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The quadrupole excitations of transuranic nuclei are described in the
frame of the microscopic Bohr Hamiltonian modified by adding the cou-
pling with the collective pairing vibrations. The energies of the states from
the ground-state bands in U to No even—even isotopes as well as the B(E2)
transition probabilities are reproduced within the model containing no ad-
justable parameters.
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1. Introduction

The evidence of excited states of transuranic, or even transfermium
Z > 100 nuclei has significantly enriched in last years due to the enor-
mous progress in the experimental techniques. These nuclei are especially
interesting with regard to their nearness to the super-heavy mass region,
for instance the spectroscopic measurements performed for 2°2No and 2°*No
Ref. [1-4] gave us an insight into the structure of Z = 102 isotopes.

The nuclei from this region are axially deformed and their ground state
bands are well described by the rotational model as was already shown e.g. in
Ref. [5] on basis of the HFB calculations. However, the proper description
of higher states from the ground state band as well as of other excited
collective states can be only achieved when one adds at least the coupling
of the rotational motion with the quadrupole shape vibrations. Also, the
influence of the pairing correlations is not negligible and the corresponding
collective modes [6] should be taken into account.
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Recently we have developed [7] a microscopic quadrupole plus pairing
collective Hamiltonian which describes well the low-lying nuclear excita-
tions. Our model, which is essentially a generalization of the collective Bohr
Hamiltonian [8-10], was successfully applied in the wide range of transitional
nuclei from neutron-rich Ru isotopes up to rare earth nuclei [11-13]. The
aim of the present study is to check how our model works in the region of
the heaviest nuclei.

2. Description of the model

Following the idea of the generalized Bohr Hamiltonian we construct
a similar collective Hamiltonian but in a more extensive space of collective
variables. To the five usual quadrupole degrees of freedom, namely the two
Bohr deformation parameters, 8 and <y, describing the nuclear shape in the
intrinsic frame of reference and the three Euler angles denoted as (2, which
determine the orientation of the principal axes of nucleus with respect to
the laboratory axes, we add the next four variables describing the pairing
correlations of protons and neutrons in the nucleus. These are: the proton
and neutron pairing gap parameters, AP and A™, which describe the pairing
vibrations, and the proton and neutron gauge angles, ®? and @" parame-
terizing rotations in the gauge space i.e. changes in numbers of protons and
neutrons in the system.

The full Bohr Hamiltonian in the “quadrupole plus pairing” collective
space is the sum of kinetic and potential collective energies. The former
is the second order differential operator in all the nine collective variables
and contains various second order mixed derivatives. The latter consists
of the deformation and pairing potentials. It is rather difficult to solve
the nine-dimensional eigenvalue problem for such a Hamiltonian in its most
general form. We have not solved this complicated problem as yet. Up
to now we usually assume that a coupling between the quadrupole and the
pairing degrees of freedom in the kinetic energy is weak and neglect all mixed
derivatives over a quadrupole and a pairing variable. Then, the collective
Hamiltonian is separated into the quadrupole and the pairing parts, namely

Heqr = Haq(B,7, 2; AP, A™) + Hep (AP, P, A™ @™ 5, ) . (1)

However, this does not mean at all that the quadrupole and pairing degrees
of freedom are decoupled completely from each other. We are going to take
approximately the quadrupole-pairing coupling into account in the following.

The operator 7:lcQ describes the quadrupole excitations (vibrations and
rotations) of nucleus and takes the form of the usual generalized Bohr Hamil-
tonian [8,9]

Heq = Toin(B,7; AP, A™) + Teor(B, 7y, 25 AP, A™) + Veon (B, v; AP, A™) . (2)
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Here Viop is the collective potential, the kinetic vibrational energy reads

. K2 1 1
Teib = —W{j [3ﬂ <IB4\/§B,7785) —85 </83\/gB/376’Y>] +m
X [—87 <\/gsin 3’)/3/3#9/3) + %67 <\/§Sin 3’73/3B) 87] } ) (3)

and the rotational energy is
1 12
Trot = = E “k 4
rot 92 P jk ( )

~ The intrinsic components of the total angular momentum are denoted as
Iy, (k =1,2,3), while w and r are the determinants of the vibrational and
rotational mass tensors. The mass parameters Bgg, Bg, and B,, and three
principal moments of inertia Jx, (k = 1,2,3) depend on intrinsic variables
8,7 and pairing gap values AP, A™. All inertial functions are determined
from a microscopic theory. We apply the standard cranking method to
evaluate the inertial functions assuming that the nucleus is a system of nu-
cleons moving in the deformed mean field (Nilsson potential) and interacting
through monopole pairing forces. One has to stress that for A corresponding
to the minimum of the BCS energy the operator 7:lcQ is exactly the same
as the Bohr Hamiltonian used in Ref. [9].

For a given nucleus (no pairing rotation) the second term in Eq. (1)
describes collective pairing vibrations of systems of Z protons and A — Z
neutrons . . .

Hop = Hp + 17 (5)

and it can be expressed in the following form [6,18]:

oy 0 VoA 0y, (6)

P = T Ja(d) 0A Baa(A) 94 T

where N' = Z, A = AP for protons and, respectively, N = A — Z, A = A"
for neutrons. The functions appearing in the Hamiltonian (6), namely the
pairing mass parameter Baa(A), the determinant of the metric tensor g(A)
and the collective pairing potential Vj,air(A) are obtained microscopically.
We are interested in taking approximately an effect of the pairing vi-
brations on the quadrupole excitations into account. Therefore, we solve
the eigenvalue problem for the Hamiltonian of Eq. (1) in two steps. First,
we find the pairing collective excitations at given deformations and next,
we modify the Schrédinger equation for the quadrupole motion allowing
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for the zero-point pairing vibrations. This is an approach similar to the
Born—-Oppenheimer approximation for molecules where one first finds the
electronic motion at given positions of nuclei and next takes an effect of the
electronic binding on the molecular vibrational and rotational excitations
into account.

Solving the eigenproblem of the collective pairing Hamiltonian (6) one
can find the pairing vibrational ground-state wave function ¥, and the
ground-energy Ej at each (f,7) deformation point. The most probable
value of the energy gap Apax corresponds to the maximum of the prob-
ability of finding a given gap value in the collective pairing ground-state
(namely the maximum of the function g(A)[Wo(A)|?). The value of Apayx is
shifted towards smaller gaps from the equilibrium point A, determined by
the minimum of Vi or simply by the BCS formalism. Such a behavior of
the pairing ground state function ¥ is due to the rapid increase of pairing
mass parameter Baa. In general the ratio of Apay to Agq is of about 0.7.

All collective functions appearing in Egs. (3), (4) are calculated using the
most probable pairing gap values for protons and for neutrons instead the
equilibrium ones. The collective potential corresponds to the ground state of
the Hcp Hamiltonian (5) and it is very close to the BCS energy in each 3,y
point. The approximation described above is rather crude but it includes
the main effect of the coupling with the pairing vibrational mode. This pro-
cedure improves significantly the accuracy in reproducing the experimental
data and it introduces no additional parameters into the model.

The nucleon single particle motion is described by the Nilsson (modified
harmonic oscillator) potential with the correction terms

V::orr = —ﬁwo K [2l3 - M(lQ - <l2>N)] : (7)

Parameters «, p are equal k, =0.0635, x,=0.0570, u, = 0.32 and p, = 0.66
are taken from [14] for the mass A = 250.
The dependence of the strengths of the pairing forces on the nucleon num-

ber is assumed as G = go - /NT2 / 3, where 7 denotes protons or neutrons. The
parameters go r are taken from [15|, where they have been estimated from
mass differences and they are equal gon = 0.267 Aiwg and gop, = 0.284 hwy for
the pairing window (i.e. levels taken into account) includes the same number
of levels equal to +/15N,; below and above the Fermi level. Moreover, we
use an approximate projection of the BCS wave function on a good particle
number, which modifies formula for the BCS energy [16].

The collective energy is calculated by Strutinsky microscopic-macro-
scopic method. The moments of inertia and mass parameters are deter-
mined within the cranking model. We have used a new parameterization of
the macroscopic (liquid drop) energy which contains the dependence on the
curvature of a surface of a nucleus (LSD) from [17].
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The potential energy, mass parameters and electric moments have been
computed in 188 points in the (3,7) sextant (0,0.75) x (0°,60°).

The collective quadrupole motion is described by the generalized Bohr
Hamiltonian, the method of solving its eigenproblem is the same as in [7].
There are two parameters that determine the basis we use in the collec-
tive space: s and m. The former enters in the common exponential factor
e~ (128)/2 of the basis functions while the latter (n) determines the trunca-
tion of the basis and is equal to the highest order of the polynomial in f.
All calculations have been made with the choice us = 12 and n = 36. The
consequence of such rather large value of n is that the results are insensitive
against the changes of uo in a quite big range 10 < o < 15.

3. Results

The results presented here are rather preliminary because our model does
not contain the deformations of multi-polarities higher than 2. Nevertheless,
the theoretical energies of the ground-state bands for U, Pu, Cm, Cf, Fm,
and No isotopes are close to the experimental data as it can be seen in Fig. 1.

The calculated values for 27 states are connected in Fig. 1 by full lines
while corresponding experimental points taken from Refs. [1,2,4| are marked
with diamonds. For 4T states we have used the dashed lines and triangles, for
6T states — the dotted lines and circles and for 8 states — the dot-dashed
lines and crosses. The agreement of the theoretical estimates of the energies
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Fig. 1. The ground state band energies of in even—even transuranic isotopes.
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of the 2% and 47 states is good. The energies of the 67 and 8T states are
overestimated for the isotopes with Z < 100 while for Fm and No isotopes
the calculated energies of these states are very close to the experimental
data.

The reduced B(E2) transition probabilities within the members of the
ground-state band are shown in Fig. 2 for the considered transactinide nuclei.
The theoretical values of the 2% — 0% transitions are connected by the
full lines while corresponding experimental [4] points are marked with the
diamonds. For 4T — 2% transitions we have used the dashed lines and
triangles, for 67 — 47 transitions the dotted lines and circles and for 8 —
67 transitions the dot-dashed lines (no experimental evidence). The empty
points for No isotopes represent some estimations found in Ref. [3| for the
27 — 07 transitions. It is seen in Fig. 2 that the theoretical values of B(E2)
are too small by approximately 20% with respect to the measured data.
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Fig.2. The reduced E2 transition probabilities in the ground-state bands of
transuranic nuclei.

The calculated reduced matrix elements of the electric quadrupole op-
erator in the states from the ground-state band are presented in Fig. 3 for
nuclei from the same region. As previously the full, dashed, dotted and
dot-dashed lines correspond to the 2%, 4%, 6T and 8% states, respectively.
All values remain nearly constant when the number of neutron grows.
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ground-state band.
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Fig.3. The reduced matrix elements of the electric quadrupole operator in the
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In Fig. 4 the dependences of the theoretical energies of the first 2] (Lh.s.
map) and of the second 25 (r.h.s. map) excited states are plotted as a func-
tion of N and Z. The smallest energy of the 2% state is predicted for 248Fm
isotope which has the largest quadrupole deformation as it will be seen later.
The energy of the 2; state in 2°?Fm is the largest one and it is twice as large
as the corresponding energy in the 233U isotope.
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Fig.4. The contour plot of the energy of the first 21 (the left map) and of the
second 23 excited state (the right map) on (Z, N) plane.
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A similar dependence of the energy of the second 0% state on the number of
protons and neutrons is shown in Fig. 5. For all nuclei from the considered
mass region the energy of the 0T stateisapproximately 30% larger than the
energy of the 27 state and it shows similar shell structure, maximum for 2>2Fm.
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Fig.5. The same as Fig. 4 but for the 0] state.

The expectation values of the quadrupole axial 8 (the left map) and non-
axial v (the right map) deformation in the ground-state wave function is plot-
ted in Fig. 6 on the (Z, N) plane. The corresponding average deformations
in the ground state bands are growing very slowly with angular momentum,
for example for 2% state the average 8 appears of at most 0.001 and the
average y of at most 0.05° greater than the expectation ground-state value.
The average value of f3 is the largest one in 246Cm isotope while the nucleus
248Fm has the smallest mean value of the nonaxial deformation (y ~ 10°).
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Fig.6. The average value of 3 (the left map) and 7 (the right map) deformation
in the ground-state wave function as a function of the number of protons Z and
neutrons N.
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Similar data as in Fig. 6 but for the second 27 and 0% excited states are
shown in Fig. 7 and in Fig. 8, respectively. It is seen that the change of the
average deformation of the system is strictly correlated with the variance of
the energy of the 2;’ and 0; states as it was seen in Figs. 4 and 5.
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Fig. 7. The same as in Fig. 6 but for the 25 state.

The relative differences between the first 27 state energy obtained with
the generalized Bohr Hamiltonian Fi, and similar energy evaluated in the
minimum of the collective nuclear potential within the pure rotational model
with the cranking moment of inertia E..; are plotted in Fig. 9 as function
of proton and neutron number. The lL.h.s. plot corresponds to the cranking
moment of inertia evaluated in the BCS minimum of the total energy while
the r.h.s. one to the rotational energy obtained with the moment of inertia
calculated with the most probable pairing gaps (EI%t). The 27 state energies
obtained with the standard pairing strength in the pure rotational model are
on average by 20% larger than those evaluated in our model and around 15%
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Fig.8. The same as in Fig. 6 but for the 05 state.




1798 K. ZAJAC ET AL.

(Erot - Eth )/Eth (Efdt - Eth )/ Etn

/{,\\W;\/
4%
154—/_10%_1 \f\ o=
152416 o- I —
b >

| A% — gt 1o ]

156

154+

1521

4%
150 150 o TS O
-14%
148 1481 - ) b
_14"/0\__ o)
A2% P
146 SN 146 —  —
92 94 96 98 100 102 92 94 96 98 100 102

4 Z

Fig.9. The relative differences between the energies of the first 21 state obtained
in our theory (Ey,) and in the pure rotational model (Eyqy)-

smaller when one uses the most probable A in the microscopic calculations of
the cranking moments of inertia. This result shows that the rotational model
can not describe propely the energies of the ground state band members
when the standard pairing correlations are used.

4. Conclusions

Concluding, we may say that adding of the coupling with the pairing
vibrations to the generalized Bohr Hamiltonian improves significantly the
quality of theoretical estimates for the even—even heaviest nuclei. We have
shown that the coupling between quadrupole and pairing collective degrees
of freedom brings the energy levels down to the scale comparable with that
characteristic for the experimental levels.

In spite of some simplicity of the Nilsson single-particle potential our ap-
proximation works good in this rather extreme mass region and a reasonable
agreement with the experimental data is obtained without any adjustment
of the parameters. It confirms that our model takes into account the main
features of the collective nuclear excitations of the transactinide nuclei. Also
we would like to point out that the rotational character of the ground-state
bands in Pu and No isotopes was manifested in our model.

The work is partly supported by the Polish State Committee for Scientific
Research under Contract No. 2P03B 04119 and 5PO3B 01421.
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