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We consider the capture of a cold neutron (kinetic energy < 0,1 meV)
by a crystal in the case that, at first, by the emission of a phonon, the
neutron is absorbed by one of the lattice nuclei forming a compound nu-
clear resonance. Subsequently, the resonance decays by the emission of
a photon. The energy of the compound nuclear resonance must be very
close to the neutron threshold, i.e. within the range of phonon energies
(< 100 meV), thus implying that the absorbing nuclei must be heavy ac-
tinides. We discuss the dependence of the capture process on the initial
occupation pattern of phonons and, in particular, a mechanism of enhanc-
ing the absorption process.

PACS numbers: 25.40.Fq

1. Introduction

Cold neutrons with a kinetic energy E below 107! meV (1073 meV)
have a de Broglie wavelength A larger than 10 A (95 A). Whenever the
neutron-wavelength is much larger than the interatomic distance in a crystal,
neutrons which are scattered from nuclei of the same species, but at different
sites of the crystal, interfere coherently. In particular, inelastic scattering of
low energy neutrons which is correlated with the absorption or emission of
phonons, plays a very important role for the study of the phonon spectrum
of solids and liquids.

The theory of this process has been elegantly formulated by van Hove [?]
and Glauber [?] in terms of space-time correlation functions using Born
approximation in connection with Fermi’s quasi-potential [?]. Whereas a
huge amount of work has ever since been dedicated to the coherent scattering
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of slow neutrons in solids, the coherent absorption of neutrons by the nuclei
of the solid has received less attention, although Lamb [?], in an early and
important theoretical paper, had drawn attention to this process.

In this note we reinvestigate this problem in the specific case of the
absorption of cold neutrons by a crystal consisting entirely or partly of heavy
actinide nuclei (N, Z) with N neutrons and Z protons.

If a neutron is absorbed by such a nucleus, the compound nuclear reso-
nances of the (N + 1, Z) system at excitation energies close to the neutron
threshold Fyy, (= (5-8) MeV) have an average spacing (D) of (10-15) eV and
an average width (I') ~ (10 to 30) meV. Let us assume that there is at
least one such compound nuclear resonance at an energy Fy, — AE, where
AE, > 0 is within the energy range of acoustic (< 30 meV) or of optical
phonons (< 100 meV). In this case, a cold neutron of momentum p,, may
be absorbed forming this compound state by emission of a phonon of wave
number ¢y and of energy Epn = hwpn (o).

As the wavelength \ = ph—n of the incident neutron is supposed to be much

larger than the distance between neighbouring (N, Z)-nuclei of the lattice,
the compound nucleus (N + 1, Z)* may be anywhere in the crystal. In other
words, the absorption of the neutron produces an excited state of the crystal
where one target nucleus (N, Z) at any position R, of the lattice is replaced
by the compound nucleus (N + 1, Z)*. The formation amplitudes carry the
phase efnfla/l (see Eq. (45)).

The compound nuclear resonance decays in turn either by y-emission or
by fission. It depends on the actinide nuclei in the crystal whether the fission
channel is open or not. Usually, the fission channel is closed for even N and
it may be open for odd N.

In any case, the physically interesting aspect is that the decay of the
compound nuclei of the lattice occur coherently whenever they were produced
by emission of a well-defined phonon. In what follows, we shall consider the
case that the compound nuclei can only decay by emission of photons.

We present the theory in paragraph 2 and a discussion of the results and
of open questions in paragraph 3.

2. Theory

The first question is: What is the Hamiltonian of the system “neutron
plus crystal”? Let us denote the equilibrium positions of the lattice by RE
and let us assume, for the sake of formal simplicity, that the lattice contains
only one type of nuclei with N neutrons and Z protons (A4 := N + Z).

Let us denote the vectors defining the centre of mass of the a-th atom by
R, with the understanding that R, deviates from the equilibrium position
RE only slightly, i.e. by much less than the average distance “a” between
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neighbouring lattice sites . .
IR, — RY| < a. (1)

Each constituent nucleus of the crystal is supposed to consist of IV neutrons
and Z protons. The Z electrons of the lattice atoms will be left away because
their interaction with the incoming neutron is small and their interactions
with the radiation field plays no role in the process we consider. The number
of crystal atoms is denoted by N. For the sake of formal clarity, we treat the
incoming neutron as distinguishable from the neutrons in the lattice nuclei.
Furthermore, we treat nucleons which are localized in different nuclei of the
lattice as distinguishable. Both these assumptions can be easily avoided,
but they clarify the structure of the Hamiltonian.

Let us denote the position vector of the i-th nucleon in the a-th nucleus
by #!, its spin and isospin variables by ¢ and 7, and the relative position
vector with respect to the mass centre R, of the a-th nucleus by

=2 — R,. (2)

Latin superscripts (4, 4,k ... ) go from 1 to A and Greek subscripts (a, ,8, o)
from 1 to N if not noted 0therw1se The relative position vectors 7, have

to satisfy the relations
A
> Fa =0 (3)

i=1
due to the definition of R,. For the sake of simplicity, we shall neglect the
constraints (3), i.e. we shall treat the relative position vectors Z}, as indepen-
dent variables. The Hamiltonian # which describes the crystal consisting
of N nuclei (N, Z), the additional neutron with position vector Z and spin
variable ¢, and the radiation field A acting on the protons, can be written
in the form
A 2
A A~ ~ p — —
H:Z{HaJrUa}nLﬁJrH]att(Rl...RN), (4)

a=1

where U,(Z — Ry) is the sum of 2-body interactions between the additional
neutron and the nucleons of the a-th nucleus

A .y

A A
Ua(Z — Ro) =Y 0(@ = 825¢,Chomb) = Y 0(& = Z — Ras ¢, Cloml) (5)
=1 =1

ﬁn and M are the momentum operator and the mass of the neutron, and H,
is the Hamiltonian of the a-th nucleus including the coupling of the protons
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to the radiation field A
:, 2

(- Aa)

; o) + ()
YRS B R S B G ive

+ZU(Ia_"L‘gzaCaanaa (jxané)—i- Z ﬁTp(na)Tp(%)- (6)
i<j ij=1,..,A |Zg — Ta
1<J

In Eq. (6), 7, and 7, are projection operators on protons and neutrons,
respectively. The nuclear interaction between nucleons in different nuclei
of the lattice is left away because it is negligible at normal densities of a
crystal. . .

The last term Iz[latt(Rla .., Ry) in Eq. (4) represents the Hamiltonian of
the lattice vibrations, which conswts of the kinetic energy of the nuclear mass
centres and the Coulomb interaction W(Rl, . RN) between the atoms'.

. N p2
Hlatt:Z2M (Rla"'aRN)' (7)
a=1
In Eq. (7), P, = E.6~ is the momentum operator conjugate to the mass

center ﬁa, and M, is the mass of a crystal atom. The potential energy
W (R.,...,Ry) of the ions has its minima at R, = RY. In the simplest
approximation, one expands W (R, ... Ry) around W (RY, ... ,ﬁ%/) up to
quadratic order. We use this “harmonic approximation” in what follows.

In Egs (8) to (19), we present the introduction of phonon creation and
annihilation operators in the simple case of a “linear chain”. The general
case of a crystal containing several different atoms in a unit cell is treated
extensively in the literature, for example in the references |?,7,7].

The linear chain consisting of one type of atoms is obtained by putting

RO— d=nacy, (8)

where @ is a vector in the direction of the linear chain with a length equal to
the distance between neighbouring equilibrium positions of the lattice, and
n=0,1,2,... are positive integers or 0. The vector €, is the unit vector in
the direction of a.

The deviation of atom « from its equilibrium position

o = Ry — R® (9)

! We identify the charge centres with the mass centres of the atoms throughout this
paper.
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becomes simply
flq = (Ry — RY)&; = (Ry — na)éy . (10)

Assuming that the interaction acts only between nearest neighbours, the
Hamiltonian Hj,; of the lattice assumes the form

N ~9 -1

A D f L, . .
Hyap = ; 2]\/3& + ) ; Upg1 — Uy) 2+ §f (apn — U1)2a (11)

where the parameter f is the spring constant and where cyclic boundary
conditions

Uipn = U (12)

are postulated.
It turns out that the solutions 4y, p, can be written in the form [?]

. h 1 N o .
N iqla t ,—iqla
Uy RCM-FHQM&N E q\/w_q<bqe +bqe ) , (13)
= N Pow — \/ E VY b el — pt _qua> : (14)

where the centre of mass variable Roy and its conjugate momentum Peyy
are defined by

A~ 1 N
Royi= 2 i, (15)
Nn:l
. N
Povi =Y pn (16)
n=1

and where Eq and 13,]; are annihilation and creation operators for phonons of
energy

hwq = 2hwq

sin%‘ (17)

satisfying Bose commutation relations.
The parameter ¢ is defined to be
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where? k are N consecutive non-zero integers varying between —§(N -1)
and +3(N — 1). The prime ’ in Egs (13), (14) means that ¢ = 0 is to be
omitted. A

Introducing (13) and (14) into (11), we find that Hjay becomes a sum of

harmonic oscillators plus a kinetic energy of the mass centre:

X P2y 1
Hiay = 2MN+Z hw, <b by + ) (19)

For extended systems (./\f — 00) at rest in the laboratory frame one may

leave away Rcy and CM in Egs (13) and (14), the CM energy %’% in
Eq. (19) and the prlmes in the summations over ¢ (see Ref. [7]).

In the general case of a 3-dimensional lattice, the harmonic Hamiltonian
of a lattice with one atom in a unit cell reads [7]

N aaa 1
Hia = S 0@ (14 3) (20
q

where, in generalization of Eq. (18), the wave vector ¢ of the phonon assumes
all the values satisfying the condition

@(Nlal + NQC_I:Q + ./\/’35:3) = 2w integer . (21)

Here, the vectors @123 define the primitive unit cell and N 23 are the num-
ber of unit cells in the directions given by @ 2 3.

Let us now come to the coupling of the incoming neutron to the phonons
and to the nucleons in the lattice nuclei:

N
Hn—cryst = Zua(f - Ra) (22)
a=1

with

Uy (T —

—

v(Z— 2. — Ry,). (23)

[
B

i=1
It provides the coupling of the additional neutron with the phonons of the
lattice and, at the same time, with the nucleonic degrees of the nuclei. In
Eq. (23) and, henceforward, we leave away the spin and isospin variables.
We draw attention to the fact that the interaction U, defined in (23)
depends on the lattice location « only through the variable ﬁa of the mass
center, whereas its functional dependence is the same for all the «.

2 Here, we assume N to be odd. As N is of the order 10%%, the limits are also valid for
even N.
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Using (9) we have
Uy = U(Z — R — 1) . (24)

Typical dislocations i, are in general not small compared to the nuclear
radius and, therefore, contrary to the case of the electron-phonon coupling
([7,7]), the linear approximation

U(T — By — i) ~ U(F — Ro) = (VU0) ;o Tl (25)

may be occasionally insufficient.

At the same time, the so-called “adiabatic approximation”, i.e. the as-
sumption that the velocity of lattice ions is much smaller than the velocity of
the neutron, is no longer true for very cold neutrons. The velocity of a neu-
tron with kinetic energy 1 meV (0,1 meV) is 4,2 x 10'2 A /s (1,3 x 10'2 A /s)
and the mean velocity of a ?*®U-ion in a crystal of kg7 = 1 meV (kgT =
0,1 meV) is 0,35 x 102 A/s (0,1 x 10'2 A/s). For an '6O-ion the mean
velocity at kgT =1 meV (0,1 meV) is 1,3 x 10" A/s (0,4 x 102 A/s).

This means that the absorption of a cold neutron by formation of a
compound nucleus embedded in a crystal may also occur together with the
creation of more than one phonon (see Ref. [?]), which corresponds to higher
order terms in Eq. (25).

The Hamiltonian H, of the a-th nucleus may be decomposed into the

coupling HP of the protons to the radiation field A and the remainder H, ,&0):

H, ~ HY + 0, (26)
A i o
AO) = S 0o S (@ - 5l o)
i=1 ij=1...A
6(2) AN (]
+ =7 = a) T (110) 5 (27)
ij=1...A |Za — T4
1<j
(& A -
. . RN
Y = —QMC;{p;,Aw;)}Tp(na), (28)

where ﬁé = %65& , M = nucleon mass, eg = elementary charge. The photon-

nucleus coupling H?" leads to the decay of the compound nucleus formed in
the vicinity of lattice position ﬁg by emission of a photon.

We are specially interested in a n-capture process where only 1 phonon
is emitted, 7.e. we want to consider the cross-section for the reaction

n+{N(N,Z)} ={(N —1)(N,Z) + (N + 1, Z)pes } + phonon,, (29)
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{N=1)(N,Z)+(N+1,Z)res} = {(N=1)(N,Z)+ (N+1,Z) s} +photon .

(30)
Here, we denote the state of the crystal of N atoms by {}, the compound
nucleus at an energy close to the neutron threshold by (N + 1, 7)), and
the (supposedly long-lived) final state of this nucleus after the -y-emission
by (N +1,7Z);.

We assume one nuclear compound resonance (N + 1, Z) g of small total
width I'(I" < 1meV) to be so close to the n-threshold that an incoming cold
neutron can be absorbed by the crystal of N'(N, Z) nuclei by emission of a
phonon (see Eq. (29)).

Of course, the compound nucleus (N+1, Z),es can be located anywhere in
the crystal. We assume that it decays by emission of a photon (see Eq. (28))
to a long-lived final state (N + 1, Z);.

A vibrational state of the crystal is defined by the set {ngs} of occupation
numbers of all the p0881ble phonon quasi-momenta, . We denote the initial
state of the lattice by |{n }) and the final one by |{n }) We consider
the case that the incoming cold neutron is captured by the emission of one
phonon of given wave-vector gp. Thus the final and initial phonon occupation
numbers are related to each other by

n) = nl (1 - 6z,) + (03 +1)dg (31)

qq0 qq0

where the Kronecker symbol dgz, is 1 for ¢ = ¢o and otherwise zero.
The initial state of the system is denoted by

_H }HWNZR‘;)knmS>, (32)

where ¥ (N, Z, Ry) is the groundstate of the (N, Z)-nucleus with mass centre
at §5, En is the wave-vector of the incoming neutron, and mg the magnetic
spin quantum number of the neutron?.

The intermediate states of the system are characterized by the final
phonon occupation numbers {nf;}, the quantum numbers x and the energy
E: of the compound nucleus (N + 1, Z) and the label A which tells us that
the mass centre Ry of the compound nucleus (N +1, Z) is distributed in the
vicinity of the lattice site Rg We denote these states by

|RA)EHnEf)}; I1 w(N,Z;Rgf)wn(N+1,Z;RA)>. (33)

3 The plane waves of the neutron and of the emitted photon are normalized to 1 in the
effective volume L* of the crystal: L™%2 exp[ik,&] and L™%/2 exp[ik., 7]
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Here, ¥, (N + 1, Z; EA) is an excited state of the nucleus (N + 1, Z) with
mass centre 15;)\.

All the N states (33) are energetically degenerate. ¥(N,Z;Rs) is the
groundstate of the Hamiltonian Hj(A) and ¥, (N+1, Z; R)) an excited state
of the Hamiltonian Hs(A + 1) given by Eq. (6) with the nucleon number A
replaced by (A4 + 1).

The final states of the system are characterized by a y-quantum of wave-
vector l% and polarization &,, an excited (N+1, Z)-nucleus with mass centre
position ﬁA specified by the quantum number 8 and the excitation energy
Eg,. All the states differing by the location of the excited (N +1, Z)-nucleus
in the lattice are again degenerate. We denote the final states by

N
) = ‘ {néf)} I #(~v,z; Rs) Wﬂ(N+1,Z;RA),k757>. (34)
3=
5'75,1\
The reaction amplitude has the form of a sum of Breit—-Wigner terms,
each term corresponding to a specific location of the (N + 1, Z) nucleus in
the lattice and all terms with the same denominator:

N 2 pl/2

P f.RA R
(fIT)i) = - (35)
Azzl (E — B, — hwg,) — 3T,

Here, F is the total energy of the system, Fj is the energy of the system
at resonance apart from the energy hwg, of the phonon, and I'; is the total
width of the resonance. The energies E and F, can be decomposed as

follows
E = E,+NE(N,2) +W(Ry,...,Ry), (36)
E. = EX(N+1,2)+ (N —1)E(N,Z)+W(Ry,...,Ry). (37
Here, E(N, Z) is the groundstate energy of the nucleus (N, Z), EX(N +1, Z)
is the energy of the compound nucleus (N + 1,2)*, E, 2 0 is the kinetic
energy of the incoming neutron, and W is the electromagnetic potential en-

ergy of the crystal consisting of N atoms. Introducing the threshold energy
Eyy, for emission of a neutron from the nucleus (N + 1, Z) (=*Ablosearbeit”)

Eg = E(N,Z) - E(N +1,2) (38)

* We use the laboratory reference frame where the crystal is initially at rest. Conse-
quently, by the absorption of the neutron, the mass centre of the crystal acquires a
recoil momentum P* which is related to a wave vector K* of the reciprocal lattice
by P* = —hK* (see for instance Ref. [?]). The recoil energy P*2/2Mc,ys; turns out
to be extremely small because of the large mass of the crystal Mcryst = N Matom and
is, therefore, left away in the denominator of Eq. (35).
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we may write £ (N + 1, 7) in the form
E;(N+1,Z)=E(N+1,Z)+ En — AE,, (39)

where AF, > 0 is the energy distance of the compound nuclear resonance
from the neutron threshold of the (N + 1, Z) nucleus. Using (36)-(39), the
energy difference (E — E;) can be written in the form

E—E,=E, +AE,. (40)

In Egs (36), (37), we neglected the tiny influence upon the electromagnetic
energy W which is produced by replacing one of the N nuclei (N, Z) of the
crystal by a nucleus (N + 1, Z). This approximation and the neglect of the
recoil energy of the total mass centre (see footnote) are the reasons why
the lattice dynamics enters the denominator of Eq. (35) only through the
phonon energy hwg,.

The quantities I'gy; and I'y gy in the numerator of (35) represent the
partial widths for the formation of the intermediate states |RA) of the system
from the entrance channel and for the decay of the intermediate states by
emission of a y-quantum. Assuming that these widths can be calculated by
perturbation theory, they are given by

Tini= ({0 TT w(V.2: Ro) w41, 2 Rt — )| {n0 )
5';;)\]\/‘
H W(N7Z§R5)§Enms> (41)
o=1..\N

and by

! R ) e | f
rom=({n} T (V.2 By) ws(N 41,7 s | B {2}
II W(N,Z;R'af)&”n(N+1,Z;ﬁA)>. (42)
§=1..N
5 £

Let us now study these matrix elements in more detail:

The eigenstate ¥, (N +1, Z; R,) is a normalized eigenstate with eigenen-
ergy E} of the Hamiltonian J2r% (see (27)) where the nucleon number A is
replaced by (A + 1) due to the fact that the number of neutrons is (N + 1)

instead of N, whereas (N, Z; R,) is the groundstate of I:I,go)(A) as defined
in (27).



Coherent Production of Compound Nuclear . .. 1771

The quantum numbers & specifying the compound nuclear state contain
the angular momentum jys and its projection myeg. If the absorbing nucleus
is an even-even nucleus with angular momentum 0, the compound nucleus
has the angular momentum j, = 1/2 and the magnetic quantum number
my, = mg of the absorbed cold neutron. If the absorbing nucleus is an
odd or odd-odd nucleus with a finite angular momentum jp, the angular
momentum j, of the compound nucleus may have the values (jo +1/2) and
corresponding values of the magnetic quantum number.

The spectrum of phonon wave vectors ¢ which is determined by the peri-
odic boundary conditions of Eq. (21), must be cut off at an upper frequency
limit which is reasonably chosen in such a way that the number of wave
numbers agrees with 3N where N is the number of crystal atoms.

The total width I’y of the intermediate states is the sum of the partial
decay widths. Intermediate states which differ only by the location of the
compound nucleus in the lattice have the same total width as subsumed in
Eq. (35). The dominant decay widths are provided by 7-decay and possibly
nuclear fission.

We note that nuclear wave functions localized around different lattice
sites are practically orthogonal because the lattice constants a2 3 exceed
the nuclear radius by a factor of 10?:

(U(N,Z,R\)| (N, Z,Rx)) = yn - (43)

Up to a factor (see for instance Ref. [?]), the transition probability per time

unit W (g, kv,e,y,qo, knms) is given by the absolute square of the reaction
amplitude defined in Eq. (35):

W6, i ) = (3 S T L it Uil (T )"
fi\Py Fvyy 4540, hn Tl ML?’kn (E—En—hwqo)Q‘FiF,?

(44)

When evaluating the partial widths I'gy; and I'f gy (see (41), (42)) the

integrations over the nucleonic variables of the nuclei ¥ (N, Z; R;) are trivial
because of the orthonormality (43). In addition, it is easily seen that the
matrix elements (41) and (42) factorize as follows

r = ({o?)

_ (f —ik, R
s = ({5

eiﬁnﬁk

{(n@ I BN + 1, )| #(N, Z), Fums) , (45)

{ngf)}> (Ws(N + 1, Z)kyeq | HPT| (N + 1, Z)).
(46)

Here, the notation of the second factors implies that they do not depend on
the label A of the lattice site because Ry occurs only in the definition of the
intrinsic variables #{ = #} — R), which are integrated over.
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Taking over the notation of Ref. [?], we denote these factors by

Meomp(Fnyms) := (Ue(N 41, Z)|{U|¥(N, Z), kpms) (47)
Mo (kv 64, B, 5) = (Us(N + 1, Z)kyey |HP | W, (N +1, 7). (48)

Our occupation numbers {n((;)} and {n((jf )} differ only by one specific occu-
() (i)
+ 1.

o ~ "¢

It should, however, be noted that the operators e?»%x and e~"~%x have
also non-vanishing matrix elements between states of the lattice which differ
by more than 1 phonon. If one were to take such multiple phonon processes
into account, one would have to sum in Eq. (35) not only over the lattice
sites A but also over the phonon occupation patterns {ns} which may occur
as intermediate states. We note that this was done in Ref. [?] which is the
work this paper is based on, but with the result that one phonon creation
and annihilation processes do give the most important contribution.

On the other hand, in Ref. [?], W. Lamb did not include a summation
over all the lattice sites A in (35) arguing that the neutron is absorbed by one
definite nucleus X of the lattice and that the resulting absorption probability
did not depend on which one.

In what follows we shall see under which conditions our more general
treatment yields the result of Ref. [?]: Substituting (45)-(47) into (44) and
averaging at the same time over initial phonon occupation patterns with a

pation number n

weight function w({n((;)}) we obtain the average transition probability W

. _— wh
W (B, ky, €y, qo; knms) = <m)
n

“(E-E. - h‘itfo)2 +1/412] {;}w <{"EIZ)})

1/2 1/2 1/2 1/2
X9 > Il + Y Iyl (- (49)
A:l...N A’Alzl...N’
AZN

We call the term with A = )\’ the “incoherent” and the term with X\ # X the
“coherent” contribution.
Introducing the dislocations @, (see Eq. (9)), the phonon matrix-ele-

ments can be written
() =R (Yl oo

(i)

oikin Ry etk
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< {nl(if)}‘e—iﬁvék {n((jf)}>:e—i1€7é§ < {n((ff)}‘e—u%m {néf>}> (51)

Matrix-elements of the type ({n((;)}|eiéﬂA |{n((j2)) where {nl(;)}, {n((;)} are two
arbitrary occupation patterns of phonons and Q is some wave vector can be
evaluated in closed form (see for instance Ref. [?], chapt. 8 and also Ref. [7]).

In the coherent part of the transition probability W, the main depen-
dence on the lattice sites is produced by the factors el(kn=F:) (B3 =R%) - G-
stantial coherence effects from reactions occuring at different lattice sites can
only arise if, for a large number of terms A\ # X', the exponent (k, —k,)(RS —

ﬁg,) varies slowly as a function of the momentum difference (p, — p5). This

is the case when both the momenta p,, = Bk, and Dy = hl% correspond to de
Broglie wavelengths A, and A, which are of the order of the lattice spacing
or larger. This is the case for neutron energies F, < 0.1 meV and for y-decay
energies p,c 2< 10 keV. As the decaying compound nuclear resonance has
an energy of (5-8) MeV, rapid y-decays in the MeV range, for which there
is no coherent contribution, dominate the decay. Of course, the density of
levels at an excitation energy of (5-8) MeV is so large that there are many
v-decay channels with p,c < 10 keV. Unfortunately, the transition strength
of such low-energy transitions is very tiny.

In the usual case where only the incoherent part of (49) need be consid-
ered, the contributions |I'f gx|[I'r),;| depend weakly on A which brings us
back to the case treated in Ref. [7]:

T, mal [ TRA| = | Meomp (ns ms) | | Miad (ks €4, B, )]
(e e T o

If the crystal is at a temperature T, the weight factors w({ng)}) are given
by the Boltzmann factor

oikniin

[ E({n?})]
exp | — EnT

() - 2

where Z is the partition function.

Apart from the matrix elements Mcomp and M,,q, the cross section may
be evaluated in closed form. The calculation proceeds in a similar way as
for inelastic neutron scattering (see Ref. [?], chapt. 8.4) and similarly to the
one in Ref. [?]. There, a summation over the final y-decays and over the
phonon occupation patterns has been performed which excludes a coherent
distribution altogether.
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3. Discussion

The present paper differs from the basic work of Ref. [?] in two respects:
The final states are not summed over and we assume that one specific phonon
is emitted instead of many. Consequently, a coherent contribution to the
transition rate appears which vanishes in Ref. [7]. As we have pointed out,
interferences from decays of the coherently produced compound nuclear res-
onances can in principle be observed, but only under rather exceptional
conditions. One of these conditions is, of course, that at least one sort of
the nuclei in the crystal exhibit a compound nuclear resonance at an energy
AF, below the neutron threshold Fi,, with AFE, in the range of phonon
energies. This is a fortunate accident, which is, however, not impossible in
the case of actinide nuclei.

One may envisage still another aspect of the system investigated:

Let us suppose that the weights w({n }) are not simply given by the
Boltzmann factor but that they are spe(:lﬁcally high for an interval of phonon
energies around hw(qp), and of phonon wave vectors ¢ close to ¢p. This
would mean that the phonon which is emitted in the capture process is
already present in the initial state of the crystal with a high occupation

number n(q) > 1. In our case, i.e. for the occupation pattern defined in
q. (31), the matrix-element ({néf)}|eiﬁnﬂk|{n((;)}) turns out to be propor-

tional to ng)). Thus, the probability of capture of the neutron into the

resonant state ¥, (N + 1, Z) by emission of a phonon would be enhanced by
the factor n(%).

Unfortunately, it is difficult to judge whether it is experimentally pos-
sible to produce a non-thermal initial occupation pattern. Neglecting the
recoil of the entire crystal, the conservation of energy (up to width I'y) and
momentum

E,+AE, = huwy, (54)
hkn = hd) (55)

tell us that the emitted phonon would have to be an optical phonon. In the
case of F;, =1 meV (10 meV) one has k, = 0,476 A™! (1,5A_1). A typical
phonon energy would be hwg, = 50meV. Optical phonons can in principle be
produced by free electron lasers in materials with a sufficiently large dipole
polarizability. Perhaps uranium oxyde would be such a material.
Due to phonon-phonon interactions, which come about by 3'¢ and
der terms in the expansion of W(Rl . RN), the optical phonons decay with
an average lifetime of 107!2 5. This lifetime would still be larger by a factor
of 10 to 100 than the lifetime of a compound resonance of a heavy actinide
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nucleus [8]. Thus it is permissible to calculate the transition-probability
assuming a stationary initial phonon population as we have done.

Assuming that a large absorption rate can be experimentally achieved
and that the compound resonance may decay with a not too unfavourable
branching ratio into a long-lived nuclear isomer, one can dream to use the
capture of cold neutrons as a pumping mechanism:

At high flux reactors, a flux jeoq n Of cold neutrons of the order of
(1-5) x 10" [2x] can be reached. If the beam impinges perpendicularly
upon a surface AF of the crystal and if the length of the crystal in the di-
rection of the incoming neutrons is L, the average number of cold neutrons
in the effective volume of the crystal is given by {jcoid n AF %} where v,, is

the velocity of the neutron. The product

N* = oot n AF LY (56)
Un
represents the number of final nuclei produced per time unit by a specific
(n,v) reaction. W is the transition probability (49). At modern high
flux reactors, one can attain cold neutron flux densities jcoiq n Of about
3 x 10"[1/cm?s] for E, < 10 meV, 6 x 10'3[lem?s] for E, < 1 meV, and
1,2 x 10'3[1/cm?s] for E, < 0,1 meV.

This paper, which T dedicate to Adam Sobiczewski on the occasion of
his 70*" birthday, involves knowledge from fields of research where I am
not an expert. [ am particularly grateful to all the colleagues who have
sacrificed time to instruct me, especially Gilbert Belier (Centre d’Etudes
de Bruyeéres), and Franz von Feilitzsch, Joachim Hartmann and Peter Vogl
(Physics Department of the TUM).
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