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Fusion—fission dynamics is investigated with a special emphasis on fu-
sion reactions at low energy for which shell effects and pairing correlations
can play a crucial role leading in particular to multi-modal fission. To fol-
low the dynamical evolution of an excited and rotating nucleus we solve
a 2-dimensional Langevin equation taking explicitly light-particle evapora-
tion into account. The confrontation theory-experiment is demonstrated
to give interesting information on the model presented, its qualities as well
as its shortcomings.
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1. Introduction

The description of the dynamical evolution of a compound nucleus along
its way to fission, ¢.e. from its rather compact ground-state shape to its scis-
sion configuration, represents an intricate problem. Many ingredients enter
into the description of such a process, starting from a sufficiently precise ac-
count of the formation of the compound system, to the determination of the
multi-dimensional energy landscape, to the coupling between the collective
dynamics and the intrinsic degrees of freedom of the nucleus, to the concept
used to describe light-particle evaporation which can occur all along the fis-
sion path. As a general microscopic treatment is completely out of scope,
different theoretical approaches based on a more or less classical picture [1-6]
have been proposed.

We have developed a model describing the time evolution of a highly
excited rotating nucleus and its subsequent decay through symmetric fission
with pre-fission light-particle emission [5]. The aim of the present paper is
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to extend our theory to lower energy. Through a comparison with the avail-
able experimental data, in particular fission-fragment mass distributions and
neutron pre-scission multiplicities, we hope to get some valuable information
on the behavior of transport coefficients at low energy.

2. Evolution of an excited rotating nucleus towards fission

To study the time evolution of an excited rotating nucleus, the system
is assumed to follow a stochastic Langevin equation of motion [7] of one or
several collective variables that describe in an appropriate and sufficiently
flexible way the deformation of the nucleus along its path to fission .

2.1. Description of nuclear shapes

To describe the large variety of deformed shapes that can appear in the
fission process, the Trentalange-Koonin-Sierk (TKS) nuclear shape para-
metrization [8] is used. In the case of an axially symmetric system the
nuclear surface is given by

_-300 20
(1)
with 2z the elongation of the shape in z direction, z its geometrical center
and Ry the radius of the corresponding spherical nucleus. The deformation
parameters «y define the shape.
This parametrization is strongly related to the well known Funny Hills
{¢, h, a} parametrization [9] recalled below :

A _ A _
Z—2Z 2R Z—2Z
p2(z) = R3 OéePz< o )=R3§ P (u), 2="—, u=
=0 =0

_ (1—u?)(A+au+ Bu?), B >0
p; (2) —C2R(2){ (1 —u?) (A+au)exp(BPu?), B<0 @

with zg = ¢ Ry and where A and B are related to ¢ and h through
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We have tested the convergence of these parametrizations for the des-
cription of symmetric fission-barrier heights and compared it to the results
obtained using the expansion of the nuclear surface in spherical harmonics.
The agreement with experiment was better with the TKS parametriza-
tion using 3 parameters as, a4, ag than with the later including defor-
mation parameters up to fi14, thus showing the fast convergence of the TKS
parametrization.
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2.2. Fisston dynamics and Langevin equation

Fission dynamics is investigated through the resolution of the Langevin
equation which for the generalized coordinates ¢; is given by

dgi
dt _Z q_)Z]p]7
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Jsk ! t ik

(3)

where p; are the canonical momenta associated with the coordinates g;.
[M(q)] represents the tensor of inertia determined in our approach in the
irrotational incompressible fluid approximation of Werner—Wheeler as deve-
loped by Davies, Sierk and Nix [10] and [y(q)] corresponds to the friction
tensor calculated in the framework of the so-called wall and window friction
model [11,12]. The collective potential V(§) is defined in our approach as the
Helmholtz free energy at given deformation [5,13]. The term Fj(t) stands for
the random Langevin force which couples collective dynamics to the intrinsic
degrees of freedom. We have F;(t)=23_;9i;(q) G,(t) where the strength
tensor [g(¢)] is given by the diffusion tensor [D(q)] through D;=>", gir gji
and G (t) is a stochastic function. In our model it is assumed that diffusion
is related to friction through the Einstein relation [D(q)]=[v(q)] T where T
corresponds to the nuclear temperature [5]. The explicit expressions of these
quantities in the TKS parametrization have been presented and discussed
in details in [13].

The friction model we are using is based on a classical concept valid
at high energy. When going to lower temperatures this picture can only
be considered as an upper limit since nucleon—nucleon collisions become
less and less frequent thus reducing friction [14]. We also know that the
Einstein relation is in principle only valid at high energy [15]. We shall
come back to these approximations in Section 4.5. and show that one has to
modify this simplified description at low temperature to correctly describe
the experimental data.

Another quantity entering the Langevin equation and whose temperature
dependence requires special attention is the potential V(¢) namely because
of the vanishing of quantal effects at high excitation energy. In our approach
valid up to now for symmetric fission, it consisted of a temperature depen-
dent Liquid Drop Model (LDM) term only. At lower energy we have to add
to this macroscopic contribution the shell corrections which are evaluated at
each deformation using the Strutinsky’s approach [16] and the pairing cor-
relations which we calculate in the framework of the BCS model [17] with a
constant pairing strength (seniority scheme) [18].
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The generalized coordinates ¢; which enter the Langevin equation are
either chosen as the deformation parameters generating the nuclear shape
(e.g. coefficients ay) or as more physically relevant quantities (elongation,
mass asymmetry, etc) which are determined through these parameters [13].

Up to now [5,19] we have investigated the case of highly excited com-
pound nuclei giving rise to symmetric fission. Such a process can be des-
cribed approximately by a single collective coordinate characterizing the
nuclear elongation as explained in Ref. [13|. This approach has been proven
quite successful reproducing experimental pre-scission neutron multiplicities
with an accuracy of 10-20% for nuclei ranging from ?°Ba to the region of
superheavy elements [19]. As our aim in the present paper is to investi-
gate systems at lower energy, one has to be able to describe multi-modal
fission caused by the competition between symmetric and asymmetric split-
ting generated by the quantal effects present at low temperature. Dealing
with asymmetric shapes, we need to take at least two collective variables
(e.g. elongation and asymmetry) into account describing the compound nu-
cleus along its deformation process. For this purpose we choose to use the
Funny—Hills parametrization and to restrict ourselves to the 2-dimensional
(¢, ) deformation space imposing h = 0. Indeed, one can show that the
influence of the neck parameter h can be considered as rather small, at least
in the semi-classical limit [20,21].

2.3. Entrance channel effects

In order to solve the Langevin equation of motion one needs to spec-
ify the initial conditions of the trajectory (for reasonable statistics we need
to consider 10* to 10° trajectories) from which the compound system starts
and evolves either through the fission channel or ending up as an evaporation
residue. The initial conditions for gy and gy are fixed to the ground-state
deformation and drawn from a normalized Gaussian distribution respec-
tively [5]. The nuclear systems we have investigated so far were generated
through heavy-ion collisions which can lead to a large variety of the angular
momentum of the synthesized nucleus. The initial spin distribution of the
former is determined in our model by solving a Langevin equation [3] de-
scribing the evolution of the two colliding ions from an infinite distance up
to fusion. The Langevin equation (3) is then solved in order to describe the
dynamical evolution of the synthesized nucleus taking particle emission into
account by coupling the Langevin equation to the Master equations gov-
erning this evaporation process. For each trajectory we start with a given
compound system characterized by its excitation energy and angular mo-
mentum. The final prediction, which can be compared to experiment, is
then determined by weighting the calculations made at given angular mo-
mentum by the fusion-fission cross section [19].
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Fig. 1 shows the fusion and fission cross sections obtained for the system
BGi+9%Mo—126Ba at a total excitation energy of Ejf, = 118.5 MeV. One
notices that fission yields are rather small and located in the tail of the
spin distribution at high values of the angular momentum where fission
barriers are low. A study of the fission-barrier height as function of angular
momentum and thermal excitation energy is given in Fig. 2 from which we
conclude that a careful description of the fusion cross section through its
initial spin distribution is necessary if one wants to describe the competition
between the decay by fission and light-particle evaporation.
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Fig. 1. Differential fusion (solid line) and fission (histogram) cross section for the
reaction 28Si+%8Mo—!2%Ba at E;, = 118.5 MeV.
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Fig.2. Fission barriers for the nucleus '2Ba as function of angular momentum at
fixed total excitation energy (left) and of temperature at fixed angular momentum
(right).
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3. Light-particle emission

Fission dynamics of an excited rotating nucleus usually goes along with
the emission of light particles (we will consider neutrons, protons and « parti-
cles). This evaporation process is governed by the emission width '} (E*, L)
for emitting a particle of type v, energy ¢, and angular momentum ¢,; from
a nucleus characterized by its thermal excitation energy E* and its rota-
tional angular momentum L. In order to determine I'}"(E*, L) we use two
different prescriptions.

In Weisskopf’s evaporation theory [22] the decay rates are essentially
evaluated through the level densities of the mother and the daughter nuclei
and the transmission coefficient for emitting the particle from a given point of
the nuclear surface into a given direction as explained in Ref. [5]. In practice
it is not possible to discuss the values of the emission width for each energy,
angular momentum and position of the emission point on the nuclear surface.
We therefore use them to determine the probability I',(E*, L) of emitting
a given particle from a given nucleus at given deformation. This simplified
procedure calculates a transmission coefficient obtained by an averaging over
the different emission directions and over the whole surface of the deformed
nucleus. A detailed description of this procedure can be found in Ref. [5].
Also other groups [2,4,6] have delt with particle emission in connection with
fission dynamics but, to our knowledge, none of them has taken nuclear
deformation explicitly into account as we have, even if it is in an approximate
way. In Fig. 3 the evaporation rate I, is displayed for a hot rotating nucleus
160y, Tt becomes obvious that the deformation dependence of I, is essential
and that assuming a deformation independent emission width could probably
lead to wrong predictions.
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Fig.3. Emission widths for neutrons, protons and « particles emitted from the
system 190Yb (E* = 50 MeV, L = 40h) as a function of elongation.
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The second approach we used so far to describe particle emission calcu-
lates the transition rates I} through the probability that a particle which
impinges on the nuclear surface at a given point 7y’ and with a given veloc-
ity 7%’ is actually transmitted [23]. In this framework the quantity I'}" is

determined as
d?n,

' = ——Ae AL . 4

VT depdly, )

The number n, of particles of type v which are emitted per time unit
through the surface S of the fissioning nucleus is given by

ny = / do / B (75 (7o) w (o, (7))

S

where the quantity f,(7',p’) corresponds to the quasi-classical phase-space
distribution function [23].

Fig. 4 gives a comparison of the neutron and proton emission rates
in the two evaporation models obtained for different values of a collec-
tive coordinate ¢ related to nuclear elongation [13] for the system '8Pt
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Fig.4. Emission rates I, and I}, for neutrons and protons obtained in the Weis-
skopf and the distribution function (called Thomas—Fermi here) approaches at de-
formations close to the spherical shape (¢ = 0.73) and to the scission configuration
(¢ =2.01).
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(E* = 100 MeV, L=0Ax) [24]. Both models yield emission rates that are
reasonably close for both types of particles for all elongations except for an
increase of the distribution function approach relative to the Weisskopf pre-
diction in the case of protons for very large deformations. One should also
notice the deformation dependence of the proton emission width I, that can
be easily understood if one keeps in mind that the Coulomb barrier which
charged particles have to overcome depends on the direction of the emission
(an emission along the tips is favored compared to an emission perpendicular
to the symmetry axis).

The determination of the phase-space distribution function is quite in-
tricate in the case of a-particles which are composite particles. We are
presently working on a model which determines the a-particle distribution
function f, through those of two correlated protons and neutrons respec-
tively [24].

4. Theoretical results of fission dynamics

4.1. Influence of quantal effects

4.1.1. One- versus 2-dimensional Langevin equation

In the framework of the 2-dimensional Langevin equation solved in the
(¢, ) deformation space, the LDM energy landscape is displayed on Fig. 5
together with a typical fission trajectory for the compound nucleus ?>"Pa
at a total excitation energy of E},, = 26 MeV and an angular momen-
tum of L = 60A. We choose this specific nuclear system because it was
the object of a recent experimental campaign [21]. As no shell effects are
taken into account here, only the symmetric fission valley is present. Con-
sequently the compound nucleus starting from its ground-state deformation
(¢=1.11,«=0), naturally ends up in the symmetric fission channel. In this
calculation we have not coupled particle emission to the Langevin equation
and therefore cannot make any statement on particle multiplicities. The fis-
sion time, defined as the average time which a trajectory takes to reach the
scission point, is in the present 2-dimensional treatment reduced by about
7% (5.96 10717 sec versus 6.36 1077 sec) as compared to its 1-dimensional
value [20].

Let us try to understand this result since it might seem astonishing that
resolving the 2-dimensional Langevin equation, where trajectories can fill
out more effectively the deformation space (as it is demonstrated with the
typical trajectory drawn on Fig. 5), would lead to shorter fission times than
when the compound nucleus follows the deepest symmetric fission valley of
the 1-dimensional picture. In fact we have to think of the Langevin equation
as an approximation to the Fokker—Planck one which deals with probability
distributions. In an 1-dimensional space the system is constrained whereas,
the more the dimensionality is increased, the less constraints one has.
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Fig.5. Temperature dependent LDM energy landscape and typical fission trajec-
tory for the compound system 2?"Pa (E},, = 26 MeV, L = 60h).
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This result on fission times seems also to indicate that in the case of
highly excited nuclei our previous 1-dimensional description was already
fairly accurate. The small change in times should indeed imply a rather
small change in pre-fission particle multiplicities.

4.1.2. Influence of shell effects and pairing correlations

Let us now go one step further by including in our potential energy
calculation quantal effects and their dependence on temperature. It is ge-
nerally admitted that shell corrections have disappeared for temperatures
above 2.5 to 3 MeV whereas pairing correlations have already vanished at
T =~ 1.5 MeV or even before. In order to take care of the T-dependence of
quantal corrections we multiply their values obtained at T'=0 MeV with a
temperature smoothing function which goes to zero at T=3 MeV for shell
corrections and at T'=1.5 MeV in the case of pairing [25-28]. The energy
landscape then obtained for Ef =26 MeV and L=60% is drawn on Fig. 6.
Comparing the landscapes in Figs 5 and 6, one notices the appearance, due
to the presence of microscopic corrections, of asymmetric fission channels
beyond ¢ = 1.7 ending up in well pronounced valleys around « =~ £0.035.
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Fig.6. Same as Fig. 5 but with inclusion of quantal effects.
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The resolution of the Langevin equation in the landscapes of Figs 5 and
6 gives rise to the distributions for the asymmetry parameter and fission-
fragment masses presented in Figs 7 and 8 respectively. Whereas symmetric
distributions were obviously expected for the pure LDM landscape, the dis-
tributions obtained in the case where quantal effects are present are a little
surprising, because of their very strong asymmetry in spite of the rather flat
energy landscape of Fig. 6 in the asymmetry direction « for large elongations
(c = 2.0). However one should not forget that the fragment mass distribu-
tion is decided all along the fission path and not only in the immediate
neighborhood of the exit point [29-31]. As the asymmetric valley is around
1 MeV deeper than the symmetric fission path in the vicinity of ¢ = 1.8-1.9
where a &~ £0.035, the predominant part of the trajectories finally ends up
in this asymmetric channel.

It is interesting to notice that the average fission time is increased from
8.0 107! sec to 16.2 10~!7 sec when going from the LDM picture to the one
with shell and pairing corrections.

In the LDM landscape the symmetric fission barrier at L = 60 MeV is of
the order of 0.7 MeV. On the other hand when quantal effects are included,
the asymmetric fragment partition related to a &~ £0.035 corresponds to a
barrier of 0.1 MeV. One notices that in spite of a lower barrier height when in-
cluding microscopic corrections the corresponding fission time is larger than
in the semi-classical picture. One understands this result if we compare the
typical symmetric trajectory drawn on Fig. 5 to the typical asymmetric tra-
jectory drawn on Fig. 9. In the former case the system cannot overcome the
rather high mountain top at ¢ = 1.55 for @ € [-0.06, 0.06] and consequently
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Fig. 7. Fission-fragment distribution as function of the asymmetry parameter «
(left) and of the fragment mass (right) when quantal effects are omitted.

nb of counts

25

20

15

10 |

5

0

T A Y B
-0.06 -0.04 -0.02

‘O‘

P RPN I (T T
002 004 006 008
o4

o
P

0.09-
0.08"
0.07-
0.06-
0.05-

probability

0.04-
0.03-
0.02-
0.01-
O:

4 e b b by 0 | ’y

8l

90 100 110 120 130 140
mass (amu)

Fig.8. Same as Fig. 7 but with inclusion of quantal effects.

has to bypass it along a =~ 0.1 before reaching the asymmetric valley for
a ~ £0.035. One could say that the path is longer. Let us note that a
small energy difference (of the order of a few hundreds keV) between valleys
can lead to very different fragment distributions what suggests the strong
dependence of the dynamics on the details of the energy landscape. This
drastic sensitivity to the structure of the landscape requires to be careful
when one performs energy calculations in the deformation space.



1662 C. SCHMITT ET AL.

03F
02

01

01

02

03k AL

Fig.9. Same as Fig. 6 with a typical asymmetric fission trajectory.

4.2. Dynamics including light-particle evaporation

Even if we know that particle evaporation is strongly reduced at low
energy we have to admit that we do not have yet a complete description
evaluating the emission widths I', at low temperature since one can seriously
question the validity of the Weisskopf’s theory at such energies and since
our development of the more microscopic phase-space distribution function
approach is not complete. Nevertheless in order to investigate particle eva-
poration, we consider in this section the compound nucleus ?2"Pa at a higher
total excitation energy of 56 MeV for which we believe that the Weisskopf’s
approach should be approximately valid.

In Table I we compare the fission cross section, average fission time
and light-particle multiplicities obtained for the pure LDM description to
the ones related to the potential energy surface including shell and pairing
corrections. As in the case without particle evaporation, one observes an
increase of the fission time when quantal effects are taken into account.
Whereas the neutron pre-scission multiplicity is larger in the calculations
with microscopic corrections, charged particle multiplicities are smaller.
With Fig. 3 we have seen that neutrons can be emitted whatever the nuclear
elongation, i.e. all along the fission path, and that their emission probability
increases with increasing deformation. A longer fission time should there-
fore lead to a larger neutron multiplicity. Charged particles are preferentially
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TABLE 1

Influence of quantal corrections on fission probability, average fission time and light-
particle multiplicities obtained for the system **"Pa (E;, =56 MeV, L=60h).

VLDM VLDM +5E
ofis/Trot (%) 99.8 98.5
Eﬁs(x10*17 sec) | 2.335 3.275
M, 1.806 2.153
M, 0.010 0.006
M, 0.017 0.011

emitted at large deformations (see again Fig. 3). One has, however, to re-
member that when charged particle emission is favored a substantial amount
of the available excitation energy of the emitting nucleus can already have
been carried away through neutron emission. In addition one finds that the
gradient of the potential energy for the asymmetric fission path including
quantal effects is larger between saddle and scission points than the one of
the symmetric valley of the LDM landscape. This suggests that the corre-
sponding time scale for the descent from saddle to scission is smaller in the
case when shell and pairing effects are present what again favors a reduction
of charged particle multiplicities.

4.8. Influence of excitation energy and angular momentum

As shown in Fig. 10 an increase of the total excitation energy of the
system from 26 to 56 MeV (which for a given angular momentum L = 60/
implies an increase of the thermal excitation energy) leads to a larger con-
tribution to the symmetric fission mode. This result is obviously due to the
vanishing of quantal effects when the nuclear temperature increases. How-
ever it can also be partly explained by a larger diffusion generated by the
larger temperature (see Einstein relation). The corresponding larger oscil-
lations thus allow the nucleus to explore more easily the energy landscape
being able to overcome higher barriers and consequently to pass from one
valley to another instead of being trapped preferentially in the deepest valley
(which is asymmetric for the system presently considered). In Ref. [21] we
also investigated the impact of the angular momentum on fission dynamics
and obtained an relative increase of the symmetric fission cross section for
increasing angular momentum due to a decrease of the fission barrier height.
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Fig.10. Fission-fragment mass distributions for two different values of the total
excitation energy of the compound nucleus ??’Pa at an angular momentum of
L = 60h.

4.4. Evaluation of shell corrections close to the scission point

In the framework of the Strutinsky method, shell correction calculations
need to determine nuclear single particle levels which in our approach are the
eigenvectors of a deformed Saxon Woods potential of standard parametriza-
tion [9]. In practice these states are obtained by an expansion in the basis
of a deformed harmonic oscillator. This oscillator basis is an one-center ba-
sis which is probably not so well adapted if one is interested in describing
shapes near the scission point. Indeed, for such strongly elongated and pos-
sibly necked-in surfaces, a two-center basis seems to be more adapted taking
the structure of the nascent fragments better into account. We stress this
technical detail in order to focus on the importance of a careful determina-
tion of shell effects at very large deformations. To illustrate this point we
compare in Fig. 11 the fragment mass distribution obtained when the dy-
namical calculation is artificially stopped at an elongation cgis = 1.8 to the
one obtained when this calculation is carried through up to the geometrical
scission point cgcis = Cgeo Where the splitting into two fragments takes place.
The broad distribution related to cgcis = 1.8 can be easily understood with
Fig. 6 where the quite flat potential landscape in the « direction around
¢ ~ 1.8 can give rise to a large variety of mass partitions. In spite of this,
the final distribution at cgeo is rather strongly asymmetric. Moreover the
value ¢ = 1.8 corresponds to a quite important elongation, i.e. an elonga-
tion for which one can already have a reasonable idea of the asymmetry of
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the nascent fission fragments [31]. The present investigation points out the
importance of quantal effects for ¢ > 1.8 and with it the necessity of their
accurate determination for these largest deformations. To avoid problems
related to the choice of this one-center basis we perform the diagonalization
taking a very large number of basis states into account.

Cscis = 1.8 Cscis = Cgeo
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Fig. 11. Fission-fragment mass distributions obtained for the system >2"Pa (E,, =
56 MeV, L = 60h) for cgeis =1.8 and ¢yeis = Cgeo (s€€ text).

4.5. Temperature dependence of transport coefficients

As mentioned in Section 2.2. we probably overestimate friction at low
temperature. As demonstrated on Fig. 12 the reduction of friction by a factor
of two (0.5 w&w) results in a striking difference as compared to the full wall-
and-window friction (w&w). A larger friction causes a decrease of the kinetic
energy of the system which is therefore more sensitive to the fine structure
of the landscape and consequently is more easily trapped in the deepest
valleys. A smaller friction, on the contrary, allows the system, with larger
kinetic energy, to move more freely through the landscape, to overcome
more easily eventual barriers, resulting in a broader distribution. Reducing
friction by a constant factor is obviously an extremely crude approximation
to a real temperature dependent viscosity. We use this picture here simply
to investigate the influence of friction on fragment distributions and light-
particle multiplicities.

The procedure used in order to simulate in an approximate way the va-
nishing of quantal effects with temperature (see Section 4.1.2) is still nowa-
days subject of controversies, in particular what pairing is concerned [25-28|.
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Our investigations dealing with this point (for details see Ref. [21]) showed
that the T-dependence of shell and pairing corrections cannot be neglected,
even if our system is already in the beginning of its decay at quite low ex-
citation energy, which can still decrease along the fission path (namely due
to particle evaporation).
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Fig. 12. Fission-fragment mass distributions obtained for the system 2*"Pa (E}, =
56 MeV, L=607) with the full (w&w) and a reduced (0.5 w&w) friction (see text).

5. Confrontation with experimental data

As the agreement theory—experiment at high excitation energy is quite
promising [19], we would like to compare in the present section our predic-
tions to the available experimental data concerning the fission process of the
nucleus ?2"Pa synthesized at a total excitation energy of Ej, =26 MeV [21].
In the calculations we should obviously take particle evaporation into ac-
count. Since we do not have for the moment a complete reliable evaporation
theory at our disposal at low temperature we first performed dynamical cal-
culations at higher energy for which we believe that the Weisskopf’s approach
is about reasonable. This study showed us that the influence of particle evap-
oration on the fission fragment mass distribution can be neglected [21]. As
the probability of emitting particles decreases with excitation energy [5], we
also expect a really small impact of evaporation on the mass distribution at
26 MeV. Consequently we compare in Fig. 13 mass distributions obtained
for B}, =26 MeV without taking evaporation into account with the experi-
mental mass distribution. We have considered in the theoretical calculations
three different frictions: 25% of the wall and window value, 20% and 15%.
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The experimental analysis has exhibited a multi-modal fission-fragment
mass distribution [21] composed of three modes: the symmetric one and
two asymmetric modes centered around mass A = 132 corresponding to
the double magic '*2Sn nucleus and around mass A = 140 related to the
deformed '“°Ba nucleus, explained [32,33] by the closure of the deformed
neutron shell N =84. The comparison with our predictions shows that in
the case of a friction corresponding to 15% of the wall-and-window value
the model reproduces quite well the symmetric fission mode. We would like
to mention here that microscopic calculations performed by Hofmann and
Ivanyuk [34] indicate that such a reduced viscosity is about what is to be
expected at such low excitation energy. However our calculation gives only
rise to the asymmetric A=132 channel, the A = 140 mode being absent.
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Fig.13. Experimental (solid line) and theoretical (histograms) fission fragment
mass distributions for the system 2*"Pa (E;,, = 26 MeV) for different values of the

(o)
friction.

In order to understand the disagreement between our model and the ex-
perimental data for asymmetric fission we have to remember that we have
chosen to describe nuclear shapes in the 2-dimensional deformation space
(¢, &) imposing h=0. Taking h different from zero will allow us to consider
a larger variety of nuclear configurations. We thus believe that with the res-
tricted 2-dimensional parametrization we are not able to give a description
of the deformed shape of '“°Ba but that when taking h#0 into account we
will describe that shape and the corresponding asymmetric fission valley so
that a part of the trajectories which, for A=0, end up in the A=132 chan-
nel will reach, in the case of h # 0, the previously missing A =140 valley.
The contribution to the fission mode A =132 will then decrease while the
one of the A = 140 channel will increase, thus reaching a better agreement
between theory and experiment when we will have extended the present
2-dimensional treatment to a 3-dimensional one. Investigations along this
direction are under way.
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6. Discussion and conclusions

With the purpose to study multi-modal fission, we have developed a
model describing the dynamics of the fission process by the resolution of a
2-dimensional Langevin equation coupled to the Master equations governing
particle emission. Starting from a more or less classical description proven as
rather successful for describing symmetric fission at high excitation energy,
we extended our theory to multi-modal fission by increasing the dimension-
ality of the deformation space in which the Langevin equation is solved in
order to be able to deal with asymmetric shapes and by including quantal ef-
fects (shell and pairing corrections) in the potential-energy calculations. Our
investigations show the strong sensitivity of the dynamics on the structure
of the potential-energy landscape what implies the necessity for a careful de-
scription of the later, in particular in the determination of shell and pairing
corrections at large deformation.

Comparing theoretical and experimental fission-fragment mass distribu-
tions one observes a rather promising agreement which, as we believe, could
still be considerably improved if the 2-dimensional treatment is extended
to a 3-dimensional one. We also point out the importance of taking into
account the temperature dependence of nuclear friction which as we have
seen should be significantly reduced at low energy. Another crucial aspect
of the problem lies in the necessity of a reliable evaporation theory at low
excitation energy.

Up to now the general analysis was that pre-scission light-particle multi-
plicities were the quantities to investigate [6,19] for a better understanding
of fission dynamics. Our present study shows, on the contrary, that at low
excitation energies where the number of emitted particles is small and, in
the frequent case where the competition between symmetric and asymme-
tric channels exhibits multi-modal fission, the fragment mass distribution is
probably more relevant, in particular for investigating transport coefficients
like nuclear friction.
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