature and�eld dependene of the oupation numbers Nf6 and Nf7 and modi�es thesingle-ion response. For U = 0, the slope of mzEu(H) dereases monotoni-ally from the zero-�eld value and mzEu(H) approahes the high-�eld limitin a typial paramagneti fashion. For U 6= 0 and T � Tv, we still �nd that� mzEu(H)=�H has a maximum at H = 0 and mzEu(H) saturates as in theU = 0 ase. Below Tv, however, � mzEu(H)=�H is a non-monotoni funtionwhih starts from zero at H = 0 and inreases up to H. Above H � H theslope starts dereasing and the magnetization approahes the high-�eld limitin the usual way. At the ritial �eld �2mzEu(H)=�H2 hanges sign and the3rd order suseptibility �3mzEu(H)=�H3 might diverge. The ritial temper-ature above whih the linear suseptibility limH!0 � mzEu(H)=�H beomesnon-zero and the ritial �eld at whih limT!0 �2mzEu(H)=�H2 hanges signare about the same. The valene-hange transition and the meta-magnetitransition are oupled together beause the �eld brings the renormalizedf -level loser to the hemial potential, enhanes the thermal oupationof the f -states, and inreases the magneti entropy. At the transition, theenergy loss due to the additional population of the f -states, and the entropyloss due to the redution of the ondution eletrons, are balaned by themagneti entropy of the additional f -states.In summary, the DMFT solution of the Faliov�Kimball model explainsthe qualitative features of the valene-hange and the meta-magneti transi-tion in Eu-based intermetalli ompounds. However, the model parametersand the absolute value of the temperature sale an not be uniquely deter-mined from the stati response funtions and a quantitative analysis shouldalso ompare the dynamial properties of the model with the experimentaldata [12℄.
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