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The modern version of the liquid-drop model (LSD) is compared with
the macroscopic part of the binding energy evaluated within the Hartree—
Fock-Bogoliubov procedure with the Gogny force and the relativistic mean
field theory. The parameters of a liquid-drop like mass formula which ap-
proximate on the average the self-consistent results are compared with other
models. The limits of nuclear stability predicted by these models are dis-
cussed.
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1. Introduction

The self-consistent calculations with effective nucleon-nucleon forces of
the Gogny [1] or Skyrme [2] types as well as the relativistic mean field the-
ory (RMFT) [3] are very successful in describing many features of nuclei.
The theoretical estimates of the binding energy of nuclei which are not far
from stability agree well with the measured data. Nevertheless, the progress
made in experimental nuclear physics over the last years, like discovery of
superheavy nuclei or isotopes close to the proton or neutron drip lines, de-
mand for a more careful checking of the theoretical model predictions and
probably some revision of their parameters.

It is also interesting to see how well other theories work that are sim-
pler than the self-consistent ones in particular the Strutinsky’s macroscopic—
microscopic method [4] and if it is still possible to apply them in order to
calculate successfully properties of nuclei close to the proton or neutron
drip lines. The liquid-drop model, which was recently developed in the
Lublin-Strasbourg collaboration ((LSD) Lublin-Strasbourg Drop) [5], de-
scribes very accurately the binding energies of presently known isotopes [6]
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when the shell, pairing and congruence corrections estimated in Refs [7, 8]
are added to the macroscopic energy. The root-mean-square deviation of
the experimental binding energies versus those predicted by the LSD model
is even smaller than the ones given by other more elaborated theories like
the finite-range droplet [8], the Thomas—Fermi model of Ref. [7] or the self-
consistent Hartree-Fock calculation with the Skyrme forces [2].

Is it possible to extract the shell effects from the self-consistent energy
and obtain an estimate of the macroscopic energy hidden in these models?
This is done successfully, we belive in the present work, for the Skyrme and
Gogny forces and for the relativistic mean field theory (RMFT).

The aim of the present paper is to compare the parameters of the liquid-
drop models like the historical one of Myers and Swiatecki [9] or the of
the LSD [5] parametrization either with the liquid-drop parameters which
approximate on the average the binding energies evaluated in the Hartree—
Fock (HF') self-consistent calculations with the Gogny force [10] or within the
RMFT [11]. We are also going to find the average (macroscopic) positions
of the proton and neutron drip lines as well as the fission limit (vanishing
macroscopic fission barrier) predicted by these macroscopic models.

In Sec. 2 an overview of the Gogny-HFB model and the RMFT is given
and the way in which we remove the shell effects from the self-consistent
energies is described. The liquid-drop formulae for the macroscopic part of
the binding energy are recalled. In Sec. 3 the Gogny and RMF'T liquid-drop
parameters are compared with those of other phenomenological models. The
average positions of the S-stability valley and the proton and neutron drip
lines predicted by these models are evaluated. The zero-hight limit of the
LD fission barrier is determined. At the end of the paper conclusions are
gathered and perspectives for further investigation proposed.

2. Theory

2.1. Gogny force

The Gogny density-dependent effective nucleon—nucleon force is of the
following form [1]

+1 Wi (61—V2)><5(_'1—_'2)(V1—V2)'(5’1+52) (1)
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which contains a central finite-range interaction, a zero-range spin-orbit term
and a zero-range density dependent interaction, to which one has to add the
Coulomb interaction in the case of protons. The central interaction is made
up of two Gaussians one attractive, one repulswe with ranges p; and po
whose values are given below. Pa and Pr denote the spin and isospin
exchange operators respectively, and p represents the total density. We use
the Gogny D1S [1] interaction, the parameters of which are given below

W, = —1720.30MeV, Wy, = 103.639MeV,
B; = 1300.00 MeV, B, = —163.483MeV,

H, = -—1813.53MeV, H, = 162.812MeV,

M, = 1397.60MeV, M, = —223.934MeV, (2)
W = 0.7 fm, 42 = 1.2 fm,

to = 1390.6 MeV fm*(*) 4o = 1,

yooo= 1/3, Wis =  130MeV fm’.

When pairing correlations are neglected, the HFB approach reduces to the
Hartree-Fock (HF) method which determines a self-consistent approxima-
tion of the nuclear mean-field. The corresponding ground state energy Epp
includes a contribution Fgpen from shell effects which can be evaluated by
applying the Strutinsky smearing procedure [4] to the HF single-particle
level distribution. Subtracting Egpen from the self-consistent HF energy one
obtains an energy which can be considered as a macroscopic, liquid-drop like
contribution FEyacr.

2.2. Relativistic mean field theory
The RMFT is based on the Lagrangian density

L =

<

) o 1+
i [’Y“ <13;¢ — JuWy — GpPp T — eT?’A“) - M - 900] i
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+=(00)? — <§m302 + 59203 + 19304)

m2p? — —F,, F" (3)
It consists of nucleon (barion) fields 9 and electromagnetic fields A | the

w, p mesons fields with scalar (central), vector, and tensor term and the
nonlinear ¢ meson potential, where

V= 9 — 9t
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RW = 9" — 85" — go (7" % ),
FH = 9RAY — Q¥ AP (4)

The masses of nucleons M and mesons m,, m,, m, and the coupling
constants gu, gp, 9o, g2, g3 are the free parameters of the RMFT. The NL3 3]
set of parameters is chosen in our calculations

M =939 MeV, 9o = 10.217,
me = 508.194 MeV, g, = 12.868,
m, =782.501 MeV, g, = 4.474,
m, =763.000 MeV, gy = —10.431/fm,
g3 = —28.885. (5)

2.8. Strutinsky renormalization

The single-particle level scheme obtained within the self-consistent cal-
culation (SCC) is used together with the Strutinsky shell-correction method
to evaluate the shell correction Fge to the binding energy.

Eghen = Z 2ey — E, (6)

occ

where the sum runs over all occupied levels. The single particle levels up
to a cut-off energy of A + 15 MeV, are used to obtain the smoothed energy
from the Strutinsky integral

A
E=2 / ep(e) de. (7)

The average level density p(e) was obtained by smoothing of the single-
particle level density p(e) = >, d(e—e,) with the Gauss function multiplied
by the 6th order correction polynomial f

ple) = #71)(4) (=) ( ;e') e’ )

The width parameter of the Gauss function v = 1.2hw with Aw = 40
A~'3MeV corresponds to the average position of the Strutinsky plateau
condition of shell corrections for the chosen 150 spherical even—even nuclei.
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The macroscopic part of the binding energy is equal to the difference
between the self-consistently calculated energy without pairing interaction
and the total (neutron plus proton) shell correction

Emacr = Enr — Ejoy — El o - (9)

These values evaluated for several mass numbers A and isospins I =
(N — Z)/A are approximated by the Myers—Swiatecki type formula [9]

Emacr = Evol + Esurf + Ecur + ECoul ’ (10)
Emacr(Za A) = —byol (1 — Ryol 12) A + bgurt (1 — Rsurf 12) A2/3

72 72

+ beur (1 — Kcur 12) A1/3 + bCoulm - Cy—, (11)

where bcogy is connected with the charge-radius parameter rgh by

3 e2
b = —-—. 12
Coul 5 ’I"Sh ( )
3. Results

The Gogny-HFB with the D1S force and the RMFT calculations with
the NL3 set of parameters were performed in Refs [10,11] for those 150 even—
even nuclei between the proton and neutron drip lines which have according
to Ref. [8] a quadrupole moment almost equal to zero. These are: 3850Ca,
82-90Qy 96-140Gy 80-84Gy, 162-220p} jsotopes, N = 50 with A = 86-92,
N =82 with A = 122-164, and N = 126 with A = 174-224 isotones and 30
other spherical nuclei along the § stability line.

3.1. Liquid-drop parameters

In Fig. 1 we can see the RMFT (solid lines) shell corrections evaluated
in Ref. [11] in comparison with the results of Ref. [10] (dashed lines) ob-
tained for the Gogny force. In the first panel of the multi-plot one can
see the dependence on A of the neutron shell correction for six groups of
Ca—Th isotopes, in the middle the proton shell corrections for three groups of
N = 50,82,126 isotones and on the r.h.s. the neutron shell corrections for 3
stable isotopes. The proton shell corrections for the isotopes (left and right
panel) and the neutron shell corrections for the isotones (middle panel) are
practically constant as functions of A.

One notices that the shell corrections obtained in both theoretical models
are, indeed, very similar. They show minima for the same magic numbers
of one kind nuclei and differ from each other by not more than a few MeV.



1782 B. NERLO-POMORSKA, K. MAZUREK, M. KLEBAN

30

w
o
w
o

T
20 |- B 20 Gogny ------ - 20 |- Gogny ------ -
=10 - B =10 | — =10 - E
g g VARLY I I
2o} _ = ot AVl A :o—,‘l'w \ﬁ I
g g 2 ‘
w10 + 4 %o - | 4  wfo - ’
20 - e 20 | — 20 - Bstable E
Ca SrsnsSm Pb Th N=50N=82 N=126
.30 P I R B .30 P I N .30 PR I T R N
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
A A A

Fig. 1. Shell corrections obtained within the RMFT (solid lines) and with the Gogny
force (dashed lines) as function of the mass number A. Neutron shell corrections
(left) of Ca—Th isotopes, proton shell corrections for the N = 50, 82,126 isotones
(middle) and neutron shell corrections for the § stable nuclei (right).

The estimates of the macroscopic part of the HF—-Gogny and RMFT
binding energies obtained by subtracting the total shell correction from the
self-consistent energy were used to find the parameters of the corresponding
liquid-drop formula (11) by the least-square fit procedure. The resulting
values of the parameters are compared in Table I with the traditional (MS-
1966) Myers—Swiatecki liquid-drop formula [9] and the modern phenomeno-
logical approach without (MS-2002) and with the curvature term (LSD) [5]
fitted to presently available experimental masses [6] (using the microscopic
(shell+pairing+deformation) energy corrections from Ref. [8]). During the
last 35 years, as one can see in Table I, the liquid-drop parameters reproduc-
ing the experimental data did not change very much. The macroscopic part

TABLE 1
The macroscopic energy parameters [11].

parameter | unit = MS-1966  MS-2002 LSD RMFT  Gogny
byol MeV 15.667 15.848 15.492 15.185 15.649
Kol 1.790 1.848 1.860 1.657 1.916
bsurf MeV 18.560 19.386 16.971 16.811  18.928
Ksurf 1.790 1.983 2.294 1.209 2.108
beur MeV — — 3.860 — —
Keur — — —2.376 — —
rgh fm 1.205 1.190 1.217 1.264 1.188
Cy MeV 1.211 1.200 0.918 1.299 2.015
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of the binding energies obtained with the Gogny force [10] is described by
the set of LD parameters which is close to the newest fit (MS-2002) of the
LD parameters to the experimental masses. The results obtained within the
RMFT correspond to smaller values of the volume and the surface energies,
while the Coulomb energy radius constant equal to 1.264 fm is substantially
larger than its present phenomenological value (1.191 fm). On the con-
trary, the RMF'T estimate of the Coulomb charge diffuseness parameter Cy
is much closer to its ‘experimental’ value as compared to the Gogny’s value.
The isospin dependence of the volume and the surface energies is weaker in
the RMFT than the experimental one, while the Gogny force gives a slightly
stronger dependence of both energies than the phenomenological (MS-2002)
one.

It is rather difficult to discuss directly the parameters of the LSD ap-
proach because contrary to the other models it contains a curvature term,
which slightly modifies volume and surface energy. Some features of the
LSD model could be considered only after performing calculations for some
series of isotopes, isotones as well as along the [-stability line. We are
comparing the considered models in Fig. 2, where the differences of the
LSD binding energy [5] and the corresponding energies evaluated using the
Thomas—Fermi approximation [7] (solid lines), the old liquid-drop model of
Myers and Swiatecki [9] (dashed lines), the macroscopic approximations of
the RMFT [11] (long dashed lines), and the Gogny-HFB results [10] (dotted
lines) are given. The Thomas—Fermi binding energy is almost (except for
very neutron deficient isotones) equal to the LSD estimates. The RMFT
gives on average the largest absolute value of binding energy and its differ-
ence with respect the LSD prediction reaches up to 40 MeV for the heaviest
nuclei. The Gogny results are close to the ones obtained with the LSD when
the light -stable nuclei are considered but for nuclei far from stability the
Gogny energy is as a rule larger than the LSD one. The old liquid-drop
model slightly overestimates the binding energies of nuclei.

All considered liquid-drop models give almost the same position of the
[B-stability line. In Fig. 3 a few cross-sections of the binding energy surface
corresponding to A = const are plotted as functions of the number of neu-
trons (N). The curves corresponding to different A are shifted in such a way
that the minimum of the LSD energy corresponds to zero. The stiffness of
the parabola corresponding to the different models listed in Table I dimin-
ishes with growing mass number A. The stiffness evaluated with the Gogny
model is the smallest.

It is very interesting how the limits of stability are predicted by the liquid-
drop models discussed in this paper. The proton drip line corresponds to
the zero separation energy of two protons, i.e.

Sop(Z,A) = Emace(Z +1,A+1) — Enaer(Z —1,A-1) =0, (13)
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Fig.2. Comparison of the macroscopic binding energies evaluated in the Thomas—
Fermi model [7], extracted from the Gogny—HFB [10] and RMFT [11] self-consistent
calculation and the traditional Myers-Swiatecki [9] liquid-drop with the results
obtained with the LSD [5].

while the neutron drip-line is connected with the zero separation energy of
two neutrons, ¢.e.

Son(Z,A) = Enacr(Z,A+ 1) — Enacr(Z,A—1)=0. (14)

The B-stability line corresponds to the minimum of the nuclear energy when
the mass number is kept constant

<—‘9Emw(z’ A)) =0 (15)
ON A=const
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Fig.3. A = const cross-sections of the macroscopic binding energies evaluated in
the models listed in Table I as functions of the neutron number (N).

as shown on in Fig. 3. We have found that all estimates of the position of
the S-stability line predicted by the models listed in Table I are close to each
other and very well approximated by the Green formula

0.4A2

N-Z=—""_,
200 + A

(16)

The other end of stability is connected with the vanishing of the fission
barrier. The liquid-drop model gives the following estimates of this limit

ECoul
r= = 1 5 17
2(E’surf + Ecur) ( )

where z is the so-called fissility parameter.

All these parabolas corresponding to the LSD (solid lines), Gogny (dashed
lines) and RMFT (dotted lines) macroscopic models are plotted in Fig. 4 on
the (N, Z) plane. It is seen that all models give nearly the same estimates of
the position of the proton drip-line while the neutron drip-lines are different.
The RMFT predicts on average the existence of a larger excess of neutrons
than the Gogny model, the LSD results are in between.

The fission barrier predicted by the LSD model vanishes already at pro-
ton number Z = 114 while in the macroscopic model extracted for the Gogny
force the barrier goes to zero around Z = 120. The RMFT estimates are
between these two limits.
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Fig.4. f-stability line and the proton (S, = 0) and neutron (Ss, = 0) drip-lines
as well as the LD fission limit (2 = 1) estimated using the LSD, Gogny and RMF
models (see Table I).

All above analysis is made within the macroscopic models and the true
limits of stability can of course be different due to the importance of shell
effects.

4. Conclusions

The following conclusions can be drawn from our investigation:

1. The shell corrections obtained in the RMFT with the NL3 set of pa-
rameters and within the Hartree—Fock mean-field calculation with the
Gogny D1S force are similar.

2. The volume and surface part of the binding energy in the RMFT
are smaller than the corresponding energies obtained with the Gogny
model [10] as well as those fitted to the experimental masses [5,7].

3. The isospin dependence of the volume and surface term obtained within
the RMFT is too small in comparison with the experimental data.

4. The position of the (-stability and proton drip-lines are almost the
same in all considered macroscopic models while the neutron drip-line
predicted within the RMFT is shifted towards larger N as compared
to the Gogny or LSD estimates.

Similar effects for deformed nuclei with the Gogny forces and various
sets of RMFT parameters are under investigation.
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