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A macroscopic model for calculating potential energy for nuclear shapes
relevant in fusion and fission processes is presented. The potential energy is
calculated as the sum of the Yukawa-plus-exponential folding potential and
the Coulomb energy assuming realistic, diffuse charge distributions. Shape
independent components (e.g. the Coulomb exchange and Wigner terms)
in the Krappe—Nix—Sierk formulae for the total energy were combined and
adjusted to the experimental ground state masses of the compound nucleus
(for the mononuclear regime), and two separated nuclei (for the binary
regime), and assumed to change in the transition region between these two
regimes. We have used experimental data on heights of the saddle point
(experimental fission barriers) and the interaction barrier (experimentally
deduced fusion barriers) to verify our model calculations. Very good agree-
ment with the fission barrier data proved correctness of our description of
the shell-correction energies. Predictions of the interaction barriers also
agree very well with experimental data. The calculated interaction barriers
are significantly lower than those predicted with the “proximity potential”,
and agree with the experimentally deduced fusion barriers.

PACS numbers: 25.85.—w, 25.70.Jj

1. Introduction

Good knowledge of the potential energy of a given nuclear system in the
multidimensional space of deformation degrees of freedom is essential for
realistic description of the dynamics of heavy ion collisions. In our previous
calculations [1], potential energy was taken as the sum of the Coulomb and
nuclear components, the latter calculated using the Yukawa-plus-exponential
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potential [2]. In addition, shell-correction energies were also taken into ac-
count. We found them to be crucial for reproducing experimental fission
barriers.

In the previous paper [1] we focused our analysis on the determination of
fission barriers in heavy nuclei, defined as the energy of the saddle point rel-
ative to the ground-state of the compound nucleus. In the present work we
aimed additionally at constructing the potential energy surface for describing
nucleus-nucleus collisions, for which the reference level of the ground-state
energy of the compound nucleus is less convenient. We have chosen therefore
the energy of two colliding nuclei in their ground states (i.e. at the infinite
relative distance) as the reference level. Potential energy for the mononu-
clear shape (calculated without constant terms, independent of deformation)
was matched to exact value of the ground-state mass (experimental or the-
oretical) of the compound nucleus, and similarly, the calculated potential
energy of two separated nuclei at the infinite distance was matched to the
sum of their ground-state masses. In this approach both, the experimen-
tal fission barriers and the entrance-channel fusion barriers were used for
verifying correctness of our calculations.

2. Parametrization of nuclear shapes

We assume shapes which are axially symmetric and consisting of two
spheres of radii Ry and Ry connected smoothly by a portion of a quadratic
surface of revolution [3]. For the volume conserving shapes there are three
variables defining the shape completely (see Fig. 1):

Fig. 1. Axially symmetric shape of a di-nuclear system, and the definition of the
parameters determining the variables p, A and A in Eqs (1)—(3).

Distance variable p = r/(R1 + Ra), (1)
Deformation or neck variable A = (I +12)/(R1 + Ra), (2)
Asymmetry variable A = (Ry — R2)/(R1 + Ra). (3)
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Fig.2. Shapes of a nuclear system for a fixed asymmetry A = 0.3, plotted as a
function of the distance variable p and the deformation or neck variable A. The
compound-nucleus sphere corresponds to the locus p = A = 0.3. Scission line is
given by the equation A =1 — (1/p).

In Fig. 2 we present shapes as a function of p and A for a fixed value
of A = 0.3, that corresponds to the ratio of mass numbers of the colliding
nuclei equal to 6.4.

3. Calculations of the potential energy

Potential energy of a nuclear system is calculated as the sum of the
macroscopic and microscopic components:

E(Z, N,shape) = Enacr(Z, N,shape) + Epnicr(Z, N, shape) . (4)

The macroscopic component of the potential energy is the sum of the nu-
clear potential taken as the folding potential of the Yukawa-plus-exponential
two-body interaction [2] and the Coulomb potential calculated for the diffuse
charge distribution [4]. The microscopic component is the shell correction
to the potential energy. For the equilibrium shapes, the shell correction is
taken as for the ground state, and is read from the Thomas—Fermi mass
tables of Myers and Swiatecki [5]. These ground-state shell corrections are
then attenuated with the increasing deformation according to a phenomeno-
logical formula proposed by Myers and Swiatecki in Ref. [6]. For more
details concerning calculations of all the components of the potential energy
E(Z, N,shape) see Ref. [1].
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Special care is necessary in accounting for shape-independent components
(for example, the Coulomb exchange term and the Wigner term) in the
Krappe-Nix—Sierk formulae used in our calculations. By requiring adjust-
ment of the calculated potential energy of the fused system to the ground-
state mass of the compound nucleus, and the adjustment of the calculated
potential energy of two separated nuclei at the infinite distance to the sum of
their ground-state masses, we have introduced the correction term to Eq. (4)
that reads:

Eyo(Z, N, shape) = E(Z, N,shape) + (AMo ¢* — AEy(Z, N)) f (shape) , (5)

where AMy = M, — M1 — M, is the difference of the experimental ground-
state mass of the compound nucleus, M¢,, and the ground-state masses of
the projectile and target nuclei, My and My, and AEy(Z, N) is the respective
difference of the calculated potential energy of the compound sphere and the
calculated energies of the projectile and target nuclei.

A value of the form factor f(shape) must be 1 for the fused compound
nucleus and 0 for two separated nuclei. In between, it should smoothly
change in the transition from the mononuclear to dinuclear regime. We
assumed that the form factor f is scaled by the opening of the neck between
the two nuclei. Definite functional form and parametrization of f was chosen
by attempting to reproduce experimental values of fission barriers, and —
at the same time — the entrance-channel fusion barriers. This procedure
led us to the following form of f:

) T Tneck
f(shape) = sin <k2 R ) , (6)
where rpeck 1S an effective radius of the neck at a given distance between the
two nuclei calculated as proposed in Ref. [7], R, is the radius of the com-
pound nucleus, and k is a parameter determining how steep is the transition
of the shape-independent component of the mass formula from the dinuclear
to the mononuclear regime. By fitting both, the fission barriers and fusion
barriers deduced from experimental data, we have determined a value of k
to be kK = 1.6. As it is seen from Fig. 3, for this value of k, the transition
region (where f changes its value from 0 to 1) is relatively narrow in the
plane of (p, ) coordinates, and is located just around the scission line.
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Fig. 3. Localization in the (p, \) plane of the transition region, where the form factor
f, given by Eq. (6), changes its value from 0 to 1. It is seen that the ‘structural’
energy associated with the ground-state mass correction in Eq. (5) rapidly dissolves
in vicinity of the scission line.

4. Results

In Fig. 4 we present an example of a contour plot of the potential en-
ergy for a symmetric (A = 0) nuclear system that combines to the 208Ph
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Fig.4. Potential energy surface for a symmetric A = 0 nuclear system that com-
bines to 2°Pb compound nucleus. Modulation of a strong shell effect with in-
creasing elongation p is clearly seen. At the saddle point (cross), the shell effect
is already completely washed out. Viewing the system from the entrance channel
(a hypothetical }9*Nb + 1%4Nb reaction), one can see a maximum of the potential
energy along the line A = 0, indicated by an arrow, and representing the entrance-

channel interaction barrier.
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compound nucleus. One can read from such a plot the height of the fission
barrier, i.e., the potential energy of the saddle point (indicated in Fig. 4 by
a cross), taken relative to the ground-state energy of the compound nucleus
(corresponding to the locus p = A = 0 in Fig. 4). On the other hand, one
can read also the height of the entrance-channel barrier (indicated in Fig. 4
by an arrow) that in the discussed example refers to a hypothetical collision
of two 1%4Nb nuclei.

4.1. Saddle point energies (fission barriers)

We have applied our model for systematic calculations of fission-barriers
for about 120 nuclei in the range of atomic numbers 71 < Z < 100, for
which the fission barriers had been deduced from experimental data [8-10].
Position of the saddle point in the (p, A) plane was determined for each nu-
cleus and the saddle-point energy was calculated with respect to the ground
state. Results of these calculations are summarized in Fig. 5, where the cal-
culated and experimental fission barriers are compared. It is seen that the
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Fig.5. Comparison of experimental fission barriers [8-10] with results of present
calculations.

agreement between our predictions and experimental values is quite good.
The RMS deviation for the whole set of 120 nuclei is 0.72 MeV. One can
see also that the individual pattern in the dependence of the fission barrier
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on A and Z is very well reproduced for the whole range of studied nuclei.
Figure 5 shows also that for heavy nuclei of Z > 90, the fission barriers
stabilize at almost constant level of about 5 MeV. This is the consequence of
the decreasing macroscopic component of the fission barrier for transuranic
nuclei (practically to zero for Z > 100) and thus the increasing role of the
ground-state shell-correction energy that ultimately remains the only factor
responsible for non-vanishing fission barriers in super-heavy nuclei.

4.2. Entrance-channel barriers

As mentioned in Sec. 3, the potential energy in vicinity of the scission line
is sensitive to structural properties (ground-state masses and shell effects)
of two separated nuclei. The calculated entrance-channel barriers in the
potential energy depend on these structural properties of the projectile and
target nuclei, and can be compared with the fusion barriers determined
experimentally.

Experimental values of the fusion barrier can be deduced from very pre-
cise measurements of the energy dependence of the fusion cross section ofyg
at near-barrier and sub-barrier energies. As shown in Ref. [11], the second
derivative of the product of the cross section times energy, d?(Eoyys)/dE?,
describes the barrier distribution. Thus the average value of the distribution
can be compared with the interaction barrier calculated theoretically.

In Fig. 6 we give an example of the experimental information on the dis-
tribution of the fission barrier d?(FEoy,s)/dE?, obtained in Ref. [12] for the
160 + 1449m reaction. In order to make comparisons with our theoretical
predictions, we fit the d?(Eoy,s)/dE? distribution for a given reaction with a
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Fig. 6. Fusion barrier distribution for the '®O + '*4Sm reaction, taken from Ref. [12]
as an example illustrating the way of determination of the ‘experimental’ fusion
barrier (see text). Solid line is a Gaussian fitted to experimental points. We take
position of the maximum (dashed line) as the ‘experimental’ fusion barrier.
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Gaussian, and define the ‘experimental’ fusion barrier to be the energy cor-
responding to position of the maximum. In such a way, we have determined
the ‘experimental’ fusion barriers for different projectile-target combinations
and compared them with predictions of our model.

The comparison (see Fig. 7) is presented for a number of medium and
heavy systems, for which the barrier heights range from 60 to about 120 MeV.
It is seen that the interaction barriers, calculated within our model, agree
very well with the experimental fusion barriers. One can notice however
that the theoretical barriers are slightly but systematically higher than the
experimental values (on the average, by about 1 MeV). Considerably larger
differences (up to 8 MeV for heaviest systems included in Fig. 7) are seen for
the interaction barriers calculated with the latest version of the proximity
potential [19].
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Fig. 7. Comparison of experimental values of the fusion barrier (deduced from the
measured fusion barrier distributions [12-18]) with results of this work, and also
with predictions based on recent version of the proximity potential [19].

5. Conclusions

We propose a scheme of calculating potential energy of mono- and/or
di-nuclear systems in the configurational space of deformation and mass
asymmetry degrees of freedom. This scheme can be applied for description
of fusion reactions, damped collisions, and also fission reactions.

We performed extensive tests of our method of calculations by using ex-
perimental data on both, fission- and fusion barriers. This provided a con-
sistent, complementary tool of verification of the proposed method through-
out the entire potential energy surface. We can now use our model with
confidence in various applications. For example, we found that our dynami-
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cal calculations of nucleus-nucleus collisions, based on one-body dissipation
model (see e.g. Ref. [20]) led to much better agreement with experimental
data when we applied the new method of calculating the potential energy.
An example of such dynamical calculations is shown in Fig. 8. We calculated
dynamical trajectories for the reaction 8Kr + 66Er studied experimentally
at an energy of 8.18 MeV /nucleon [21]. The classical ‘dissipative deflec-
tion function’ obtained assuming the one-body-dissipation Rayleigh force is
shown in Fig. 8 by dashed line that perfectly follows the ridge in the land-
scape of the double differential cross section, d?c/(d© dE), in the ‘Wilczyn-
ski plot’ for the studied reaction. This fact can be interpreted that both,
conservative and dissipative forces have been calculated correctly. It should
be emphasized here that the process of ‘dissolving’ of nuclear structure in
the transition region from the di-nuclear to mono-nuclear regime plays es-
pecially important role for trajectories leading to the grazing angle and for
slightly smaller impact parameters. We plan therefore to carry out system-
atic calculations of the dissipative deflection functions in order to confirm
our method of calculating the potential energy surface in the transition re-
gion, and then to use those calculations as a tool for detailed studies of the
dynamical range of the mechanism of one-body dissipation.
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Fig.8. Contour diagram of the double differential cross section, d>¢/(dO dE) in
the 86Kr + 66Er reaction [21], as a function of the scattering angle and the total
kinetic energy, compared with the ‘dissipative deflection function’, (dashed line)
calculated assuming one-body dissipation. Adapted from Ref. [21].
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