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Dynamical mean field theory is used to solve the Falicov—Kimball model
in the case where the f-ions have an internal structure. The solution pro-
vides a qualitative description of the properties of Eu-based intermetallic
compounds which show anomalies due to a valence-change transition.

PACS numbers: 71.10.—w, 71.30.+h, 72.10.-d

1. Introduction and definition of the model

Experimental studies [1-5] of a number of Eu intermetallic compounds,
like Eu(Pd;_,Pt;)2Sis and EuNiy(Siy_,Gey ), show that the valence state of
Eu ions can change abruptly from Eu?* (f7) to Eu?t (f7) as the temperature
or the magnetic field is varied. The transition takes place at ambient pressure
above 50 K, and the state of the system appears to be completely different
above and below T5. In the low-temperature phase the physical properties
are nearly temperature-independent. Here, the Eu ions are non-magnetic
and the conduction band is a Fermi liquid (FL) with a large characteristic FL
scale T* > Ty. A magnetic field of about H. ~ kpTy/up Tesla destabilizes
the FL ground state and induces a transition into a paramagnetic (f7) state.
Similarly, at a temperature 73 there is a zero field transition into a semi-
metallic state. For T" > Ty, or H > H., the Eu ions behave as ’almost
free spins’ and the linear and non-linear magnetic response is well explained
by the single-ion theory which assumes that Eu?* is a pure spin-7/2 state,
and that EuT has a non-magnetic ground state and two excited magnetic
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states. The high electrical resistance of these compounds above T, is difficult
to associate with exchange scattering, because the logarithmic terms are
absent and fields up to 40 Tesla have very little effect. Thus, above Ty, or
H > H_, it seems that we are dealing with magnetic Eu?* ions embedded
into a bad metal with the chemical potential in a pseudo-gap or a small gap.
The thermopower of EuNiy(Siy_,Ge,)s [6] has a positive hump, indicating
electron-like transport.

A qualitative description of these effects is provided by the Falicov—
Kimball (FK) model [7] which takes into account the interaction between a
2-fold degenerate conduction band and a lattice of Eu ions with an internal
structure. The Eu?* ion is modeled by a spin S = 7/2 Hund’s rule state,
while the Eu®t ion is described by a S = 0 Hund’s rule ground state and two
excited states (an excited triplet state at energy E°=! and an excited quintet
at £9=2). All other excited states of the Eu ions are neglected. The f-states
are localized and neither the number of Eu3* and Eu? ions nor the internal
state of an ion can change, except by thermodynamic fluctuations, i.e. the
quantum mechanical fluctuations of the f-states are neglected. The conduc-
tion electrons can hop between nearest-neighbor sites on the D-dimensional
lattice, with a hopping matrix —%;; = —t*/2\/5; we choose a scaling of the
hopping matrix that yields a nontrivial limit in infinite-dimensions [8]. Fi-
nally, we assume that the additional electron of the f7 configuration gives
rise to a Coulomb interaction U between the d- and f-electrons that occupy
the same lattice site. Thus, the Falicov-Kimball model for the lattice Eu
ions is defined by the Hamiltonian [9, 10]

Hix = Hy+Ha g+ Hyr + Hyo, (1)
where
My =Y (~ty — pdij)dl,djo (2)
ij,0
Hyr = S (B2 = w)f] fin. (3)
4,7
Hiop = U dldigf] fin, (4)
1,01
and
Hpo = Y (1—nl)H; . (5)

)

The conduction electrons are created or destroyed at site 7 by d;-rg or d;,,
and localized electrons are created or destroyed at site ¢ by Z-Tn or fin. We

use o to denote the spin of the d-electrons, and 7 for the f7 states. The f”
Hund’s rule state is represented by a single fermion with an infinite mass
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and spin 7/2. The d- and f "_number operators at each site are ng = Yo Ndor
and ngpr = Zn ng, < 1, Since the Eu ions can only assume the Eu*' or

the Eu?* configurations, a chemical potential ; is employed to conserve the
total number of electrons ng + nf7 = ngot- The term Hye describes the
multiplets of Eu3T ions (the non-magnetic ground state, an excited triplet,
and an excited quintet) and it vanishes at sites occupied by Eu?*. These
states do not couple directly to other states and do not contribute to the
dynamics of the system but have to be taken into account when calculating
the partition function or the magnetization. The numerical calculations are
performed for a hypercubic lattice with a Gaussian noninteracting density
of states p(e) = exp[—e?/t*%]/(\/nt*); and t* is taken as the unit of energy
(t* = 1). We consider only the homogeneous phase, where all quantities
are translationally invariant. In the presence of a magnetic field the mag-
netic degeneracy is lifted and for the field oriented along the z-direction, the
Hamiltonian (1) is supplemented by a Zeeman term. Using the basis that
diagonalizes simultaneously the single-ion Hamiltonian in zero field and the
z-component of the spin operator, we have

Hy = ngBHZUdejg + g;/QMBHanZTnfm
i0 n
+g{ppH > - )6+ g H > - n%r)és (6)
61 €3

where g4 and gf; are the g-factors, o is the spin label of the d-electron, and
n, & and &3 are the spin labels of the f7-octet, fS-triplet and f8-quintet,
respectively.

2. Exact solution in infinite dimensions

The DMFT of an infinite-coordination lattice is based on the observation
that the self energy of the conduction electrons is local [8] and is a functional
of the local Green’s function only. Hence, as noted by Brandt and Mielsch [9],
the lattice self energy of the FK model coincides with the self energy of an
atomic d-state coupled to an atomic f-state by the same Coulomb interaction
as on the lattice, and perturbed by an external time-dependent field, \(7, 7').
The lattice problem reduces to finding the Green’s functions of the FK atom
in the presence of an arbitrary external field and, then, choosing the field in
such a way that the local d-electron Green’s function of the lattice coincides
with the Green’s function of the atomic d-state, G{ .(z) = G%(z), and the

loc
local f-electron propagator coincides with the atomic f-state propagator,

ioc(2) = Fi ().
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The atomic problem is solved by using the functional derivative technique
of Kadanoff and Baym [11]. That is, the atomic partition function Z,;(A) is
written as a functional of an external field A and the functional derivatives
are used to generate G% (z) and FZ(z). The equations of motion (EOM)
are used to determine integral operators G, and F, for a given A-field, and
the partition function is obtained from the inverse of the Green’s function
a5 Z,i(\) = det [[GZ,] .

The generating functional (the partition function of the FK atom) is
defined in the interaction representation as,

Zat (Ma >‘) = ’I‘rdf [TTeiﬁHatS(A)} ’ (7)
where the Hamiltonian of the FK atom,

Har = —p Y dide+(Ep—p) Y fifa+ U dideflfo+(1—np)H5, (8)
o i an

defines the time evolution of the operators, and the external field defines the
time-evolution operator for the state vectors,

B B
S(\) =Trexp | — / dr / dr' Y X (7, 7)dh (1)ds (1) | - (9)
0 0 o

The term H* describes the excited states within the non-magnetic f% config-
uration. In the presence of the magnetic field, we add to (8) the Zeeman term
that is obtained from (6) in an obvious way. The statistical sum runs over all
possible f- and d-configurations and depends on A7 (7, 7') for 7,7’ € (0, 3).
We assume that A\7(7,7') is time-translation invariant and anti-periodic in
imaginary time. The unperturbed atomic Hamiltonian (8) conserves the
number of f- and d-electrons, and the evolution operator gives rise only to
fluctuations in the d-occupancy. Thus, the f-occupancy (the number of f7
ions) is a constant of motion and the Hilbert space can be decomposed into
invariant subspaces with respect to n7. The matrix elements in (7) can

be evaluated within each invariant subspaces by replacing Zn f; fn by its
eigenvalue (0 or 1), which gives,

Zat (s N) = Z0 Z0(1, ) + 21 Z0(n — U, N . (10)

Here, Zy(u, A) is the partition function of a simplified d-state decoupled from
(1)
the f-state and coupled only to the A-field, and Zp = 1 + Zg e Pl 4

_gE® (7/2) .. .
Zg e PP and Zpr = Zn e PEn""" are the partition functions of f¢ and f7
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ions decoupled from the lattice. In the presence of the magnetic field, &£ and
n label the Zeeman levels of f¢ and f” ions, respectively. We have, in the
interaction representation,

ZO(/%)‘) = Hzg(/%)‘)a (11)
where
28 (1 A) = Trg [T #65(, 1) (12)
and
Mo = —p Y _did,. (13)

The factorization (11) holds because the time evolution due to Hg is such
that the operators with different o-labels commute regardless of their time
arguments, and the S-matrix (9) does not change the o-label of a given
state vector. Thus, the Hilbert space can be decomposed into invariant
o-subspaces and the trace in (12) is over each non-degenerate d,-state.

To find the functional derivatives of Z§(u, A7) we shift the A-field from
an initial configuration A’ (7, 7’) to a final configuration A7 (7, 7")+ A% (7, 7'),
find the variation 6 S(u, A?) due to 6 A%, and obtain,

B B

dInZf = /dT/dT'd)\U(T,T')Gg(T',T). (14)
0 0

The functional derivative is, by definition, the coefficient of §\7 (7, 7'),

0lnZ§
o ! 0
=———— 1
GO(T7T ) 5}\0(7'/,7')’ ( 5)
and is given by the expression,
1
G (r,7') = = Trg {Toe 0d, ()} ()1, 2}, (16)
24

which is the d-electron propagator for the U = 0, A # 0 problem. The
derivative with respect to 7 gives the EOM for G§(r,7'),

(- +u) 637 - [arNtn "GRG ) =0 =), (1D
:
0

where the §-function arises from the discontinuity in Gy at 7 = 7/. The first
order differential equation (17), supplemented by the boundary condition
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Gi(r,7") = G§(r + B,7') has a unique solution. The inverse of [G]] is a
differential operator, which can be written as,

G817 () = (1 (r7) = A7 (), {0
where,
957777 = (= 52 +) 8t =), (19

is the inverse of the Green’s function for the U = 0 and A = 0 problem. By
definition,

1
o (1,7") = =Ty ( Tre Mo d, (7)d} (7' 20
o (1, 7) = = g T (Tee P (D)) (20

where
Z(()T(M, A=0)=1+ eﬂM, (21)

is the partition function of a d-electron described by Hg. Using d,(7) =
dy(0) exp(pu7) we find,
goo(T—7) = —(1 = fo)e"T=7), for T > 7

goo(T—7) = fo eu(rfr')’ for <7, (22)

where fo = 1/(1 + e=P#) is the thermal occupation factor.

Next, we notice that the A-field is completely arbitrary and the same
functional derivative is obtained if the A-field is shifted with respect to some
constant field. In other words, the variation of In Z§(x, A) is not changed if
X (7', 7) is redefined as A7 (7', 7) — [go] "' (7', 7) and we take A7 = (A7 —
[90] 1) = —6[G§]~ . This gives,

8
o 1n 2 (s ) = | dr(GF 31651 )7 7) (23)
0
and, since GY is the inverse of [G§]~1,

B
6 InZ5 (1, \) = /dns In{[G3]~"}(r, 7). (24)
0

Thus, § In Z§ follows from the variation of Tr In{[G§]~'} and, up to an
arbitrary constant, we have

In Z§ (1, A) = Tr In{[GF] ™"} (25)
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The matrix identity Tr In A = Indet A allow us to write the partition func-
tion as a continuous determinant,

Z§ (s A) = det |[GF] 7] (26)
or, equivalently,
2§ (1, A) = det|gy, | det|1 = gos A7), (27)

where det |gg.'| = Z§(u,A = 0). This provides the solution for the FK
atom with no f particles. The partition function in the n;z = 1 subspace
is obtained from the ny7 = 0 solution simply by replacing u by p — U in
Z8 (ps A).

The fully renormalized Green’s function of the FK atom describes the
renormalization effects due to the Coulomb interaction and is given by

1

GO (1,7") = ————Trge { Tre PMarg (7)di (7)S(N) ). 28
(7)== gy Ty (Tre Py (AL S )) . (28)

GY, is obtained from Z,; by functional differentiation,

1 024 (p, N
Go(r,7') = — 2 29
) = = o) 3 () (29)

where Zj; is given by Eq. (10). Using (15) we find

th(T,TI) :Nfﬁ GS(T—TI)+Nf7G8(T—TI)|“,U, (30)

where Nyo = Zpe Zo(pt, N)/ Zat, Ny7 = Zp120(n — U, N)/ Zat, and where we
indicated that the chemical potential in the second term is to be shifted by
U. The weights Nyo and N7 give the average number of Eu?" and Eu®*
ions, respectively. Since G§ is the Green’s function of the U = 0 problem,
we can define the self-energy as,

27 =1Gg1 T - 1Ga] (31)

The matrix elements of [G]™L, [GZ]™!, ¥° and A7 depend on the time
difference only and satisfy the imaginary-time boundary condition f(0) =
—f(—p). Thus, they can all be expressed in terms of Fourier components as,
f(r=71) =T, fae ™ (=7) where w, = (2n 4 1)7/f is the Matsubara
frequency. The Matsubara representation reduces the EOM to a set of de-
coupled algebraic equations for the diagonal components of G, in (discrete)
frequency space,

Nf6 Nf7

Gaalien) = (G G iwn) U

(32)



938 V. ZLATIC, J. FREERICKS

where [G§] 7L (iwy) = [9§]  (iwn) — A9 and [g§] ! (iwn) = iwy + pousgqH,

and we included the magnetic field. Since A7, [g§](iwy) and [g§] ! (iw,) are

diagonal matrices, the U = 0 partition function is an infinite product,

)\(T
: n ) (33)
iwn + e+ ousgaH

2(u) = @+ [ (1-

n

and the full partition function follows from Eq. (10).

The numerical solution on the imaginary axis is obtained by solving (31),
(32), and (33) together with the self-consistency condition, G () = G7..(2),
which can be written as,

o p(e)
u(2) = / z+p+oppgeH — X°(2) — sdg’ (34)

where z is a complex variable. For an appropriate A-field the functional
dependence of X7 on G, (z) is exactly the same as in the lattice case, i.e.,
the DMFT replaces the lattice problem by a local time-dependent field and
provides exact results for the lattice model [10,12]. Furthermore, once the
numbers Nye and N7 are obtained (for a given choice of parameters) by
performing iterations on the imaginary axis, we can iterate (31), (32) and
(34) on the real axis and find the retarded quantities. In infinite dimensions
the vertex corrections to transport coefficients disappear and the electrical
resistivity and the thermopower of the FK-model can be obtained from the
d-electron’s Green’s function [13]. Note, because of the infinite-dimensional
scaling of the hopping matrix elements, the electrical conductivity is of the
order of 1/D, where D is the dimensionality of the lattice. In what follows,
use the DMFT to calculate the thermodynamic and transport properties of
the model.

3. Results and discussion

The temperature dependence of the average occupation of magnetic Eu?*
ions is defined by Ny and is shown in Fig. 1 for Ey = —0.6, for U = 2,
and for several band-fillings. We consider a conduction band that is more
than half-filled at T' = 0; the less than half-filled case is obtained by an
electron—hole transformation. For U = 2 there is a small gap (pseudo-gap)
in the conduction band of the hypercubic lattice. The main feature of the
Ny curves is the cross-over from a low-temperature state in which there are
no Eu®* ions into a high-temperature state with a substantial occupation of
magnetic Eu?t ions. The effect of the excited states of Eu** on the average
occupation of Eu?t is small, at low temperatures, while the effect of the
band-filling is pronounced. The transition sharpens as the total number
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of electrons is reduced and the conduction band approaches half-filling at
T = 0. Similar behavior (a sharpening of the transition and a reduction
of the transition temperature) is obtained if we shift the f7-state closer
to the chemical potential, so as to increase the average high-temperature
occupation of the Eu?* ions [12]. If we assume that pressure or chemical
pressure reduce the average Eu?T occupation, we find the same qualitative
features as in the experimental data [2-5|. The temperature dependence of

06 /" ]
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m I
B [
c [
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0 0.1 0.2

Temperature T [t*]

Fig. 1. Temperature dependence of the concentration of magnetic Eu®* ions for the
FK model with U = 2, E(7/2) = —0.6, EV) = 0.3, E® = 0.6, and for ni; = 1.3
(long-dashed line), 1.4 (dashed), 1.5 (solid), 1.6 (dotted), and 1.7 (chain-dotted).
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Fig.2. Temperature dependence of the magnetic susceptibility of Eu ions for the
FK model for the same parameters as in Fig. 1.
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the linear magnetic susceptibility x s(T) of the Eu ions is shown in Fig. 2 for
the same parameters as in Fig. 1. The contribution due to the conduction
band has been subtracted and the Eu-contribution is well described by the
Curie law, x(T) oc Ny7/T. The transition is seen more clearly in x (7
than in N7, and if we define T, as the temperature at which x () is half
the maximum value we find, T, = 0.015, 0.009, 0.006, 0.004, and 0.003 for
oy = 1.7, 1.6, 1.5, 1.4, and 1.3, respectively. The data in Fig. 2 show that
a small increase of the Curie constant can lead to a large reduction in T5.

Poc(M)/P,

Temperature T[t*]

Fig. 3. DC resistivity for the FK model for the same parameters as in Fig. 1.

15 ¢

) [kyflel]

0 0.1 0.2
Temperature T[t]

Fig.4. Thermopower of the FK model for the same parameters as in Fig. 1.
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The DC resistivity and the thermopower obtained for the same param-
eters as used in Fig. 1 are shown in Figs. 3 and 4, respectively. The re-
sistivity is defined in units of pg = hDa”~2/e?n? (which is ill-defined in
infinite dimensions but is approximately 2.3 x 107%Q-cm in D = 3 with
a =3 x 1078 cm). The thermopower is plotted in units kg/|e| ~ 86 uV /kg.
The resistivity and the thermopower exhibit a broad maximum which is re-
lated to a pseudo-gap in the conduction electron density of states (DOS).
That is, at low temperatures, the chemical potential is close to the center
of the conduction band, where the DOS is large, and the system is a good
metal. As the temperature increases p shifts into the pseudo-gap region [12]
and the resistivity and the thermopower increase. At very high temperatures
1 is above the pseudo-gap, and the resistivity and the thermopower decrease
again. Note, the pseudo-gaps or the gaps we are discussing here are not due
to the details of the band-structure but are the many-body effects caused by
large coupling for any non-interacting DOS. The changes in the band filling
that lead to a huge variation of T3, have only a small effect on the position of
the maximum in the transport coefficients. It is interesting to observe that
the resistivity and the thermopower maxima shift in opposite directions. For
small T, the resistivity shows a steep rise, that follows the rapid increase
of Ny7. Above the maximum, the Falicov—Kimball interaction leads to a
resistivity that has the same shape for all band-fillings. The thermopower
does not show any significant variation around Tv.

Finally, we discuss the meta-magnetic transition induced by magnetic
fields. We consider the z-component of the full magnetization of the FK
lattice,

1

FK
where, the trace is over all the states of the lattice. In the DMFT this is
equivalent to an effective atomic problem in which the A-field mimics the
lattice,

m*(H) =

Tre [e—ﬂHFﬂH)m;], (35)

m*(H) = —Trople”#= ) g(X\)ym?), (36)

where H,¢ contains the atomic Zeeman terms, S()A) is defined by Eq. (9)
and the trace is performed in the basis which diagonalizes simultaneously
H.t at H =0 and the z-components of the spin operators. We find,

Zo(u—U) 2 "2
m*(H) = gaps[nat(H) — nq (H)] + %77/2 > me BEH) )
at —
1 2
Z _ap® 4p®
L 2ol m S eI oy S gt | (37)

Zat £=—1 £=—2
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where the first term describes the response of the conduction band, the
second term describes the contribution due to Eu?t ions, and the last two
terms describe the contribution due to Eu?* ions. The partition function
Zo(p) includes the Zeeman energy of the conduction electrons, E'7(75) (H) is
the field-dependent eigenvalue of an isolated Eu-ion, n € (=S, S) is the spin

label, and yg = gf;,uB. Introducing the field-dependent magnetizations of

isolated Eu-ions, m§(H) = vs )_, nexp[—BEgs) (H)]/Zs we find

mpy(H) = N {v1B1(v1HP) + 373 B3(3vsHP) }

7y

7 7
+Ny 2/2 Bz/s <§’Y7/2Hﬁ> ; (38)

where Bg(z) is the Brillouin function.

The Falicov-Kimball interaction between an additional electron of the
f7 configuration and the conduction band gives rise to a temperature and
field dependence of the occupation numbers Nys and Ny7 and modifies the
single-ion response. For U = 0, the slope of mf, (H) decreases monotoni-
cally from the zero-field value and mf,, (H) approaches the high-field limit
in a typical paramagnetic fashion. For U # 0 and T > Ty, we still find that
omf,, (H)/OH has a maximum at H = 0 and mf, (H) saturates as in the
U = 0 case. Below Ty, however, 0 mf, (H)/OH is a non-monotonic function
which starts from zero at H = 0 and increases up to H.. Above H > H the
slope starts decreasing and the magnetization approaches the high-field limit
in the usual way. At the critical field 9> m%, (H)/9H? changes sign and the
3rd order susceptibility 0° m%, (H)/OH? might diverge. The critical temper-
ature above which the linear susceptibility limg_,0 9 mf, (H)/OH becomes
non-zero and the critical field at which limy_,0 8% m%, (H)/OH? changes sign
are about the same. The valence-change transition and the meta-magnetic
transition are coupled together because the field brings the renormalized
f-level closer to the chemical potential, enhances the thermal occupation
of the f-states, and increases the magnetic entropy. At the transition, the
energy loss due to the additional population of the f-states, and the entropy
loss due to the reduction of the conduction electrons, are balanced by the
magnetic entropy of the additional f-states.

In summary, the DMFT solution of the Falicov—Kimball model explains
the qualitative features of the valence-change and the meta-magnetic transi-
tion in Eu-based intermetallic compounds. However, the model parameters
and the absolute value of the temperature scale can not be uniquely deter-
mined from the static response functions and a quantitative analysis should

also compare the dynamical properties of the model with the experimental
data [12].
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