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Cluster effects in the structure of heavy nuclei are considered. The
properties of the states of the alternating parity bands in Ra, Th, U and
Pu isotopes are analyzed within a cluster model. The model is based on the
assumption that cluster type shapes are produced by the motion of the nu-
clear system in the mass asymmetry coordinate. The results of calculations
of the spin dependence of the parity splitting and of the electric multipole
transition moments are in agreement with the experimental data.
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1. Introduction

Cluster states are intensively investigated in the light nuclei [1]. They are
discussed also in connection with the properties of heavy nuclei [2-5] where
they are manifested in nuclear structure and reactions. However, cluster
states are better seen in the strongly deformed configurations which can be
formed in heavy ion fusion reactions used to populate high-spin deformed
and superdeformed states.

Cluster states in fusion of heavy nuclei: The fusion of two heavy nuclei
is a multidimensional process. The choice of the most important collective
variables needed for its description is a complicated problem. It is a common
opinion that the most important degrees of freedom are the elongation of
the total system, mirror asymmetry and neck radius [6]. Depending on a
trajectory in this three dimensional configurational space, two approaches
to the description of nuclear fusion can be imagined. One of them is based
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on the picture of the neck formation between interacting nuclei and a subse-
quent increase of a neck radius up to the value corresponding to a deformed
compound nucleus. The other one is related to the mass asymmetry increase
in a system of two interacting nuclei, when nucleons are transfered from the
light to the heavy cluster up to formation of a mononucleus [7,8]. This ap-
proach allows us to describe a lot of experimental data on fusion of heavy
nuclei, especially the production of superheavy ones.

Any model of the collective motion (fusion is of course a collective mo-
tion) is described by a Hamiltonian consisting of the two parts: the kinetic
energy and the potential energy terms. If the selected collective variables are
strongly coupled to the intrinsic degrees of freedom, which are not explicitly
presented in the Hamiltonian, a dissipative term (nuclear friction) should be
included into consideration and a process should be treated in the framework
of the kinetic approach. The potential energy as a function of the collec-
tive variables has been investigated in many publications and is rather well
understood. The inertia coefficients are rather less investigated [9-12|. How-
ever, inertia tensor is a very important ingredient of any collective model.
In fact, the inertia tensor is related to the nondiagonal matrix elements of
the Hamiltonian taken between configurations which are characterized by
different localization in the configurational space, and strongly influences on
the type of the trajectory along which the system evolves in the configu-
rational space. Set of the diagonal matrix elements of the Hamiltonian is
the potential energy. Smaller nondiagonal matrix elements correspond to
larger inertia coefficients and wvice versa. In the case of dissipation and an
application of the kinetic approach transitions between two configurations
are described by diffusion coefficients. Again the larger diffusion coefficient
in coordinate corresponds to smaller inertia and wvice versa. It is clear from
the Inglis formula that inertia depends strongly on a density of the single
particle states near the Fermi surface. Investigating a dependence of the
component of the inertia tensor related to the neck degree of freedom, it was
shown in [13] that this inertia parameter is much larger than one obtained
within the hydrodynamical model and as a consequence the growth of neck
between interacting nuclei less probable. This large value of the inertia stabi-
lizes a value of the neck radius during a reaction. In addition, the structural
forbiddenness effect (Pauli principle) hinders the motion to smaller inter-
nuclear distances [14,15] Due to these reasons dinuclear type configuration,
which is in fact a cluster type configuration, survives for a sufficiently long
time and evolves along the mass asymmetry degree of freedom, transforming
from a one cluster configuration to the other with different mass partition
between clusters. This stabilization of a relatively small neck radius during
a fusion process regards the interplay between order and chaos in a nuclear
system. When a neck radius is small the nearest neighbor level spacing dis-
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tribution of a single particle spectra is described by Poisson distribution [16].
However, it approaches the Wigner distribution if a neck radius increases.
Thus, configuration with a small neck radius corresponds to a regular single
particle motion, 7.e. to a motion stable against chaos. With a neck radius
increase (before approaching the following stable configuration) a single par-
ticle motion becomes unstable against chaos. Thus, we see that the effects
of clusterization can be seen in the fusion reactions leading to a formation
of heavy nuclei.

Cluster states in deformed light and heavy nuclei: Different stable de-
formed configurations of light and heavy nuclei can be investigated using
the Nilsson—Strutinsky or the Hartree-Fock methods. The spectroscopic
properties of octupole-deformed, superdeformed and reflection-asymmetric
hyperdeformed minima of multidimensional potential surface have been dis-
cussed in [3,4,17-19] Different stable deformed configurations of nuclei can
be investigated using the Nilsson—Strutinsky or the Hartree—Fock methods.
The calculations for light nuclei and actinides [3,4,20,21] have shown that
configurations with large equilibrium deformations are strongly related to
the clustering. Recent theoretical emphases has been done on the relation of
the clustering to the symmetries of a deformed single particle nuclear poten-
tial. As is well known, when the harmonic oscillator becomes deformed the
degeneracy of the single particle states, which is presented at zero deforma-
tion, is lost at first, however, recreated again when a ratio of the frequencies
of the harmonic oscillator w, : w, becomes equal to the ratio of the inte-
ger numbers n : 1 with n = 2,3,4,... The clustering may be an important
structural feature at these deformations because the magic numbers associ-
ated with the corresponding shell gaps are expressed as combinations of the
spherical magic numbers [21]. This feature was stressed in the application
of the group theory to deformed harmonic oscillator [2]. At the integer ra-
tios of the axial symmetry deformations w; : w, = n : 1 the symmetry of
the many particle wave function can be classified in terms of the irreducible
representations of n SU(3) groups coupled together. This feature admits a
description of the deformed harmonic oscillator in terms of a series of over-
lapping spherical potentials [21]. In this description a deformation process
can be viewed as a division of the original spherical potential into a series
of smaller potentials aligned along the deformation axis [21]. Fusion can be
considered in this picture as a process of the mass exchange between the
potentials in agreement with the discussion presented above.

The well known example of the molecular-like structures in light nuclei
are the ground state bands of ®Be, 2°Ne and the excited band in 'O based
on the 07 (6.06 MeV) state. The rotational bands in ®*Be and 2°Ne have large
moments of inertia expected for the systems of two clusters in a contact:
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4He + “He in the case of ®Be and 0 + 4He in the case of 2°Ne. The large
a-decay widths of these rotational levels indicate that these band states have
bimolecular structure.

A direct and very important consequence of the asymmetric cluster-type
structures like 2C + *He (0*) and 0 + *He (?°Ne) is a presence of
the negative parity rotational states with odd angular momenta together
with the positive parity rotational states having even angular momenta.
The negative parity states are shifted up with respect to the positive parity
ones since there is a non negligible penetration probability of the barrier
separating the configurations with a-cluster located to the left and to the
right from the heavier cluster. Indeed, such negative parity rotational states
are observed in '0* and ?°Ne. The positive and negative parity states taken
together form alternating parity band. It is very interesting that such bands
are known not only in light, but also in the heavy nuclei: in isotopes of Rn,
Ra, Th, U, and Pu. They are considered frequently as related to the octupole
deformation. However, using the ideas discussed above that a deformation
can be treated as a motion (exchange) of a mass between the clusters, we
can apply the model based on the Hamiltonian with the mass asymmetry
degree of freedom as the main collective variable to the description of the
alternating parity bands in heavy nuclei.

2. Cluster model of fusion of heavy nuclei

Nuclear systems consisting of a heavy cluster A; plus a light cluster
Ag belong to the class of dinuclear-type shapes. They were introduced to
explain data on deep inelastic and fusion reactions with heavy ions [22]. The
dinuclear system model of fusion [7, 8] considers the fusion as a diffusion of
the dinuclear system in the mass asymmetry, defined by

A — Ay
n_A1+A2

(A; and Ay are the mass numbers of the nuclei of dinuclear system). The
potential barrier in 7 supplies a hindrance for fusion. In the dinuclear system
model the evaporation residue cross section is factorized as

08 (Bemn.) = Y 0c(Bemns J)Pox (Bem, J)Waur (B, 1) (1)
J

Here, o is the partial capture cross section for the transition of the colliding
nuclei over the Coulomb barrier. The contributing angular momenta are lim-
ited by the survival probability Wy (Ecm., J). The probability of complete
fusion Pcy, dependent on nuclear structure effects and on the neutron ex-
cess above the nearest closed shells in the colliding nuclei, is very important
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for the correct calculation of ogr. Pcn describes the competition between
complete fusion and quasifission (decay of the dinuclear system after the
capture stage).

The experimental evaporation residue cross sections [23,24] in cold
(298Pb- and 2%Bi-based) and hot (actinide-based) fusion reactions leading
to the production of heavy and superheavy nuclei (Z = 104-116) are well
reproduced (Fig. 1).
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Fig.1. Evaporation residue cross sections for cold and hot fusion reactions as a
function of the charge number of the superheavy nucleus. The calculated data are
shown by the squares. The open triangles give experimental upper limits.

3. Dinuclear model in nuclear structure

3.1. Mass asymmetry coordinate in description of nuclear shape

Instead of parameterization of the nuclear shape in terms of quadrupole,
octupole and higher multipole deformations, the mass asymmetry coordi-
nate 1 and the distance R between the centers of clusters are used as rel-
evant collective variables [1]. The ground state wave function in 7 can be
thought as a superposition of different cluster-type configurations including
the mononucleus configuration with |n|=1. The relative contribution of each
cluster component to the total wave function is determined by the collective
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Hamiltonian

R d?

H=—-———+U(n,I 2
where B, is the effective mass and U(n, I) is the potential. In order to
calculate the dependence of the parity splitting on the angular momentum,
we search for solutions of the stationary Schrédinger equation describing the
dynamics in 7:

The eigenfunctions ¥, of this Hamiltonian have a well defined parity with
respect to the reflection n — —n which corresponds to the space reflection.
The potential U(n, I) in Eq. (2) is taken for |n| < 1 as a dinuclear potential
energy

Un,I) = Bi(n) + Ba(n) = B+ V(R = Rp(n),n, 1) . (4)

Here, the internuclear distance R,,(n) is the touching distance between the
clusters and is set to be equal to the value corresponding to the minimum
of the potential in R for a given . The quantities By and By (which are
negative) are the experimental binding energies of the clusters forming the
dinuclear system at a given 7, and B is the binding energy of the mononu-
cleus. The nucleus-nucleus interaction potential in (4) is given as

V(R,n, 1) = Veou (R, 1) + VN (R, 1) + Vet (R, 1, 1) (5)

with the Coulomb Vo1, the centrifugal Vit and the nuclear interaction Vi
potentials. The potential Vi is obtained with a double folding procedure
using the ground state nuclear densities of the clusters. Antisymmetrization
between the nucleons belonging to different clusters is regarded by a den-
sity dependence of the nucleon—nucleon force which gives a repulsive core
in the cluster—cluster interaction potential. Details of the calculation of Vi
are given in [25]. The nucleus—nucleus potential V(R,n,I) and potential U
(“driving potential”) were successfully applied to the analysis of the experi-
mental data on fusion and deep inelastic reactions with heavy ions [25,26].

Our calculations have shown that in the cases of Ra, Th, U and Pu
isotopes the dinuclear configuration with an alpha cluster has a potential
energy which is close or even smaller than the energy of the mononucleus at
|n| =1 [27]. The energies of the Li-cluster configurations are about 15 MeV
larger than the binding energies of the mononuclei considered. Therefore,
for small excitations only oscillations in 7 are of interest which lie in the
vicinity of |n|=1.
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To calculate the potential energy for I # 0, the moment of inertia S(n) =
3(n, Ry ) in the rotational energy term in Eq. (5) has to be fixed. It is known
that the moments of inertia of superdeformed states are about 85% of the
rigid-body limit [28]. As was shown in [29], the equilibrium deformations
and the moments of inertia of the highly deformed states are well described if
we consider them as cluster systems. Therefore, we assume that the moment
of inertia of the cluster configurations can be expressed as

AlA
S(n) = 1 (%5 +Qh+ mO%RZJ . (6)

Here, Q7, (i = 1,2) are the rigid body moments of inertia for the clusters,
¢1=0.85 [28] for all considered nuclei and my is the nucleon mass. For |n| =1,
the value of the moment of inertia is not known from the data because the
experimental moment of inertia is a mean value between the moment of
inertia of the mononucleus (|n|=1) and the ones of the cluster configura-
tions arising due to the oscillations in 1. We assume that J(|p| = 1) =
oS (|| = 1), where Q" is the rigid body moment of inertia of the mononu-
cleus with A nucleons calculated with deformation parameters [30] and c; is
a scaling parameter which is fixed by the energy of the first 27 state or other
even parity state. The chosen values of ¢y vary in the interval 0.1 < ¢o < 0.3.

The method of calculation of the inertia coefficient B, is given in [31].
Although this method is more suitable for calculations of the inertia in the
systems with more heavier clusters than «, the results obtained in this way
can be extrapolated to the values of 7 close to || = 1. The formula obtained
in [31] shows that B, is a smooth function of the mass number A. As a
consequence, we take nearly the same value of B;=20x 10*mg fm? for almost
all considered actinide nuclei with a variation of 10%. Only for >??Th and
220.222Ra we varied B, in the range B,=(10-20)x10%mg fm? to obtain the
correct value of the ground state energy.

The value of By, can be estimated also in the other way. Rewriting the
Schrédinger equation (3) with the Hamiltonian (2) in a discrete form

2
- anf(iTn)? (thn (1 + An) + n(n = An) = 24Pn(n)) + V (n) 4 (n)

= Entpn(n) (7)

we obtain the following expression for the nondiagonal matrix element of
the Hamiltonian in a discrete basis

ﬁ2

{n+ An|H|n) = T2B, (A0 (8)



1736 G.G. ADAMIAN ET AL.

For the transfer of a pair of nucleons An = 4/A. We estimate the nondiag-
onal matrix element of the Hamiltonian by the pairing interaction constant
G = 25/A MeV responsible for transfer of pairs of nucleons into the valent
shells. Then B, = h?A3/800. Taking A = 230 we obtain the value B, =
64 x 10* mg fm?, which is close to the value given above.

3.2. Description of the alternating parity bands

With Eq. (3) we first calculated the parity splitting for several isotopes
of Ra, Th, U and Pu for different values of the angular momentum I. The
results of calculations agree well with the experimental data [32]. The largest
deviations of the calculated values from the experimental data are found in
the lightest Ra and Th isotopes. As an example, the results of calculations
for Th isotopes are shown in Table I. A good description of the experimental
data, especially of the variation of the parity splitting with A at low I and
of the value of the critical angular momentum at which the parity splitting
disappears, means that the dependence of the potential energy on 1 and [
for the considered nuclei is correctly described by our cluster model.

TABLE I

Comparison of experimental (Eexp) and calculated (Ecaic) energies of states of the alter-
nating parity bands in ?*?7??2Th. Energies are given in keV. Experimental data are taken
from [32,37].

232Th 230Th 228Th 226Th 224Th 222Th
I" Eexp Ecalc Eexp Ecalc Eexp Ecalc Eexp Ecalc Eexp Ecalc Eexp Ecalc

17 | 714 693 | 508 485 | 328 350 | 230 254 | 251 204 | 250 195
2t |49 49 | 53 53 | 58 58 | 72 72198 98 | 183 183
37 | 774 761 | 572 557 | 396 423 | 308 340 | 305 311 | 467 366
4% | 162 160 | 174 172 | 187 177 | 226 238 | 284 296 | 440 461
5~ | 884 882 | 687 684 | 519 549 | 451 490 | 465 494 | 651 616
6% | 333 330 | 357 354 | 378 391 | 447 475 | 535 563 | 750 760
7T 11043 1051 | 852 859 | 695 748 | 658 698 | 700 739 1924 920
8t | 557 553 | 594 589 | 623 634 | 722 761 | 834 868 | 1094 1077
97 1249 1263 | 1065 1075|921 971 | 923 958 | 998 1036 | 1255 1258
10" | 827 822 | 880 869 | 912 919 | 1040 1079 | 1174 1202 | 1461 1430
117 | 1499 1511|1322 1326|1190 1229 1238 1263 | 1347 1384|1623 1624
12% | 1137 1130|1208 1215 | 1239 1235 | 1395 1424 | 1550 1564 | 1851 1815
137 | 1785 1792 | 1615 1629 | 1497 1517 [ 1596 1609 | 1739 1772|2016 2019
141 | 1482 1470 | 1573 1565 | 1605 1572 | 1781 1796 | 1959 1966 | 2260 2226
157 | 2101 2099 | 1946 1941 | 1838 1823 | 1989 2002 | 2165 2194 | 2432 2450
161 | 1858 1841|1971 1935 | 1993 1918 | 2196 2200 | 2398 2405 | 2688 2663
17712445 2449|2310 2274 | 2209 2154 | 2413 2429 | 2620 2651 | 2873 2906
181 2262 2229|2398 2318 | 2406 2281 | 2635 2640 | 2864 2880 | 3134 3128
197 | 2813 2794 | 2703 2624 2861 2890 3341 3380
20" | 2691 2633 | 2850 2709 3097 3115 3596 3621
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The ground state energy level lies near the top of the barrier and the
weight of the a-cluster configuration estimated as that contribution to the
norm of the wave function which is located at || < 7, is about 5 x 10~2 for
226Ra, which is close to the calculated spectroscopic factor [33]. This means
that our model is in qualitative agreement with the known a-decay widths
of the nuclei considered.

The spectra of those considered nuclei whose potential energy has a
minimum at the alpha cluster configuration can be well approximated by
the following expression

K2 . .
E(I) = 2J(I)I[I+1], if I is even,
h2
E(I) = IIT+1 E(I), if T i
(I) 27 () [I+1]+0E(I), i is odd, 9)

where the parity splitting 0FE(I) is given as

B 2B, (I" = 17)
1+ eXp(bO B()I[I + 1])

SE(I)

with

By = h; <%(n1: 1) Sy 1= %))

which describes the change of the height of the barrier with spin I. The
moment of inertia in Eq. (9) is given by the expression

J(I) = wn(DS(n = 1) + [1 — wn(1)]S(n = na) (11)
which contains a probability

wm (I = 0)

mI = )
W) = T BollT +1]

(12)

to find the mononucleus component in the wave function of the state with
spin T of the ground state band. Since w,,(I) decreases with angular mo-
mentum increase, J(I) increases with I. The quantity we(l) = 1 — wp, (1)
gives the corresponding probability of the a-cluster component. The con-
stants S(n = 1) = 0.33%(n = 1), w,(I = 0)=0.93, by = © MeV~1/2 and
by = 0.2 MeV~! were obtained by fitting the experimental data. With these
constants the spectra of many nuclei are described quite well. Therefore,
Egs (9) and (10) can be used to predict the energies of the unknown levels.
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3.3. Electric multipole transition moments

With the wave functions obtained, we have calculated the reduced ma-
trix elements of the electric multipole moments Q(E1), Q(E2) and Q(E3).
The effective charge for El-transitions has been taken to be equal to ef" =
e(1 + x) with an average state-independent value of the E1 polarizability
coefficient y = —0.7 [34,35]. This renormalization takes into account a cou-
pling of the mass-asymmetry mode to the giant dipole resonance in a dinu-
clear system. In the case of the quadrupole transitions we did not renormal-
ized the charge e§T = e. For octupole transitions we took e§! = e(1 — 0.27,)
assuming that an additional contribution to the effective charge arises from
the coupling of the mass-asymmetry mode to the higher-lying isovector and
isoscalar octupole excitations [34]. The results of these calculations are listed
in Table II. In general, the obtained values are in agreement with the exper-
imental data for Q{ [36-39], however, with some exceptions. For instance,
a small value of Dig(0t — 17) in ?24Ra is not reproduced. The higher
moments are in agreement with the calculations of Ref. [30]. The calcu-
lations qualitatively reproduce the angular momentum dependence of the
experimental matrix elements of the electric dipole operator.

TABLE 11

Calculated and experimental intrinsic multipole transition moments. The values of
the dipole moment Djq are given for those values of the nuclear spin I for which
there are experimental data. These values of I are shown in the second column.
The experimental data are taken from [32,36-39].

D1o Q20(0" = 2%) | Q30(0" = 37)
Nucleus (e fm) (e fm) | (e fm?) | (‘e fm?) | (e fm3) | (e fm?)
calc. exp. calc. exp. calc. exp.
220Ra 0.28 (I=7) 0.27 397 558 3305
22Ra | 0.30 (I=7) 0.27 395 675 | 3197
224Ra | 0.133 (I=3) | 0.028 510 633 | 2543
26Ra 0.111 (I=1) |0.06-0.10| 574 718 2800 2861
222Th 0.29 (I=6) 0.38 397 548 3120
24Ty |0.312 (I=10) | 0.52 495 2564
226Th 0.223 (I=8) 0.30 561 830 2334
28Th | 0.151 (I=8) 0.12 653 843 2070
Z0Th | 0.054 (I=6) 0.04 666 899 1720 | 2144
232Th 0.007 (I=1) 719 966 1369 1969
By 0.004 (I=1) 758 1035 1407 1895
36y 0.004 (I=1) 786 1080 1318 1951
2387 0.004 (I=1) 818 1102 | 1313 | 2041
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Fig. 2 illustrates the angular momentum dependence of the calculated
intrinsic transition quadrupole moment. It is interesting that the cluster
model shows an increase of the quadrupole moment with angular momentum
in the transitional nucleus ??°Ra and its constancy in the well deformed 238U.
Staggering seen in Fig. 2 for both ??6Ra and 238U isotopes is explained by
the higher weight of the a-cluster component in the wave functions of odd
I states. This cluster configuration has a larger deformation.
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s L v
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Fig.2. Angular momentum dependence of the calculated intrinsic quadrupole tran-
sition moments in 22°Ra and 238U.

4. Summary

In conclusion, the manifestations of the cluster effects in the reactions
and structure of heavy nuclei are illustrated. A cluster interpretation of the
properties of the alternating parity bands of Ra, Th, U and Pu isotopes as-
suming oscillations in the mass asymmetry degree of freedom is suggested.
The existing experimental data on the angular momentum dependence of
parity splitting and on multipole transition moments are quite well repro-
duced. The characteristics of the Hamiltonian used in the calculations were
determined by investigating a completely different phenomenon, namely,
heavy ion reactions at low energies.
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