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DMFT SOLUTION OF THE FALICOV�KIMBALLMODEL WITH AN INTERNAL STRUCTURE�Veljko Zlati¢Institute of Physi
s, Bijeni£ka 
. 46, 10 001 Zagreb, Croatiaand Jim Freeri
ksDepartment of Physi
s, Georgetown University, Washington, DC 20057, USA(Re
eived July 10, 2002)Dynami
al mean �eld theory is used to solve the Fali
ov�Kimball modelin the 
ase where the f -ions have an internal stru
ture. The solution pro-vides a qualitative des
ription of the properties of Eu-based intermetalli

ompounds whi
h show anomalies due to a valen
e-
hange transition.PACS numbers: 71.10.�w, 71.30.+h, 72.10.�d1. Introdu
tion and de�nition of the modelExperimental studies [1�5℄ of a number of Eu intermetalli
 
ompounds,like Eu(Pd1�xPtx)2Si2 and EuNi2(Si1�xGex)2, show that the valen
e state ofEu ions 
an 
hange abruptly from Eu2+ (f7) to Eu3+ (f7) as the temperatureor the magneti
 �eld is varied. The transition takes pla
e at ambient pressureabove 50 K, and the state of the system appears to be 
ompletely di�erentabove and below Tv. In the low-temperature phase the physi
al propertiesare nearly temperature-independent. Here, the Eu ions are non-magneti
and the 
ondu
tion band is a Fermi liquid (FL) with a large 
hara
teristi
 FLs
ale T ? � Tv. A magneti
 �eld of about H
 ' kBTv=�B Tesla destabilizesthe FL ground state and indu
es a transition into a paramagneti
 (f7) state.Similarly, at a temperature Tv there is a zero �eld transition into a semi-metalli
 state. For T � Tv or H � H
, the Eu ions behave as 'almostfree spins' and the linear and non-linear magneti
 response is well explainedby the single-ion theory whi
h assumes that Eu2+ is a pure spin-7/2 state,and that Eu3+ has a non-magneti
 ground state and two ex
ited magneti
� Presented at the International Conferen
e on Strongly Correlated Ele
tron Systems,(SCES02), Cra
ow, Poland, July 10�13, 2002.(931)
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ksstates. The high ele
tri
al resistan
e of these 
ompounds above Tv is di�
ultto asso
iate with ex
hange s
attering, be
ause the logarithmi
 terms areabsent and �elds up to 40 Tesla have very little e�e
t. Thus, above Tv orH � H
, it seems that we are dealing with magneti
 Eu2+ ions embeddedinto a bad metal with the 
hemi
al potential in a pseudo-gap or a small gap.The thermopower of EuNi2(Si1�xGex)2 [6℄ has a positive hump, indi
atingele
tron-like transport.A qualitative des
ription of these e�e
ts is provided by the Fali
ov�Kimball (FK) model [7℄ whi
h takes into a

ount the intera
tion between a2-fold degenerate 
ondu
tion band and a latti
e of Eu ions with an internalstru
ture. The Eu2+ ion is modeled by a spin S = 7=2 Hund's rule state,while the Eu3+ ion is des
ribed by a S = 0 Hund's rule ground state and twoex
ited states (an ex
ited triplet state at energy ES=1 and an ex
ited quintetat ES=2). All other ex
ited states of the Eu ions are negle
ted. The f -statesare lo
alized and neither the number of Eu3+ and Eu2+ ions nor the internalstate of an ion 
an 
hange, ex
ept by thermodynami
 �u
tuations, i.e. thequantum me
hani
al �u
tuations of the f -states are negle
ted. The 
ondu
-tion ele
trons 
an hop between nearest-neighbor sites on the D-dimensionallatti
e, with a hopping matrix �tij = �t�=2pD; we 
hoose a s
aling of thehopping matrix that yields a nontrivial limit in in�nite-dimensions [8℄. Fi-nally, we assume that the additional ele
tron of the f7 
on�guration givesrise to a Coulomb intera
tion U between the d- and f -ele
trons that o

upythe same latti
e site. Thus, the Fali
ov�Kimball model for the latti
e Euions is de�ned by the Hamiltonian [9, 10℄HFK = H0d +Hd�f +Hf7 +Hf6 ; (1)where H0d = Xij;�(�tij � �Æij)dyi�dj� ; (2)Hf7 = Xi;� (E7=2 � �)f yi�fi� ; (3)Hd�f = UXi;�� dyi�di�f yi�fi� ; (4)and Hf6 = Xi (1� nif7)HSi : (5)The 
ondu
tion ele
trons are 
reated or destroyed at site i by dyi� or di�,and lo
alized ele
trons are 
reated or destroyed at site i by f yi� or fi�. Weuse � to denote the spin of the d-ele
trons, and � for the f7 states. The f7Hund's rule state is represented by a single fermion with an in�nite mass
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ov�Kimball Model : : : 933and spin 7/2. The d- and f7-number operators at ea
h site are nd =P� nd�and nf7 = P� nf� � 1, Sin
e the Eu ions 
an only assume the Eu3+ orthe Eu2+ 
on�gurations, a 
hemi
al potential � is employed to 
onserve thetotal number of ele
trons nd + nf 7 = ntot. The term Hf6 des
ribes themultiplets of Eu3+ ions (the non-magneti
 ground state, an ex
ited triplet,and an ex
ited quintet) and it vanishes at sites o

upied by Eu2+. Thesestates do not 
ouple dire
tly to other states and do not 
ontribute to thedynami
s of the system but have to be taken into a

ount when 
al
ulatingthe partition fun
tion or the magnetization. The numeri
al 
al
ulations areperformed for a hyper
ubi
 latti
e with a Gaussian nonintera
ting densityof states �(") = exp[�"2=t�2℄=(p�t�); and t� is taken as the unit of energy(t� = 1). We 
onsider only the homogeneous phase, where all quantitiesare translationally invariant. In the presen
e of a magneti
 �eld the mag-neti
 degenera
y is lifted and for the �eld oriented along the z-dire
tion, theHamiltonian (1) is supplemented by a Zeeman term. Using the basis thatdiagonalizes simultaneously the single-ion Hamiltonian in zero �eld and thez-
omponent of the spin operator, we haveHZ = gd�BHXi� �dyi�dj� + gf7=2�BHXi� �f yi�fi�+gf1�BHXi�1 (1� nif7)�1 + gf3�BHXi�3 (1� nif7)�3 ; (6)where gd and gfS are the g-fa
tors, � is the spin label of the d-ele
tron, and�, �1 and �3 are the spin labels of the f7-o
tet, f6-triplet and f6-quintet,respe
tively. 2. Exa
t solution in in�nite dimensionsThe DMFT of an in�nite-
oordination latti
e is based on the observationthat the self energy of the 
ondu
tion ele
trons is lo
al [8℄ and is a fun
tionalof the lo
al Green's fun
tion only. Hen
e, as noted by Brandt and Miels
h [9℄,the latti
e self energy of the FK model 
oin
ides with the self energy of anatomi
 d-state 
oupled to an atomi
 f -state by the same Coulomb intera
tionas on the latti
e, and perturbed by an external time-dependent �eld, �(�; � 0).The latti
e problem redu
es to �nding the Green's fun
tions of the FK atomin the presen
e of an arbitrary external �eld and, then, 
hoosing the �eld insu
h a way that the lo
al d-ele
tron Green's fun
tion of the latti
e 
oin
ideswith the Green's fun
tion of the atomi
 d-state, G�lo
(z) = G�at(z), and thelo
al f -ele
tron propagator 
oin
ides with the atomi
 f -state propagator,F �lo
(z) = F �at(z).
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ksThe atomi
 problem is solved by using the fun
tional derivative te
hniqueof Kadano� and Baym [11℄. That is, the atomi
 partition fun
tion Zat(�) iswritten as a fun
tional of an external �eld � and the fun
tional derivativesare used to generate G�at(z) and F �at(z). The equations of motion (EOM)are used to determine integral operators G�at and F �at for a given �-�eld, andthe partition fun
tion is obtained from the inverse of the Green's fun
tionas Zat(�) = det j[G�at℄�1j.The generating fun
tional (the partition fun
tion of the FK atom) isde�ned in the intera
tion representation as,Zat(�; �) = Trdf hT� e��HatS(�)i ; (7)where the Hamiltonian of the FK atom,Hat = ��X� dy�d�+(Ef��)X� f y�f�+UX�� dy�d�f y�f�+(1�nf7)HS; (8)de�nes the time evolution of the operators, and the external �eld de�nes thetime-evolution operator for the state ve
tors,S(�) = T� exp0�� �Z0 d� �Z0 d� 0X� ��(�; � 0)dy�(�)d�(� 0)1A : (9)The term HS des
ribes the ex
ited states within the non-magneti
 f6 
on�g-uration. In the presen
e of the magneti
 �eld, we add to (8) the Zeeman termthat is obtained from (6) in an obvious way. The statisti
al sum runs over allpossible f - and d-
on�gurations and depends on ��(�; � 0) for �; � 0 2 (0; �).We assume that ��(�; � 0) is time-translation invariant and anti-periodi
 inimaginary time. The unperturbed atomi
 Hamiltonian (8) 
onserves thenumber of f - and d-ele
trons, and the evolution operator gives rise only to�u
tuations in the d-o

upan
y. Thus, the f -o

upan
y (the number of f7ions) is a 
onstant of motion and the Hilbert spa
e 
an be de
omposed intoinvariant subspa
es with respe
t to nf7 . The matrix elements in (7) 
anbe evaluated within ea
h invariant subspa
es by repla
ing P� f y�f� by itseigenvalue (0 or 1), whi
h gives,Zat(�; �) = Zf6Z0(�; �) + Zf7Z0(�� U; �) : (10)Here, Z0(�; �) is the partition fun
tion of a simpli�ed d-state de
oupled fromthe f -state and 
oupled only to the �-�eld, and Zf6 = 1 +P� e��E(1)� +P� e��E(2)� and Zf7 =P� e��E(7=2)� are the partition fun
tions of f6 and f7
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ov�Kimball Model : : : 935ions de
oupled from the latti
e. In the presen
e of the magneti
 �eld, � and� label the Zeeman levels of f6 and f7 ions, respe
tively. We have, in theintera
tion representation,Z0(�; �) = Y� Z�0 (�; �); (11)where Z�0 (�; �) = Trd hT� e��H�0S(�; ��)i (12)and H0 = ��X� dy�d�: (13)The fa
torization (11) holds be
ause the time evolution due to H0 is su
hthat the operators with di�erent �-labels 
ommute regardless of their timearguments, and the S-matrix (9) does not 
hange the �-label of a givenstate ve
tor. Thus, the Hilbert spa
e 
an be de
omposed into invariant�-subspa
es and the tra
e in (12) is over ea
h non-degenerate d�-state.To �nd the fun
tional derivatives of Z�0 (�; ��) we shift the �-�eld froman initial 
on�guration ��(�; � 0) to a �nal 
on�guration ��(�; � 0)+Æ��(�; � 0),�nd the variation Æ S(�; ��) due to Æ ��, and obtain,Æ lnZ�0 = �Z0 d� �Z0 d� 0Æ��(�; � 0)G�0 (� 0; �) : (14)The fun
tional derivative is, by de�nition, the 
oe�
ient of Æ��(�; � 0),G�0 (�; � 0) = � Æ lnZ�0Æ��(� 0; �) ; (15)and is given by the expression,G�0 (�; � 0) = � 1Z�0 Trd nT�e��H0d�(�)dy�(� 0)S(�; ��)o ; (16)whi
h is the d-ele
tron propagator for the U = 0, � 6= 0 problem. Thederivative with respe
t to � gives the EOM for G�0 (�; � 0),�� ��� + ��G�0 (�; � 0)� �Z0 d� 00��(�; � 00)G�0 (� 00; � 0) = Æ(� � � 0); (17)where the Æ-fun
tion arises from the dis
ontinuity in G0 at � = � 0. The �rstorder di�erential equation (17), supplemented by the boundary 
ondition
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ksG�0 (�; � 0) = G�0 (� + �; � 0) has a unique solution. The inverse of [G�0 ℄ is adi�erential operator, whi
h 
an be written as,[G�0 ℄�1(�; � 0) = [g�0 ℄�1(�; � 0)� ��(�; � 0); (18)where, [g�0 ℄�1(�; � 0) = �� ��� + �� Æ(� � � 0); (19)is the inverse of the Green's fun
tion for the U = 0 and � = 0 problem. Byde�nition,g0�(�; � 0) = � 1Z�0 (�; � = 0)Trd DT� e��H�0 d�(�)dy�(� 0)E ; (20)where Z�0 (�; � = 0) = 1 + e��; (21)is the partition fun
tion of a d-ele
tron des
ribed by H0. Using d�(�) =d�(0) exp(��) we �nd,g0�(� � � 0) = �(1� f0)e�(��� 0 ); for � > � 0;g0�(� � � 0) = f0 e�(��� 0 ); for � < � 0; (22)where f0 = 1=(1 + e���) is the thermal o

upation fa
tor.Next, we noti
e that the �-�eld is 
ompletely arbitrary and the samefun
tional derivative is obtained if the �-�eld is shifted with respe
t to some
onstant �eld. In other words, the variation of lnZ�0 (�; �) is not 
hanged if��(� 0; �) is rede�ned as ��(� 0; �) � [g0℄�1(� 0; �) and we take Æ�� = Æ(�� �[g0℄�1) = �Æ[G�0 ℄�1. This gives,Æ lnZ�0 (�; �) = �Z0 d�(G�0 Æ[G�0 ℄�1)(�; �); (23)and, sin
e G�0 is the inverse of [G�0 ℄�1,Æ lnZ�0 (�; �) = �Z0 d�Æ lnf[G�0 ℄�1g(�; �): (24)Thus, Æ lnZ�0 follows from the variation of Tr lnf[G�0 ℄�1g and, up to anarbitrary 
onstant, we havelnZ�0 (�; �) = Tr lnf[G�0 ℄�1g: (25)



DMFT Solution of the Fali
ov�Kimball Model : : : 937The matrix identity Tr lnA = lndetA allow us to write the partition fun
-tion as a 
ontinuous determinant,Z�0 (�; �) = det j[G�0 ℄�1j (26)or, equivalently, Z�0 (�; �) = detjg�10� j detj1� g0� ��j; (27)where det jg�10� j = Z�0 (�; � = 0). This provides the solution for the FKatom with no f parti
les. The partition fun
tion in the nf7 = 1 subspa
eis obtained from the nf7 = 0 solution simply by repla
ing � by � � U inZ�0 (�; �).The fully renormalized Green's fun
tion of the FK atom des
ribes therenormalization e�e
ts due to the Coulomb intera
tion and is given byG�at(�; � 0) = � 1Zat(�; �)Trdf DT�e��Hatd�(�)dy�(� 0)S(�)E : (28)G�at is obtained from Zat by fun
tional di�erentiation,G�(�; � 0) = � 1Zat(�; �) ÆZat(�; �)Æ��(� 0; �) : (29)where Zat is given by Eq. (10). Using (15) we �ndG�at(�; � 0) = Nf6 G�0 (� � � 0) +Nf7G�0 (� � � 0)j��U ; (30)where Nf6 = Zf6Z0(�; �)=Zat, Nf7 = Zf7Z0(� � U; �)=Zat, and where weindi
ated that the 
hemi
al potential in the se
ond term is to be shifted byU. The weights Nf6 and Nf7 give the average number of Eu3+ and Eu2+ions, respe
tively. Sin
e G�0 is the Green's fun
tion of the U = 0 problem,we 
an de�ne the self-energy as,�� = [G�0 ℄�1 � [G�at℄�1: (31)The matrix elements of [G�0 ℄�1, [G�at℄�1, �� and �� depend on the timedi�eren
e only and satisfy the imaginary-time boundary 
ondition f(0) =�f(��). Thus, they 
an all be expressed in terms of Fourier 
omponents as,f(� � � 0) = TPn fne�i!n(��� 0); where !n = (2n + 1)�=� is the Matsubarafrequen
y. The Matsubara representation redu
es the EOM to a set of de-
oupled algebrai
 equations for the diagonal 
omponents of G�at in (dis
rete)frequen
y spa
e,G�at(i!n) = Nf6[G�0 (i!n)℄�1 + Nf7[G�0 ℄�1(i!n)� U ; (32)
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kswhere [G�0 ℄�1(i!n) = [g�0 ℄�1(i!n) � ��n and [g�0 ℄�1(i!n) = i!n + ���BgdH,and we in
luded the magneti
 �eld. Sin
e ��n, [g�0 ℄(i!n) and [g�0 ℄�1(i!n) arediagonal matri
es, the U = 0 partition fun
tion is an in�nite produ
t,Z�0 (�; �) = (1 + e��)Yn �1� ��ni!n + �+ ��BgdH� (33)and the full partition fun
tion follows from Eq. (10).The numeri
al solution on the imaginary axis is obtained by solving (31),(32), and (33) together with the self-
onsisten
y 
ondition, G�at(z) = G�lo
(z),whi
h 
an be written as,G�at(z) = Z �(")z + �+ ��BgdH � ��(z)� "d"; (34)where z is a 
omplex variable. For an appropriate �-�eld the fun
tionaldependen
e of �� on G�at(z) is exa
tly the same as in the latti
e 
ase, i.e.,the DMFT repla
es the latti
e problem by a lo
al time-dependent �eld andprovides exa
t results for the latti
e model [10, 12℄. Furthermore, on
e thenumbers Nf6 and Nf7 are obtained (for a given 
hoi
e of parameters) byperforming iterations on the imaginary axis, we 
an iterate (31), (32) and(34) on the real axis and �nd the retarded quantities. In in�nite dimensionsthe vertex 
orre
tions to transport 
oe�
ients disappear and the ele
tri
alresistivity and the thermopower of the FK-model 
an be obtained from thed-ele
tron's Green's fun
tion [13℄. Note, be
ause of the in�nite-dimensionals
aling of the hopping matrix elements, the ele
tri
al 
ondu
tivity is of theorder of 1=D, where D is the dimensionality of the latti
e. In what follows,use the DMFT to 
al
ulate the thermodynami
 and transport properties ofthe model. 3. Results and dis
ussionThe temperature dependen
e of the average o

upation of magneti
 Eu2+ions is de�ned by Nf7 and is shown in Fig. 1 for Ef = �0:6, for U = 2,and for several band-�llings. We 
onsider a 
ondu
tion band that is morethan half-�lled at T = 0; the less than half-�lled 
ase is obtained by anele
tron�hole transformation. For U = 2 there is a small gap (pseudo-gap)in the 
ondu
tion band of the hyper
ubi
 latti
e. The main feature of theNf7 
urves is the 
ross-over from a low-temperature state in whi
h there areno Eu2+ ions into a high-temperature state with a substantial o

upation ofmagneti
 Eu2+ ions. The e�e
t of the ex
ited states of Eu3+ on the averageo

upation of Eu2+ is small, at low temperatures, while the e�e
t of theband-�lling is pronoun
ed. The transition sharpens as the total number
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ov�Kimball Model : : : 939of ele
trons is redu
ed and the 
ondu
tion band approa
hes half-�lling atT = 0. Similar behavior (a sharpening of the transition and a redu
tionof the transition temperature) is obtained if we shift the f7-state 
loserto the 
hemi
al potential, so as to in
rease the average high-temperatureo

upation of the Eu2+ ions [12℄. If we assume that pressure or 
hemi
alpressure redu
e the average Eu2+ o

upation, we �nd the same qualitativefeatures as in the experimental data [2�5℄. The temperature dependen
e of
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ksthe linear magneti
 sus
eptibility �f (T ) of the Eu ions is shown in Fig. 2 forthe same parameters as in Fig. 1. The 
ontribution due to the 
ondu
tionband has been subtra
ted and the Eu-
ontribution is well des
ribed by theCurie law, �f (T ) / Nf7=T . The transition is seen more 
learly in �f (T )than in Nf7 , and if we de�ne Tv as the temperature at whi
h �f (Tv) is halfthe maximum value we �nd, Tv = 0.015, 0.009, 0.006, 0.004, and 0.003 forntot = 1.7, 1.6, 1.5, 1.4, and 1.3, respe
tively. The data in Fig. 2 show thata small in
rease of the Curie 
onstant 
an lead to a large redu
tion in Tv.
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DMFT Solution of the Fali
ov�Kimball Model : : : 941The DC resistivity and the thermopower obtained for the same param-eters as used in Fig. 1 are shown in Figs. 3 and 4, respe
tively. The re-sistivity is de�ned in units of �0 = hDaD�2=e2�2 (whi
h is ill-de�ned inin�nite dimensions but is approximately 2:3 � 10�4
-
m in D = 3 witha � 3� 10�8 
m). The thermopower is plotted in units kB=jej ' 86 �V/kB.The resistivity and the thermopower exhibit a broad maximum whi
h is re-lated to a pseudo-gap in the 
ondu
tion ele
tron density of states (DOS).That is, at low temperatures, the 
hemi
al potential is 
lose to the 
enterof the 
ondu
tion band, where the DOS is large, and the system is a goodmetal. As the temperature in
reases � shifts into the pseudo-gap region [12℄and the resistivity and the thermopower in
rease. At very high temperatures� is above the pseudo-gap, and the resistivity and the thermopower de
reaseagain. Note, the pseudo-gaps or the gaps we are dis
ussing here are not dueto the details of the band-stru
ture but are the many-body e�e
ts 
aused bylarge 
oupling for any non-intera
ting DOS. The 
hanges in the band �llingthat lead to a huge variation of Tv have only a small e�e
t on the position ofthe maximum in the transport 
oe�
ients. It is interesting to observe thatthe resistivity and the thermopower maxima shift in opposite dire
tions. Forsmall Tv the resistivity shows a steep rise, that follows the rapid in
reaseof Nf7 . Above the maximum, the Fali
ov�Kimball intera
tion leads to aresistivity that has the same shape for all band-�llings. The thermopowerdoes not show any signi�
ant variation around Tv.Finally, we dis
uss the meta-magneti
 transition indu
ed by magneti
�elds. We 
onsider the z-
omponent of the full magnetization of the FKlatti
e, mz(H) = 1ZFKTr
f [e��HFK(H)mzf ℄; (35)where, the tra
e is over all the states of the latti
e. In the DMFT this isequivalent to an e�e
tive atomi
 problem in whi
h the �-�eld mimi
s thelatti
e, mz(H) = 1ZatTr
f [e��Hat(H)S(�)mz℄; (36)where Hat 
ontains the atomi
 Zeeman terms, S(�) is de�ned by Eq. (9)and the tra
e is performed in the basis whi
h diagonalizes simultaneouslyHat at H = 0 and the z-
omponents of the spin operators. We �nd,mz(H) = gd�B[nd"(H)� nd#(H)℄ + Z0(�� U)Zat 
7=2 7=2X�=�7=2 �e��(E7=2� (H)��)+Z0(�)Zat 8<:
1 1X�=�1 �e��E(1)� (H) + 
3 2X�=�2 �e��E(2)� (H)9=; ; (37)



942 V. Zlati¢, J. Freeri
kswhere the �rst term des
ribes the response of the 
ondu
tion band, these
ond term des
ribes the 
ontribution due to Eu2+ ions, and the last twoterms des
ribe the 
ontribution due to Eu3+ ions. The partition fun
tionZ0(�) in
ludes the Zeeman energy of the 
ondu
tion ele
trons, E(S)� (H) isthe �eld-dependent eigenvalue of an isolated Eu-ion, � 2 (�S; S) is the spinlabel, and 
S = gfS�B. Introdu
ing the �eld-dependent magnetizations ofisolated Eu-ions, mzS(H) = 
SP� � exp[��E(S)� (H)℄=Zf we �ndmzEu(H) = Nf6 f
1B1(
1H�) + 3
3B3(3
3H�)g+Nf7 7
7=22 B7=2�72
7=2H�� ; (38)where BS(x) is the Brillouin fun
tion.The Fali
ov�Kimball intera
tion between an additional ele
tron of thef7 
on�guration and the 
ondu
tion band gives rise to a temperature and�eld dependen
e of the o

upation numbers Nf6 and Nf7 and modi�es thesingle-ion response. For U = 0, the slope of mzEu(H) de
reases monotoni-
ally from the zero-�eld value and mzEu(H) approa
hes the high-�eld limitin a typi
al paramagneti
 fashion. For U 6= 0 and T � Tv, we still �nd that� mzEu(H)=�H has a maximum at H = 0 and mzEu(H) saturates as in theU = 0 
ase. Below Tv, however, � mzEu(H)=�H is a non-monotoni
 fun
tionwhi
h starts from zero at H = 0 and in
reases up to H
. Above H � H
 theslope starts de
reasing and the magnetization approa
hes the high-�eld limitin the usual way. At the 
riti
al �eld �2mzEu(H)=�H2 
hanges sign and the3rd order sus
eptibility �3mzEu(H)=�H3 might diverge. The 
riti
al temper-ature above whi
h the linear sus
eptibility limH!0 � mzEu(H)=�H be
omesnon-zero and the 
riti
al �eld at whi
h limT!0 �2mzEu(H)=�H2 
hanges signare about the same. The valen
e-
hange transition and the meta-magneti
transition are 
oupled together be
ause the �eld brings the renormalizedf -level 
loser to the 
hemi
al potential, enhan
es the thermal o

upationof the f -states, and in
reases the magneti
 entropy. At the transition, theenergy loss due to the additional population of the f -states, and the entropyloss due to the redu
tion of the 
ondu
tion ele
trons, are balan
ed by themagneti
 entropy of the additional f -states.In summary, the DMFT solution of the Fali
ov�Kimball model explainsthe qualitative features of the valen
e-
hange and the meta-magneti
 transi-tion in Eu-based intermetalli
 
ompounds. However, the model parametersand the absolute value of the temperature s
ale 
an not be uniquely deter-mined from the stati
 response fun
tions and a quantitative analysis shouldalso 
ompare the dynami
al properties of the model with the experimentaldata [12℄.
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