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The possible existence of nuclear quasi-molecules built up from '32Sn
components is investigated. The crucial question is whether the extra sta-
bility of the doubly magic '*2Sn nuclei makes them sufficiently rigid to
be able to withstand the strains imposed by their mutual interactions.
It is argued that if the simplest quasi-molecular dumbbell configuration
were found to be (meta-)stable, then triangular and even tetrahedral struc-
tures might have comparable barriers against disintegration and compa-
rable spontaneous fission lifetimes. These are estimated using simplifying
assumptions. As regards the dumbbell’s stability, one may relate this to the
existence of a potential energy pocket in the deformation energy landscape
of a fissioning 2%4Fm nucleus, and to the presence of ‘bimodal’ fission in
heavy Fm isotopes. Further experimental and theoretical studies of such
systems may be relevant for answering the question concerning nuclear
quasi-molecules.

PACS numbers: 25.85.Ca, 21.60.Gx

1. Introduction

It is a pleasure to dedicate this note to Adam Sobiczewski, whose work
I admire and whose friendship T cherish. Adam is widely recognized as
having provided us with a reliable aid in the exploration of the tantalizing
territory of very heavy elements. Together with his co-workers he was in the
forefront of charting the properties of superheavy elements around proton
and neutron numbers Z=114, N=184. Originally this was done with quite
limited computer technology, but the calculations have stood the test of time
to a remarkable degree. This is surely due to the uncompromising integrity
and attention to detail that characterize Adam’s work.
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In my contribution to this volume I would like to take a leap into the
unknown by speculating on the possible existence of quasi-molecular config-
urations consisting of a number of ¥2Sn nuclei in contact. This speculation
is motivated by the circumstance that a doubly magic nucleus like 32Sn is
expected to exhibit solid-like properties [1-3], and that solid components
can be glued together in quasi-molecular clusters by nuclear proximity in-
teractions [4,5]. (In fact, the earliest application of the proximity technique
was described in a 1934 paper on the coagulation of aerosols [6].)

2. Qualitative considerations

The simplest such quasi-molecule would correspond to two '?Sn nuclei
in contact. This configuration could also be regarded as a very deformed
264Fm nucleus on the way to fission. (More specifically, to fission of the
compact, high kinetic energy type [7].) Whether such a quasi-molecular
pocket in the deformation energy map of a fissioning 2Fm nucleus exists,
and what its lifetime would be has, as far as I know, not been answered with
any degree of certainty. But if a quasi-molecular dumbbell were found to be
(meta-) stable, then one can plausibly argue that a triangular quasi-molecule
consisting of three 132Sn nuclei in contact would also be (meta-)stable. This
is because for the triangle the Coulomb-plus-proximity interaction energy, in
its dependence on separation and necking, is approximately just a multiple
(three) of the interaction energy for the dumbbell. (I am assuming that
the energies of the nuclear proximity bonds are approximately additive.)
The argument continues to hold for a four-component tetrahedral quasi-
molecule, but fails for more than four components. (In that case the number
of proximity bonds becomes less than the number of pairwise electrostatic
repulsions.) The cheapest way to disrupt a triangular molecule is to break
a single bond in a ‘scissor’ mode, i.e., by increasing the length of one of its
sides, leaving the other two unchanged. It then follows that the spontaneous
fission lifetime of the triangle — a system with Z = 150, A = 396 —
could be approximately the same as of the dumbbell. [The logarithm of
the lifetime would actually be increased by approximately +/(10/9). This
factor takes account of the effective mass associated with the scissor mode,
which is slightly different than the effective (reduced) mass for the separating
dumbbell.] Note also that after the first bond is broken, and the triangle
stretches out into a linear configuration, the resulting linear molecule, even if
metastable, is unlikely to present a further barrier to the spontaneous fission
of the original triangle.

In addition to the spontaneous lifetime for fission of the hypothetical
Z = 150 nucleus one needs to estimate the lifetimes for alpha and beta
decay (or electron capture). These lifetimes will tend to be lengthened by
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the magicity of the *2Sn components, and by the fact that the electrostatic
energy of the triangle is appreciably less than that of the equivalent sphere
(see Section 4). A further factor that might reduce instabilities is the screen-
ing of the nuclear electrostatic energy by the atomic electrons. For the very
high atomic number in question a fraction of the atomic electrons would be-
come relativistic, would orbit the nucleus at relatively small distances and
would thus tend to neutralize to some extent the nuclear electrostatic energy
[8]. One should also investigate the effect on the (pseudo-chemical) bind-
ing properties of the molecules of adding or subtracting nucleons from the
1328n components. But the primary question to be answered concerns the
existence and lifetime against spontaneous fission of a hypothetical quasi-
molecular dumbbell.

3. Fission barriers and lifetimes

As T mentioned, T am not aware of reliable calculations of the dumbbell
configuration’s stability, so I shall attempt here some kind of rough estimate.
In order to obtain a first orientation, plot the Coulomb energy of the two
approaching ¥2Sn nuclei, reduced by the nuclear proximity attraction cal-
culated for frozen density distributions of the fragments [4]. (Unfreezing the
neck degree of freedom will be considered presently.) The resulting energy
plot, E(approach), is found to have a maximum of 262.4 MeV at an overall
elongation L of the system of 24.1 fm, and a minimum of 251.6 MeV at
L =22.3 fm [9]. Taken with respect to the theoretical ground state energy
of 264Fm, equal to 259.9 MeV [10,11], these numbers become 2.5 MeV and
—8.3 MeV, respectively. The difference gives a barrier against disintegration
of 10.8 MeV. One also finds that if this barrier were to be penetrated by
spontaneous fission, the “exit point” of the penetrability integral would be
at an overall elongation of 25.4 fm, resulting in a total width w of the barrier
of 3.1 fm. The penetrability exponent I of a cubic barrier of height B (in
MeV) and width w (in fm) is given by

I =2.4626+/10/9 wVB, (1)

where the factor 10/9 is appropriate in the case of the triangular molecule,
and 1 in the case of the dumbbell. I have neglected zero-point energy effects.
This gives a lifetime of the order of 1072!+11485 or about 0.31 ns.

I believe this is likely to be an overestimate for the following reason.
The experimental masses of the fragments at infinity include a total shell ef-
fect correction of 2(—11.75 MeV) = —23.5 MeV [10,11], and this correction
will be progressively attenuated as the fragments approach contact. The
same is expected of the change in the Congruence energy of [12]|, which is
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2(—3.61 MeV) for the separate fragments, and —3.61 MeV for the compound
nucleus. In [13,14] it was estimated that the shell correction at contact is
attenuated by 10%, to 90% of its initial value. Assuming that the attenu-
ation of the Congruence energy change is similar, we should increase the
contact energy (which is close to the energy at the minimum) by some
0.1(23.5 + 3.61) = 0.1(27.11) = 2.71 MeV, but by less at the position of
the maximum. This will lower the barrier against disintegration. To esti-
mate by how much, note that the attenuation is expected to be related to
the degree of communication between the two fragments. A measure of this
communication is the Proximity interaction itself, so I shall take the attenu-
ation of the shell-plus-congruence energy to be proportional to the proximity
potential. With this prescription the new interaction energy curve exhibits
a minimum of —4.95 MeV at 22.35 fm, a maximum of 3.45 MeV at 24.05 fm
and an exit point at 25.15 fm [9]. The result is a barrier of 8.4 MeV with
a width of 2.8 fm. This leads to an estimated lifetime of 10724915 5 or
about 1.4 ps. (Note that the energy of the minimum is negative, which
makes the collapse of the molecule to the ground state of 24Fm energeti-
cally forbidden.) Repeating the calculation with an assumed attenuation of
the shell-plus-congruence energy at contact of 20%, we find a lifetime of the
order of 107211691 5 or about 8.0 fms.

The above estimates are based on the frozen density idealization. What
happens when this restriction is removed and a neck is allowed to grow be-
tween the fragments? There are two opposing tendencies that will decide
the outcome. The macroscopic energy, say M, can be reduced by filling the
space between the fragments with a neck, which drastically reduces the sur-
face energy. The reduction can be estimated by comparing the macroscopic
energy of the approaching fragments i.e., the energy E(approach) used above
augmented by 27.11 MeV, with the macroscopic energy of the 264Fm nucleus
along its symmetric fission valley. I find that at the locations of the mini-
mum and maximum of the energy pocket under study, the latter energy is
3.5 MeV and 1.8 MeV above the ground state of 264Fm. It follows that the
macroscopic energy would benefit by 15.3 MeV and 27.8 MeV, respectively,
by the filling of the neck region. Opposed to this is the loss of the (nega-
tive) shell-plus-congruence energy, which will be denoted by S. The price
of this loss would be 27.11 MeV (both at the elongation of the minimum
and of the maximum) if no account were taken of the attenuation of S with
decreasing separation of the fragments. This changes to 23.75 MeV at the
minimum and 26.15 MeV at the maximum in the “10% scenario” (reduction
of S by 10% at contact). In the 20% scenario the corresponding numbers
are 20.4 MeV and 25.2 MeV. The above numbers show that the competing
energies have roughly similar magnitudes, with the shell-plus-congruence re-
sistance to neck growth having the upper hand near the minimum, but the
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macroscopic tendency for neck growth having a slight edge near the maxi-
mum. This is a danger signal that the frozen density approximation may be
failing near the maximum, and that the estimates of the barrier height may
have to be revised.

In order to get a better idea of the possible outcomes of the competition
between the above two tendencies I shall make a rough interpolation of
the energy between the entrance channel fusion valley of two approaching
fragments (assigned a neck parameter v = 0) and the fission valley (assigned
a neck parameter v = 1). I shall denote the shell-plus-congruence energy in
its dependence on v by S(v), with S(0) denoted by Sy and S(1) by S;. The
macroscopic energy will be written as M (v), with M (0) denoted by My and
M(1) by M;. I shall interpolate between M, and M; by a parabola with a
minimum at v = 1 as follows:

M(v) = My + (Mo — My)(1 —v)?. (2)

To represent the attenuation of the shell-plus-congruence correction with
increasing v I shall also use a parabola (inverted) up to its maximum at some
neck coordinate v = vy, where S(v1) = 0, followed by zero for v > 4. Thus:

So(v1—v)?2
S(V) — 7]/% 3 fOI‘ 1% < Vl, (3)
0, forv > .

The reason for introducing vy, which determines the range of the damping
function S(v), is that this range may well be different (smaller) than the
range of the macroscopic interpolation function M (v).

The condition for the neck growth to be inhibited is that the total energy
E(v) = M(v) + S(v) should have a positive slope at v = 0. This will be
satisfied if

Ml—Mo—&>0. (4)
Vi

From what was said before, the quantities entering Eq. (4) have the
following values (in MeV). At the minimum: M; = 3.5, My = 18.8, Sy =
—23.75 (10% scenario), Sy = —20.4 (20% scenario). At the maximum:
M, = 1.8, My = 29.6, Sp = —26.15 (10% scenario), S = —25.2 (20%
scenario).

If My — My — Sy > 0 (this is the case at the minimum of the potential
pocket) Eq. (4) is satisfied for any value of v in the range 0 to 1. But if
M; — My — Sy < 0 (this is the situation at the maximum) then 4y must
be less than —Sy/(My — M;) to prevent neck growth. This translates into
vy < 0.94 or v; < 0.91 in the 10% and 20% scenarios, respectively. Thus,
with v; = 1, there would be a slight tendency for the neck to open around
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the location of the maximum, and the barrier against disintegration and the
deduced lifetime would be a little smaller.

A striking consequence of assuming that v; is less than 1, is the appear-
ance of ‘bimodal’ fission in the topography of the potential energy surface in
the space of the two variables L and v. Two fission valleys are now present,
one along the conventional valley with a filled-in neck (v = 1), and the other
corresponding to more compact shapes (v = 0). The valleys are separated
by a ridge (a maximum along the v variable). Such bimodal fission in Fm
isotopes had been identified experimentally [7]. Calculations, such as those
in [13-15], provide a plausible interpretation of the experimental findings.
In order for our model, represented by Egs. (2), (3), to be in qualitative
agreement with experiments on bimodal fission (and with the above calcu-
lations) we are required to assume v < 1, for example v; = 0.7. Such a
value of 11 would imply that also at the maximum of the pocket the growth
of the neck is inhibited, and there would be no need to revise the lifetime
estimates on that score.

Note that Fig. 10(c) in [14] confirms the existence, in the potential energy
landscape of ?®4Fm, of a pocket that might be regarded as the sought-for
quasi-molecular state. But the hollow is extremely shallow, with a barrier of
the order of an MeV. Whether those calculations are sufficiently realistic in
the relevant region of the deformation-energy space to constitute a serious
argument against a quasi-molecule is not clear. In particular, it may be
relevant that in [14] the Wigner term, together with the A-independent
contribution to nuclear masses, were taken positive, whereas in the present
estimates I consider the congruence energy (which replaces the Wigner term
in the theory of nuclear masses used here) to be negative — see [12]. A more
exhaustive investigation of the existence of a pocket, using for example a
self-consistent Hartree—Fock scheme, would be indicated. But it would be
essential to make sure that such calculations use parameters very accurately
fitted to many ground-state and fission saddle-point masses, and that they
are capable of describing correctly the transition of a single nucleus into two
symmetric fragments.

4. Alpha and beta decay

I am able to report only the roughest kind of estimates concerning the
possible stability against alpha and beta decay of a molecular configuration
consisting of three 32Sn nuclei in contact. By comparing the mass of such
a configuration with the mass of a system in which one of the Sn nuclei
has been replaced by '?8Cd (without changing the distance between the
centers of the components, taken to be 2(1.14)132'/% fm) one deduces that
the energy of the emitted alpha particle would be 13.05 MeV. This implies
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a relatively short lifetime for alpha decay, but a closer analysis would be
required to decide whether it would be the controlling lifetime factor, in
view of the very short spontaneous fission lifetimes estimated in the previous
section. (Assuming instead that the residual system consists of a ¥2Sn
nucleus and two '3°In nuclei implies an alpha particle energy of 8.81 MeV,
i.e., decay to an excited state.)

As regards beta decay, the situation is more clear-cut. Comparing the
masses of triangular systems in which the mass numbers of the three com-
ponents are held fixed at 132, but the atomic number of one of them is
varied from Z = 45 to Z = 52, one finds the lowest mass at Z = 48. With
respect to this mass, the sequence of masses from Z = 45 to Z = 52 is given
(in MeV) by: 12.64, 5.07, 4.05, 0.00, 2.19, 1.00, 10.20, 17.20. (Other assign-
ments of neutrons and protons to the three components do not lower the
above total masses.) Thus the choice of Z = 50 (i.e., three 32Sn compo-
nents) corresponds to a system stable both against beta decay and electron
capture. This system is, in fact, not far from the bottom of the valley of
beta stability smoothed over shell and even—odd effects. This was unex-
pected, since an extrapolation of the conventional valley of beta stability
would make a nucleus with Z = 150 and A = 396 very unstable against
electron capture. The result is explained by the lowering of the Coulomb
energy of the triangle with respect to the Coulomb energy of the equivalent
sphere.

5. Summary and conclusions

I have explored the possibility of making nuclear molecules from '32Sn
components. Whether such a possibility exists hinges on the answer to the
question whether the shell-plus-congruence energy of these doubly magic
nuclei is sufficiently strong to preserve their solid-like characteristics in the
face of the strains imposed by the interactions between them. I formulated
this question in terms of the competition between the macroscopic and the
shell-plus-congruence energies. In view of the approximations made, the an-
swer is not clear-cut, but not entirely discouraging. It would be premature
to dismiss out of hand the possibility that a triangular quasi-molecular state
with atomic number Z=150 and mass number A = 396 might have a lifetime
several orders of magnitude longer than a conventional estimate for a spher-
ical configuration would suggest. The stability and lifetime of a tetrahedral
molecule with Z—200 and A = 528 is still more difficult to estimate reliably.

Information concerning the crucial question of the dumbbell’s stability
might emerge from refined analyses of the spontaneous fission properties of
heavy Fm isotopes. In the distant future, experiments on the scattering
on each other of heavy Sn isotopes, ideally '32Sn on '#2Sn, might throw
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light on the existence of a quasi-molecular state. On the theoretical side,
a more incisive study of the dumbbell and triangle configurations would be
illuminating. In such an effort, guidance from Adam Sobiczewski would, as
always, be invaluable.

I would like to acknowledge the contributions of W.D. Myers in [9], which
were essential for the understanding of the topography of the deformation
energy surfaces discussed here and for the estimates of barrier heights and
spontaneous fission lifetimes. This work was supported in part by the D.O.E.

under contract No. DE-AC03-76SF00098 (LBNL).
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