Vol. 34 (2003) ACTA PHYSICA POLONICA B No 3

BARRIER DISTRIBUTIONS AND SYSTEMATICS
OF FUSION- AND CAPTURE CROSS SECTIONS

K. SIWEK-WILCZYNSKA, I. SKWIRA

Institute of Experimental Physics, Warsaw University
Hoza 69, 00-681 Warsaw, Poland

AND J. WILCZYNSKI

The Andrzej Sottan Institute for Nuclear Studies
05-400 Otwock-Swierk, Poland

(Received October 9, 2002)

Dedicated to Adam Sobiczewski in honour of his 70th birthday

Methods of predicting ‘capture’ cross sections, i.e., cross sections for
sticking of two colliding nuclei after overcoming the interaction barrier, are
presented. Close links between the capture excitation functions and smear-
ing of the interaction barrier are discussed. By using a new ‘polynomial fit’
method of determining d?(Ec)/dE? values, the barrier distributions have
been directly deduced for several precisely measured fusion excitation func-
tions found in the literature, and compared with results of standard ‘point
difference’ method. Existing data on near-barrier fusion- and capture exci-
tation functions for about 50 medium and heavy nucleus—nucleus systems
have been analyzed using a simple formula obtained assuming Gaussian
shape of the barrier distribution. Systematics of the barrier distribution pa-
rameters, the mean barrier and width of the distribution, are presented and
proposed to be used together with the closed-form ‘error function formula’
for predicting unknown capture cross sections in experiments on synthesis
of super-heavy elements.

PACS numbers: 25.70.Jj

1. Introduction

Since many years Adam Sobiczewski’s name associates with spectacular
series of discoveries of new super-heavy elements, the process that consid-
erably extended limits of the periodic table in the transuranium region.
Adam Sobiczewski predicted essential properties of these new exotic nuclei
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long time before experimentalists could present evidence of their formation.
However, with the increasing atomic number of the new elements, experi-
mentalists faced more and more difficulties caused by a dramatic decrease of
the production cross-sections. In the latest experiments in which the heav-
iest elements of Z = 112-116 were observed, the production cross-sections
diminished to a level of 1 picobarn. It became a real challenge for exper-
imentalists to detect and identify a single atomic nucleus during weeks of
measurements. Therefore it is crucial to be able to predict optimum con-
ditions for these experiments, i.e., to determine the best projectile-target
combination and an exact value of the bombarding energy at which the nar-
row excitation function of the production cross-section has its maximum.

2. Distinction between fusion- and capture cross sections

Formation of a heavy nucleus in its ground state can be viewed (see Ref.
[1] and references therein) as a process of successful outcome of three stages:
(1) the overcoming of the interaction barrier in a collision of the projectile
and target nuclei, and formation of a tightly connected composite system
(‘capture’ process), (ii) evolution of the composite system from the capture
configuration to a fully equilibrated compound nucleus (fusion), and (%ii)
deexcitation of the compound nucleus by emission of neutrons or other light
particles and 7 rays — thus avoiding prompt fission (survival). Therefore,
the production cross section for the evaporation-residue nucleus, ogp is given
by the sum of partial-wave contributions of the product of the partial capture
cross section oeapt (£, 1) times the fusion probability Prs(E,[) and times the
survival probability Py (F,1):

o0

opr(E) =12 (21 +1) - T(E,1) - Prus(E, 1) - Poure(B,1) (1)
=0

where X is the wavelength of the colliding system, X\?> = k%/(2uE), and
T(E,l) is the probability of overcoming the entrance-channel potential-
energy barrier for a given angular momentum. In experiments aimed at
production of superheavy nuclei, the energy range of fusion excitation func-
tions is limited to the lowest near-barrier and sub-barrier energies, where
only the lowest partial waves contribute. As the rotational energy of the
composite system is negligible at so low bombarding energies, Eq. (1) can
be factorized in l-integrated form:

UER(E) = Ucapt(E) : Pfus(E) : Psurv(E)- (2)

In collisions of light and medium-mass systems, the factor Ppg=1 be-
cause nearly in all events when the system overcomes the interaction barrier
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— it fuses forming a compound nucleus. However, in case of very heavy
nuclear systems, the fact of overcoming the interaction barrier is not suf-
ficient to guarantee fusion. It was found that often such a heavy compos-
ite system may eventually reseparate after a deep inelastic process called
‘quasi-fission’. It was suggested in Refs. [2,3] that heavy systems need an
‘extra-push’ energy to pass the way from the capture configuration to much
more compact shape at the saddle point. In realistic dynamical models with
inclusion of fluctuations, the extra push effect will translate into a consider-
able decrease of fusion probability, the fusion hindrance factor P < 1. A
theory of the hindrance phenomenon, based on the Smoluchowski equation,
and estimates of the hindrance factor for reactions used for production of
superheavy elements, have been given in Ref. [1|. Similar interpretation of
the hindrance factor in terms of the Langevin dynamics has recently been
presented in Ref. [4]. Several phenomenological models were also proposed,
see e.g., [5,6].

3. Capture cross sections

In this article we concentrate on analysis of existing very precise data
on fusion reactions for medium-weight systems. Since for these reactions
Prys = 1, the fusion data automatically provide information on the capture
cross sections ocapt. By extrapolation, this information will then be used
for estimating the capture cross sections in collisions of the heaviest systems
used to produce superheavy nuclei.

It is well known that fusion excitation functions cannot be satisfacto-
rily explained assuming penetration through a well defined barrier in one-
dimensional potential of a colliding nucleus—nucleus system. In order to
reproduce shapes of the fusion excitation functions, especially at low, near-
threshold energies, it is necessary to assume coexistence of different barri-
ers, the effect that results from the coupling to other-than-relative-distance
degrees of freedom. For example, the coupled channels calculations, in-
volving coupling to various collective states, naturally predict noticeable
fusion-barrier distributions.

3.1. Fusion barrier distributions

In 1991 Rowley, Satchler and Stelson [7] demonstrated that the fusion
barrier distribution can be deduced from a precisely measured fusion exci-
tation function by taking the second derivative of the product of the cross
section multiplied by energy,

_ d*(oE)

P(E) = — = (3)
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Fig. 1. Modern, precise measurements [8] of fusion excitation functions (top) en-
able determination of the ‘fusion-barrier distributions’ (bottom), by calculating the
derivative d*>(FEoyys)/dE?, as proposed in Ref. [7]. Adapted from Ref. [8].

Fig. 1 shows two examples of the measured excitation functions and
deduced fusion barrier distributions, taken from a work of Bierman et al. [8].
In the present article we do not discuss specific structural effects relevant for
accounting for the coupling to various collective excited states. These effects
are very sensitive to the smallest details of the measured excitation functions
and their interpretation is often ambiguous. We will concentrate on some
average characteristics of the fusion-barrier distributions that might be used
for predicting fusion- or capture cross sections in the sub-barrier region.

In spite of very high precision of modern measurements of the near-
barrier fusion excitation functions, reliable determination of the barrier dis-
tribution by using Eq. (3) is not easy. A typical approach used in most of
published papers consists in using ‘three-points formula’ or ‘point difference
formula’ (see e.g. a review article by Dasgupta et al. [9]):

d2(Ea):2<(EU)3—(EU)2 (EU)2—(EU)1)< ! ) (1)

dE?2 Es—FE,  FEy—F Es — Ey

where (Eo); are evaluated at energies Fj;, and the value of d?(Eo)/dE?
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is assigned to an energy (E; + 2F3 + E3)/4. Results of this procedure
depend very much on the energy distance between points 1 and 3. As the
barrier distribution is naturally smeared out due to quantum tunneling by
its finite width of FWHM = 2-3 MeV [7], the experimentally deduced barrier
distribution should be smoothed over a similar energy range, and therefore
the energy distance AE = E3 — Fy =~ 2(Ey — E1) is usually chosen to be
4-6 MeV.
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Fig. 2. Fusion excitation functions (top) and the deduced barrier distributions (bot-
tom) for the 1°Ca + 96Zr [10] and 31S + '®Er [24] reactions. The barrier distribu-
tions determined with the standard ‘point difference method’ and the ‘polynomial
fit method’ are shown with full and open circles, respectively. The Gaussian barrier
distributions obtained by fitting the ‘error function formula’, Eq. (8), to the fusion
excitation functions are shown by solid lines (see text).

Figure 2 shows two examples of measured fusion excitation functions
and deduced barrier distributions. In addition, Fig. 3 presents the deduced
barrier distributions for four more reactions induced by 6O projectiles on
different targets. For comparison, we show the same barrier distributions
obtained in an alternative way: Experimental values of E'o were locally fitted
to a second order polynomial by using the least square method,

Eo = a+bE + cE?, (5)

and thus a value of the coefficient in the quadratic term was used to deter-
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Fig.3. The barrier distributions, d?(Eor,s)/dE?, determined with the standard
‘point difference method’ (full circles) and the ‘polynomial fit method’ (open circles)
for fusion reactions of 0 ions with '#4Sm, '**Sm, '#W and 2°®Pb target nuclei.
The Gaussian-barrier distributions obtained by fitting the ‘error function formula’,
Eq. (8), are shown by solid lines. Data taken from Refs. [19] and [17].

mine a value of d?(Ec)/dE? = 2¢. In order to compare the two methods in
identical conditions, we used in the polynomial fit the same range of experi-
mental points AF as in the 3-points method, AE = F3 — F1, and moreover,
a value of d?(Eo)/dE?, determined for a given set of points within the range
AF, was assigned to the same position ¥ = FE5 as in the equivalent calcula-
tion with the 3-points method.

It is seen from Figs. 2 and 3 that both methods yield comparable distri-
butions, although for the same range AFE, the polynomial fit method gives
somewhat less scattered results. As it was emphasized by many authors in
the past (see e.g., Ref. [9]), the deduced barrier distributions depend strongly
on the choice of the energy step between selected consecutive points, Ey, Fs,
and Fj3. Similar dependence is observed when the energy range AF is varied
in the polynomial fit method. Additional uncertainty is connected with very
large errors on the right-hand side of the barrier distribution, an effect due to
flattening of fusion excitation functions at over-the-barrier energies. There-
fore, only the low-energy side of the barrier distribution can be determined
with satisfactory precision.
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3.2. Fusion and/or capture excitation function formula

Discussed above difficulties in precise determination of the barrier distri-
bution and also quite a limited collection of precisely measured fusion exci-
tation functions, suitable for direct determination of the barrier distribution,
led us to a different approach that can be used for a systematic overview of
existing data and possibility to predict fusion excitation functions.

Neglecting structure effects in the barrier distributions, such as the
double-peak shapes observed e.g. in 'O induced reactions, we assume a
Gaussian shape of the barrier distribution:

B) = ——exp (-0, (©

wV 2T 2w

with the mean barrier By and its width w being free parameters to be de-
termined individually for each reaction by comparing predicted fusion exci-
tation function with experimental data. By folding the barrier distribution,
Eq. (6), with the classical expression for the fusion cross section,

B
Ofus = 7TR]23 <1 — E) , (7)

we obtain [1] the following formula for the energy dependence of the fusion
cross section:

w

N [ X7 (1 + erfX) + exp(—X?)] , (8)

2
oms = TRE

where
E — By

= \/§w ) (9)

and erfX is the Gaussian error integral of the argument X. By R we denote
the relative distance corresponding to location of the interaction barrier.
Along with By and w, Rp is a parameter to be determined by fitting Eq. (8)
to experimental data.

In derivation of formula (8), the quantum effect of sub-barrier tunnelling
is not accounted for. However, since the tunnelling only slightly smears
out the fusion excitation function around F = By, its effect is simulated
and accounted for in an effective value of the width w deduced for a given
reaction.

The ‘error function formula’, Eq. (8), represents a very convenient para-
metrization for fusion- and capture excitation functions, especially in the
range of near-barrier energies. In case of capture reactions its validity ex-
tends even to higher energies. However fusion cross sections, determined

X
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in many experiments by measuring the evaporation-residue cross section,
should not be compared with predictions of Eq. (8) at higher energies be-
cause entrance-channel angular-momentum limitations, not accounted for
by Eq. (8), may reduce the fusion cross section at well-above-the-barrier
energies.

4. Analysis of fusion excitation functions

In Fig. 4 we show four examples of measured [8, 10| fusion excitation
functions fitted with formula (8) by using the least x? method. It is seen
that the fusion excitation functions can be reproduced very accurately over
the entire near-barrier energy range where the measured cross sections vary
by four orders of magnitude. The fitting procedure constrains the param-
eters By and w sufficiently to determine the overall shape of the barrier
distribution for a given reaction.
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Fig. 4. Precisely measured fusion cross sections (full circles) in the 4°Ca + 20967
[10] and °Ca + 1920s,'9*Pt [8] reactions. Solid curves have been calculated with
the ‘error function formula’, Eq. (8), for shown values of By and w parameters
(the mean barrier and width of the barrier distribution, respectively), obtained by
minimizing x2.
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We have compared the Gaussian distributions, obtained from fitting for-
mula (8) to experimental data, with the barrier distributions that could be
determined directly either with the point-difference method or the polyno-
mial fit method, see figures 2 and 3. Quite good agreement with directly
determined distributions is observed regarding the overall features, i.e., the
mean barrier energy, distribution width, and absolute values. A great advan-
tage of the proposed method of fitting the excitation functions with Eq. (8)
is that the overall characteristics of the barrier distributions (By, w) can be
obtained even from less precise experimental data that exclude possibility
of reliable determination of the second derivative d?(Eo)/dE?.

By using Eq. (8), we have analysed an ample set of published experimen-
tal data for about 50 medium and heavy nucleus—nucleus systems [8, 10-25].
All the chosen excitation functions have been measured in the near-barrier
range of energies where cross sections are most sensitive to the fusion-barrier
distribution. Our analysis has revealed that the calculated excitation func-
tions only very weakly depend on the variation of the radius parameter Rp

in Eq. (8). Therefore we fixed a value of ry = RB/(Ai/3 + A;/S) = 1.27 fm
(that seemed to fit best all the data), and carried out a systematic analysis
of the whole set of data by varying only two parameters, By and w.

5. Systematics of the barrier-distribution parameters

In order to use Eq. (8) for predicting fusion and capture cross sections
for not yet studied reactions, we attempted to systematize values of the
parameters By and w.

In Fig. 5 we present a compilation of the deduced values of the mean

barrier By plotted as a function of the parameter z = Z1Z2/(Ai/3 + Aé/‘g).
This dependence is very regular and can be approximated by a second order
polynomial function,

By = 0.001362% + 0.782z + 4.2 MeV. (10)

In addition to By values obtained from the analysis of fusion reactions, Fig. 5
includes also the mean barriers deduced from capture data for very heavy
systems, *¥Ca + 208Pb, Fe+208Ph and *¥Ca+238U, studied by Itkis et
al. [25]. (For these heavy systems, capture cross sections have been deter-
mined by measuring the quasi-fission cross sections.) It is important to note
that following our expectations, the parametrization established for near-
barrier fusion of medium mass systems (full circles in Fig. 5) holds also for
description of capture cross sections in reactions of very heavy systems (open
squares). Consequently, one can use Eq. (10) for reasonable predictions of
the mean barrier heights for capture processes in collisions of the heaviest
systems.
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Fig.5. Systematics of the mean barrier By, determined from analysis of fusion-
and capture excitation functions for about 50 nuclear systems, found in the litera-
ture (Refs. [8,10-25]). Results for capture reactions [25] are indicated by different
symbols (squares). Solid line represents parametrization given by Eq. (10).

Contrary to By, the width parameter w does not behave so regularly.
This is not surprising, regarding possible coupling to rotational and vibra-
tional states in the fusing nuclei, the mechanism that strongly influences
effective barrier distributions in the coupled-channels approach. Therefore
it is natural that w depends not only on the ‘global’ parameters, such as
Z and A of the fusing nuclei, but also on their structural characteristics.
Having in mind a simplistic picture of two touching nuclei with vibrating
surfaces causing the smearing of the barrier height, we expect that magni-
tude of the smearing depends on the depth of the nuclear potential V. (The
vibration of nuclear surfaces in the touching configuration can be represented
as vibration of the radius parameter Ry of an effective Saxon—Woods-shaped
nuclear potential relative to a steady Coulomb potential.) The depth Vg of
the nuclear part of the nucleus—nucleus fusion potential can be calculated in
a model-independent way as:

Vb :qus+ccn_01 _C2a (11)

where Qs = (M1 + My — Mey)c? is the fusion Q-value determined by the
ground-state masses of the colliding nuclei, M; and Ms, and the compound
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nucleus, M., and C, Cy and C.y, are the Coulomb energies of these nuclei.
In a parametrization of the standard liquid-drop-model [26], this difference
of the Coulomb energies can be expressed [27] as:

(Z1 + Z2)? zi 7

Cen — C1 — Cy = Cp = 0.7054 - - MeV. (12
oo (A1 + A)t/3 ql8 413 v 12

Fig. 6 displays the deduced values of the width parameter w plotted as a
function of the depth Vj of the nuclear part of the fusion potential. Evidently,
there is a close correlation between these two quantities. One can use this
fact as argument in support of the mentioned above idea of the vibrational
nature of the barrier smearing. Nevertheless, significant dispersion of points
displayed in Fig. 6 shows that not all relevant structural effects are accounted
for in this way.
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Fig.6. Systematics of the width w of the barrier distribution, determined from
analysis of fusion- and capture excitation functions for about 50 nuclear systems,
found in the literature (Refs.[8,10-25]). Results for capture reactions [25] are

indicated by different symbols (squares). Solid line represents parametrization
given by Eq. (13). For definition of the depth of the fusion potential Vj, see text.

Another possible dependence, namely a correlation between the width
parameter w and the height of the ‘adiabatic fusion barrier’ [27] was ex-
amined in Ref. [28] and used then for systematizing w-values. We stay
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however with the correlation between w and V because Vy-values can be
easier evaluated (in comparison with the adiabatic barriers).

The observed correlation between the width of the barrier distribution,
w and the depth Vj of the nuclear part of the fusion potential can be
parametrized as a constant value for relatively light systems, and a quadratic
dependence for heavier systems:

w = 1.6 MeV for Vp < 85MeV, (13a)
w = 1.6+ 0.0011 (Vy — 85)2MeV  for V> 85MeV. (13b)

This dependence is shown in Fig. 6 by solid line.

6. Summary and conclusions

We have studied possible ways of predicting capture cross sections in
nucleus—nucleus collisions at near-barrier and sub-barrier energies, a vital
question for experiments aimed at production of new super-heavy elements.
The capture cross section reflects the probability of overcoming the interac-
tion barrier and therefore is sensitive to the barrier height and its distribu-
tion. We have demonstrated a new computational tool for direct determi-
nation of the barrier distribution by calculating the Rowley’s [7] derivative
d?*(Ec)/dE? from a local fit of a quadratic function to Eco values (“polyno-
mial fit method’). Results obtained with this method look similar to those
obtained with traditional ‘point difference’ method.

From the point of view of predictions of the capture cross section in sub-
barrier region, relevant for experiments on super-heavy elements, deciding
role is played by low-energy tail of the barrier distribution. Therefore we
applied, very successfully, a simple formula for the capture cross section,
derived under assumption of a Gaussian shape of the barrier distribution.
We deduced the barrier distribution parameters, the mean barrier By and the
distribution width w, for an ample set of existing data on near-barrier fusion-
and capture excitation functions for about 50 medium and heavy systems.
A meaningful information on By and w was obtained even for not very
precisely measured excitation functions, for which direct determination of
d*(Ec)/dE? was not possible. The low-energy tails of so determined barrier
distributions perfectly agree with profiles of the distributions determined
directly (for those precisely measured systems for which the direct method
could be applied). Of course, the ‘error function formula’, Eq. (8), ignores
the nuclear structure effects usually appearing (with very large error bars)
at energies above the mean barrier.

We have presented systematics of the barrier-distribution parameters By
and w obtained by fitting fusion- and capture excitation functions with the
‘error function formula’. The mean barrier By turned out to be a smooth
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function of the Coulomb interaction parameter z = Z1Z2/(A%/3 + A;/B)7
but the width parameter w clearly depends on nuclear structure effects.
We have observed a correlation between w and depth of nuclear part of
the nucleus—nucleus fusion potential, Vj, that may account for some nuclear
structure effects via the ground-state masses of the projectile and target
nuclei. However deviations from smooth relation between w and V are
large, that means that not all relevant structural effects are accounted for
in this way.

We propose to use the ‘error function formula’, Eq. (8), with By and w
parameters taken from the established systematics, Eqs. (10) and (13), for
calculating and predicting unknown capture cross sections in planning new
experiments on production of super-heavy elements.
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