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1. Introduction

Predictions and structure studies of superheavy elements (SHE) have
been made, since the establishment of the nuclear shell model [1]. Espe-
cially in the last decade, elaborate investigations have been performed of
shell correction energy and thereby of a possible location of the superheavy
island in the nuclear chart. Furthermore, not only about the center of the
island, but also about stability properties of nearby nuclei have been be-
ing investigated, which is useful for the extension of the nuclear chart in
heavy and superheavy elements [2]. On the other hand, studies of nuclear
reaction mechanisms have not been developed so much, though so-called
fusion-hindrance was experimentally found to exist in heavy ion fusions and
inferred to be due to energy dissipation [3]. That is, there is no reliable the-
oretical framework which enables us to predict fusion probability of massive
systems and thereby residue cross sections of SHE properly. Thus, which
combination of incident ions is most promising and what incident energy is
an optimum is not yet predicted theoretically. Therefore, the fusion experi-
ments have been performed, based on systematics of data available so far [4].

(1927)
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Based on the reaction theory of the compound nucleus [5], residue cross
sections are given as follows,

2
o=7TX E(QJ + 1) Pf{lsion PS{II‘V’ (1)

where X is the wave length divided by 27 and J the total angular momen-
tum of the system. Prygion and Payy are fusion and survival probabilities,
respectively. In the present paper, we discuss several difficult problems in-
herent in synthesis of the superheavy elements with brief explanations of a
few progresses of our understanding, as well as attempts of realistic calcula-
tions.

2. Difficulties characteristic in synthesis of SHE

In order to obtain the fusion probability, we have to take into account
possible mechanisms for the fusion-hindrance. Otherwise, calculated proba-
bilities, and fusion cross sections would be unrealistic, as it is the case that
one uses a transmission coefficient of an optical model or a barrier penetra-
tion factor as the fusion probability. As for possible origins of the hindrance,
two mechanisms are proposed. One is dissipation of incident energy in the
course of two-body collisions and thus probability for the system to overcome
the Coulomb barrier is reduced [7]. The other one is dissipation of energy of
collective motions of the amalgamated system which has to overcome a con-
ditional saddle or a ridge line in order to reach the spherical shape, i.e., the
compound nucleus [8]. Thus, the probability for reaching the spherical shape
is also reduced. It is natural to consider that both exist. In other words,
the fusion probability Prsion consists of two factors; the sticking probability
Pyiick of two incident ions after overcoming the Coulomb barrier and the
formation probability P, of the spherical shape after overcoming the con-
ditional saddle point, starting from a pear-shaped configuration made by
the sticking of the incident ions [9].

J _ pJ J
Pfusion - Pstick Pform' (2)

Since the existence of the saddle point or the ridge line between the pear-
shape made by the incident ions and the spherical shape is typical in very
heavy systems, the latter mechanism would be indispensable for the fusion-
hindrance observed in massive systems, though the former would also play
a role. (Note that in lighter heavy-ion systems the amalgamated shape is
usually located inside the ridge line, so the system eventually slides down
to the spherical shape with probability being equal to 1, once the incident
ions stick to each other, though fluctuations to be discussed below may
reduce it only slightly.) In either mechanism, we have to describe a passing
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over a barrier under energy dissipation, which is not yet well understood
theoretically [10] and thereby there is no useful formula ready for practical
applications. This is a remarkable contrast to a similar problem, i.e., to
fission under dissipation, where the famous Kramers formula [11] for decay
rate is known to well describe a process of a system inside a potential pocket
leaking over the fission barrier. An essential difference is that in the latter
the initial system is in the quasi-equilibrium in the pocket, while in the
former the initial state is given by the condition of two incident ions with a
given incident c.m. energy.

Recently, the present author and his collaborators have proposed a new
analytic formula for the probability of passing over a parabolic barrier under
frictional force. We have applied this formula to the problem of passing-over
a conditional saddle point, and obtained a simple expression for so-called
extra-push energy which provides a clear understanding of the fusion hin-
drance [12,13|. This would be an important contribution to study of fusion
mechanisms and is briefly recapitulated in Section 3, but there still remains
a difficulty in practice. The parabolic shape is usually a good approxima-
tion for barrier shapes, but in potential landscapes calculated with the liquid
drop model (LDM) a pocket inside the saddle is very shallow in nuclei corre-
sponding to the superheavy elements, as is easily expected from the fissility
parameter z¢ being close to 1. Therefore, the potential is expected to be
substantially asymmetric around the saddle, and moreover a system once
passing over the saddle may return back with an appreciable probability
due to the fluctuation associated with the friction. Of course, the probabil-
ity for return-back to re-separation is reduced if the system is cooled down
by neutron emissions and restores the shell correction energy which makes
the pocket deeper.

For a quantitative prediction, those features should be taken into account
properly, which is made by numerically solving a Langevin equation [14]. For
a dynamical description of shape evolutions, we have to solve trajectories in a
multi-dimensional space of shape parameterization with a realistic LDM po-
tential, examples of which are discussed in Section 5. But a time-dependent
shell correction energy due to evaporation of neutrons is not yet taken into
account in fusion processes. (Since time for fusion process is expected to be
rather short, this would not cause a serious inaccuracy, but is properly done
in the calculation of survival probability, as will be discussed in Sections 6
and 7.) In the approaching phase of passing over the Coulomb barrier under
friction, we have to take into account a dissipation of the orbital angular
momentum as well as that of the kinetic energy of the radial motion, where
a coupling between them is not described by a quadratic potential, as is
discussed in Section 4. Of course, there are many other effects which may
play a role in the latter process, say, effects of deformations of incident ions,
quantum tunneling effects etc., which are not yet fully investigated.
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As for the survival probability, the statistical theory of decay is well
established for obtaining a probability for the system to survive against fis-
sion and charged particle decay. But in practice there are ambiguities in
the physical parameters, i.e., so-called level-density parameter a and the
shell damping energy E4 which controls restoration of the shell correction
energy by cooling. Especially, the latter is crucially important, because the
restoring shell correction energy gives rise to an additional fission barrier
effectively which controls the survival probability, which is discussed quali-
tatively in Section 6 and quantitatively in Section 7. In addition, there are
Kramers [11,15] and the collective enhancement factors [16] in fission de-
cay widths to be taken into account, which are briefly discussed. Examples
of realistic calculations on *8Ca+ actinide targets are presented which are
made by employing a new statistical code KEWPIE [17] for the survival
probabilities, in Section 7.

3. Fusion hindrance and extra-push energy: parabolic barrier

We study a problem of obtaining a probability for passing over a potential
barrier under a frictional force, which originates from interactions of the
degree of freedom under investigation with a heat bath, i.e., with other
degrees of freedom. Therefore, there should be a random force associated
with the friction in accord with the dissipation-fluctuation theorem. If we
approximate the barrier with an inverted parabolic shape, the equation of
motion for a coordinate ¢ and its associate momentum p is written as follows:

i(0)=Cme 5)(0)+(R) o

where m denotes the inertia mass, and w the curvature of the inverted
parabola. [ is a reduced friction, i.e., the friction v divided by m, while
R is its associated random force. The random force is assumed to be Gaus-
sian and satisfies the flowing properties:

(R(1)) = 0,
(RO R()) = 29 To(t — 1), (4)

where () signifies an average over all the possible realizations and the last
equation given in Eq. (4) with temperature T of the heat bath expresses the
dissipation—fluctuation theorem. Since the Eq. (3) is linear, one can write
down a general solution.

With this solution a general expression for a distribution function
W(q,p;t) at any later time ¢ is calculated, starting with the following defi-
nition,

W (g, p;t) = (3 (¢ —q(t)) 6 (p — p(t)) gy - (5)
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where ¢(t) and p(t) denote a general solution of Eq. (3) and is given by
a linear combination of their initial value ¢¢ and py with the coefficients
including parameters 8 and w. () (R} again denotes the average over all
the possible realizations of R(t). Using the path integral technique, we can
perform the averaging and obtain the distribution function of the system
as a Gaussian distribution around the mean trajectory ((¢(t)), (p(t))) [12].
Then, a probability for passing over the barrier is calculated by integrating
over the whole p-space and the half ¢-space, and then by taking the limit of
time ¢ to the infinity,

1 Vzi+1+x B 1 K
Prorrn = —erfc _— = =\ ,  (6)
2 2z T V24142V T

where z denotes 3 divided by 2w. K and B denote the initial kinetic energy
p3/2u and the barrier height measured from the initial potential energy
pw? g3 /2, respectively.

In order for the probability to be 1/2, the argument of the error function
should be equal to zero, which means that the mean trajectory just reaches
at the top of the barrier overcoming the friction. Then, the necessary critical
kinetic energy K, is given as

KC:< x2+1+x)2B, (7)

where we can see that in the case of no friction, i.e., of z being equal to
zero, K. = B, which is trivial. It clearly shows that K. is much larger
than B under the frictional force. If we estimate the first factor in Eq. (7),
assuming One-Body Wall-and-Window formula (OBM [18]) for the friction
v, we obtain about 10, depending on a reasonable choice of values for the
inertia mass and the curvature of the potential calculated with LDM. This
gives a simple formula for the extra-push energy, though we should be care-
ful in a comparison with experimental data about effective one-dimensional
quantities for B, u, w and Coulomb barrier heights of entrance channel etc.

Another interesting formula is obtained, which is very useful for synthesis
of SHE. Residue cross sections are extremely small in SHE, i.e., we are facing
with the situation where fusion probability is very small. This suggests in
our present formulation that the mean trajectory does not reach the top of
the barrier, even is far before the top, which means that the argument of
the error function of Eq. (6) is very large. Then, employing an asymptotic
expansion of the error function, we can obtain a simple approximate formula
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for the formation probability Prorm [13],

P L 11 Va2 +1+x B 1 K
form =5 /x 2 VT = V2 x1+2VT

[ 2+1+z B 1 K
T

where it is interesting to note that there is a factor very similar to Arrhe-
nius factor which is typical in thermal activation processes such as nuclear
fission, neutron evaporation, thermal electron emission from metal, etc. The
exact Arrhenius factor is obtained in case of a complete damping of the rel-
ative motion in the approaching phase, as follows. As will be shown in the
next section, a distribution of the radial momentum at the contact point
is approximately expressed by a Gaussian as a results of two-body collision
processes and thus, the formation probability is obtained by a convolution
over initial momentum pg, which results again in an error function of Eq. (6)
with K being replaced with the average value K and with the associated
variance. In case of completely damping, K is equal to zero, and the vari-
ance is equal to the temperature. Accordingly, the corresponding asymptotic
expansion gives the exact Arrhenius factor.

11 T B
Prorm = 5% Eexp |:_T:| . (9)

Since fusion is inverse to fission in reaction directions, one could call this
as an “inverse Kramers formula [19]”. But we should be careful that in the
thermal activation processes the factor appears in decay rate or in emission
rate per unit time, while in the present case it appears in the transition
probability, i.e., time-integrated quantity. Anyhow, a physical meaning of
the factor as well as of the pre-exponential factor are yet to be understood.

For actual fusion reactions, one-dimensional treatment is obviously an
over-simplification, which is readily understood by considering a mass-asym-
metric entrance channel. In addition, neck formation etc. would come
into play. It is worth to notice that even in such situations, 4.e., in multi-
dimensional problems, we can derive the same type of formula as Eq. (6),
starting with an assumption of a quadratic potential generalized to a multi-
dimension. That indicates that we can define an effective one-dimensional
model. Thus, the qualitative understandings obtained above with the
schematic one-dimensional model are considered to be useful, with the bar-
rier height etc. being considered to be effective quantities.
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4. Approaching phase; passing-over Coulomb barrier
under friction

One could apply the formula obtained in the previous section to passing-
over Coulomb barrier, approximating again the barrier as an inverted
parabola. There, however, is another problem, as stated in Section 2. In the
approaching phase,dissipation of the orbital angular momentum comes into
play, coupled with the radial motion. For the problem, the most simple and
readily applicable model is the surface friction model (SFM), proposed by
Gross and Kalinowski [6] in order to explain so-called Deep-Inelastic Colli-
sions.

Below, we reformulate it, starting with a general framework of Ref. [20]
which includes so-called rolling friction. Starting with intrinsic spins of the
incident ions, L and Lo, respectively, we introduce the following variables:

LT = L1+ Ly =Ly — L(t),
L™ = (C1Ly — CoLy) /Cy + Oy, (10)

where Ly denotes an incident orbital angular momentum and Cj, ¢ being 1
or 2, is an effective ion radius defined as follows:

Ci= R, ( . (,%)2) | )

1/3 1/3

where b = 1fm and R; = 1.28 4,/" —0.764+-0.8 A, '~ with A; being the mass
number of i-th ion. Then, a Langevin equation for two-body collisions is
written as

dr 1

i 12
7 P (12)
dp dv

¥ = T 5 — Pr 97" rta 1

ol I Brp + 0 wi (1) (13)

d (L i1 B2\ [ L B 01 b2 (wi

— |, = _ |+ Lo+ ,(14

dt <L ) <521 faz) \L Bor) 70T b2 O22) \w2 (14)
where 4 is equal to the reduced mass of the entrance channel, and V' denotes
a sum of the Coulomb V; and the nuclear V;, potentials with the rotational

energy given by the orbital angular momentum L. The friction tensor f3;;
and S, are given below,
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C,U(r
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(15)

where ¥ (r) is a form factor specified below, and Cp and Cyop denote strengths
for tangential and rolling frictions, respectively, In addition, a parameter g
is introduced for describing a effective depth of the rolling friction, which is
taken to be 1.0 fm. J;, 4 being 1 and 2, are the rigid moments of inertia of
the incident ions which are assumed to be spherical. Then, the strengths 6,
and 6;; are adjusted to satisfy the dissipation-fluctuation theorem with the
friction tensor B, and f;;. The coefficient 511 is given by 11 — ¥ (r) Cr/p.
Langevin forces are given by wj, 4 being r, 1 and 2 which denote Gaussian
random numbers and are assumed to have the following properties:

(wi) = 0, (wi(t)w;(t)) = 20;; 6(t = t'). (16)

If one wants to introduce deformations of the ions, one has to introduce
additional degrees of freedom which describe their orientations. If we assume
that the rolling friction is very weak compared with the others, we take Cyop
to be zero. Then, dL — /dt = 0, and L_ = constant = L_(—o0) = 0. The
equation for the orbital angular momentum is rewritten simply as follows:

ab _ Ky

7 (L — Lgt) + 611 wr, (17)
t 1%

where the effective friction Ky and the limiting angular momentum Lg; are
given as

2
HT o | G
Ky =Cr |[1+——— v
¢ T |: + (Cl+02)2 <J1 + JQ):| (’}”),

2 02
(5 +5)

(Cl + 02) + (%% ,ur2>
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If we approximate R; = C},

7
K¢ = ECTSP(T),
S
Ly = Lo (19)

Lg; is so-called rolling limit, while one would obtain the sticking limit if
one takes the limit that the drift part of the r.h.s. of Eq. (15) is equal to
null vector, as discussed in Ref. [21|. Together with K, = uf, = C, ¥(r),
Egs. (12), (13) and (17) just correspond to SFM. The correspondence is
precised by giving the following relation of the friction forces,

dVy\? 7
«p(r):<dN) . Ky=50r=001, Kl=C,=4, (20

where the numerical values are given in unit of 10723 s/MeV. The dissipation-
fluctuation theorem is satisfied by the equations: 62 = K, T4 and 6%, =
r2 Ky Ty with Ty = Ta(t) being temperature of the colliding system in
the approaching phase. Examples of numerical solutions with the proximity
model and with SEM are given in Ref. [22]. Generally speaking, the former is
much weaker than the latter, but for the moment we cannot draw a definite
conclusion on which one is correct or more realistic. The former neglects
frictional force stemming from strong inelastic excitations etc., while the
latter does a rolling friction.

We have applied SFM to superheavy systems, such as **Ca + actinide
targets. As an example, we discuss results on *4Ca + ?**Pu system in detail.
The top panel of Fig. 1 shows probability Pgjcx for the entrance system to
reach the contact point, i.e., the relative distance being equal to a sum of
the half density radii of the incident ions as a function of E. ., relative to
the barrier height. If there is no friction, it should be always equal to 1
above the barrier height (Below the barrier, it is equal to zero, since the
equation is classical.). But the results are not like that. It starts with an
extremely small value at the barrier height energy and slowly increases to
reach 1/2 about 12 MeV above the barrier, which would explain a part of the
extra-push. More interesting is that a distribution of the radial momentum
calculated at the contact point is found to be approximately of a Gaussian
one with its average value being almost exactly equal to zero as shown in the
middle panel of Fig. 1, which indicates that the relative motion is completely
damped at the contact point. In fact, the average orbital angular momentum
also approaches to the dissipation limit at the contact point, which is shown
in the bottom panel of Fig. 1. This is also the case for other actinide targets,
say, 2*®Cm and ?°2Cf.
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Fig. 1. Results of SFM calculations for 8Ca-+244Pu system. The top panel shows
the sticking probability Pycx as a function of incident energy relative to the
Coulomb barrier. The middle panel shows the distribution of the radial momentum
at the contact point, where p is given in unit of 10~ 2*sec MeV /fm. The bottom
panel shows the orbital angular momentum divided by the limit Lg; as a function
of relative distance.

In brief, the analyzes of the approaching phase provide us with sticking
probability Psick(Eem.) as well as with information of the amalgamated
system, with which we can start to solve a Langevin equation for shape
evolutions and then, can obtain formation probability Piorm. This means
that we treat the two-body collision processes and shape evolutions of the
united system consistently.
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5. Realistic calculations of Psrm and fusion cross sections

In order to describe shape evolutions starting from the pear-shape con-
figuration of the amalgamated system to the spherical shape, at least, three
parameters, say, distance between two mass centers R, mass asymmetry
a, and neck parameter € in the Two-Center Parameterization [23]. With
OBM [18], the friction for the neck degree of the freedom is much stronger
than the others and thus its motion is considered to be much slower than the
other twos. Then, we expect that two variables could describe the formation
dynamics reasonably well, with the neck parameter e freezed. We again em-
ploy a classical dissipation- fluctuation description, though quantum effects,
such as a tunneling effect, might play a significant role in passing over the
saddle.

A multi-dimensional Langevin equation is written as usual [24]

dg; _

o (m l)ijpj’

dp; U 18, B

U T og 20" ik pjpk —vig (m™ e pr+ 95 Iy, (21)

where ¢;, 1 being 1 or 2, specifies R, or «, and summations are implicitly
assumed over the repeated indices. The inertia mass tensor m;; is calculated
by Werner-Wheeler approximation [25] and the friction tensor ~;; by OBM
as functions of the variables R and «. The potential U is given also by the
macroscopic LDM energy. In case of a finite angular momentum, it should
include the rotational energy calculated with the rigid moment of inertia.
The random force in the r.h.s. of Eq. (21) is assumed to be Gaussian and
is expressed with a Gaussian random number I; and a strength tensor g;;
which are assumed to satisfy the following properties:

(ri(t)) = 0,
(L)L) = 26,58~ 1),
9ik9ik = Yij T, (22)

where () denotes an average over all the possible realizations. The last
equation expresses the dissipation-fluctuation theorem. In order to obtain
a formation probability, i.e., a probability for the system to overcome the
conditional saddle point or the ridge line, we have to calculate a large number
of trajectories.

Examples are shown in Fig. 2, for ¥¥Ca-2%U system with zero initial
radial momentum but with the temperature corresponding to the excitation
energy 70 MeV, starting at the contact configuration. It is seen that some
trajectories go into the spherical configuration and its around, while the oth-
ers go back to re-separation. The formers consist a formation probability,



1938 Y. ABE, B. BOURIQUET

while the latters do quasi-fission components which are to be carefully ana-
lyzed in a future, including deformations of nascent fragments, mass drifts
etc. before scission.
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Fig. 2. Examples of trajectories in two-dimensional space of the relative distance R
divided by the radius of the sphere of the total system Ry and the mass-asymmetry
a for ¥ Ca+2%8U system. Initial momenta are taken to be zero, but Langevin forces
are calculated with the temperature given by the excitation energy of 70 MeV.

Formation probabilities calculated with € being 0.8 are shown in the
upper panel of Fig. 3, for 48Ca-23%U system. And fusion probabilities calcu-
lated by Eq. (2), i.e., obtained by combining with the sticking probabilities
obtained by SFM, are shown in the lower panel of Fig. 3 for the total an-
gular momenta of the system J = 0 and 30. Then, excitation functions of
fusion cross sections are calculated according to the following formula:

Otusion = TA°5(2J + 1) Prusion - (23)

The results for 8Ca -+ actinide target systems are shown in Fig. 4, compared
with the available experimental data obtained at GSI [26] and Dubna [27].
It is surprising that the calculations reproduce the experimental data very
well, not only their absolute values, but also their energy dependence, sys-
tematically over three systems. A prediction is made for 2°2C; target case,
which should be verified by experiment.
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Fig.3. The upper panel shows the formation probability Py, calculated for the
total spin J = 0 and 30 cases of 8Ca+238U system, as a function of incident energy
relative to the Coulomb barrier. The lower panel shows the corresponding fusion
probability Prygion calculated together with Py by SFM.
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Fig.4. Calculated fusion excitation functions are shown for *8Ca+2%8U, 4244Puy,
+248Cm, and +2°2Cf systems, together with the available experimental data from
GSI [26] and Dubna [27].
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6. Survival probability

The survival probability Psu. is a probability for the compound system
to survive against fission decay and charged particle emission. We first
discuss the characteristic features qualitatively and then present examples
of realistic calculations made by a new statistical code KEWPIE [17] in
the next section. Since decay widths for the latters are small compared
with those for the former and neutron emission, the total decay width is
approximately given by It + Iy, and then the survival probability is given
approximately by

I Ih
It + 13, T f '

Psury = (24)
where It and I, denote fission decay and neutron emission widths, given by
Bohr-Wheeler [28] and Weisskopf [29] formulae, respectively. Of course, if
intrinsic excitation energy E* is large enough for emissions of more than one
neutron, the expression of Eq. (24) is repeatedly used in multiplication. In
SHE, It > I3, so the second equation approximately holds in superheavy
nuclei generally except cases with very large shell correction energies, which
is easily seen by their approximate expressions,

Mhee B/l Ty e BT (25)
then the probability is given by
PSUI‘V = ei(BlliBf)/T ) (26)

where By and By denote fission barrier height and neutron separation energy,
respectively. And B is almost equal to minus of the shell correction energy,
because macroscopic fission barriers, 7.e., LDM fission barrier BfLDM is very
small and is nearly equal to zero for SHE, due to the fact that the fissility
parameter z¢ is close to 1.

It is worth to consider how an excitation-energy dependence of the shell
correction energy comes into play. Asis expected, absolute values of the shell
correction energy are reduced by excitation, so in the beginning of decay
process. This is well taken into account by Ignatyuk’s prescription [30] of
excitation-energy dependence of the level density parameter of the spherical
shape, i.e., for neutron emission

Gn = Gp |:1+f(E*) 5E_E*':| ’

d

F(B) = 1-exp [— fj;—] , (27)
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where @, is an asymptotic level density parameter in high excitation, and
E* intrinsic excitation energy of the compound nucleus. §F and E4 denote
shell correction energy of the ground state and so-called shell damping pa-
rameter, respectively. The parameter Ej; is obtained to be about 18 MeV
by calculating excitation energy dependence of the free energy with a single
particle model. With Eq. (27), the fission width is approximately given as
follows:

Iy = e_Beﬂ/T,
B = Br+ f(E*) oF . (28)

Then, asymptotic behaviors for F* <« FE; and E* > F,; become as
follows, respectively:

oF
Befngf‘f’E*E——)Bf, E*<<Ed,
d

~ B+ 6E - BFPM | E*> E,, (29)
where By = BfLDM — 0F denotes the fission barrier height of the ground
state. As is seen from the above arguments, the survival probability Pgyry
is crucially determined by absolute values of the shell correction energy!!
Remaining ambiguities are Kramers [11,15] the collective enhancement [16]
factors. The former takes into account an effect of friction force acting on
the fissioning degree of freedom, and is given by

Ki=+V12?+1-1x. (30)

This is always smaller than 1 and is approximately equal to 1/z in case of
large . The collective enhancement factor takes into account a difference
between collective level densities at the spherical shape and the saddle point
shape. Since the saddle point shape of SHE is determined by shape depen-
dence of the shell correction energy, no simple formula is available. It should
be worth to notice here that so-called Strutinski correction factor [31] for
Bohr-Wheeler formula fiw/T can be considered to be a part of the collec-
tive enhancement factor, i.e., the part from the fissioning collective degree
of freedom, though the main part of the enhancement is expected to be that
of the rotational degrees of freedom.

7. Preliminary results of residue cross sections

In order to make realistic calculations of the survival probability we have
made a new statistical code KEWPIE (Kyoto Evaporation Width calculation
Program with tIme Evolution) [17]|. This program treats both the production
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of residue as a function of the time and the final residue production. In the
present case we will only consider the amount of nuclei remaining at the end
of the disintegration cascade. Detailed formalism and the computer code
will be published elsewhere.

This program includes the main features required in the Section 6. How-
ever, in this code the evaporation width of particle is calculated more ac-
curately in the Hauser-Feshbach formalism [32]. Moreover the evaporation
of protons, alphas and gammas are included in the program. Calculation
of fission width is done according to Bohr-Wheeler formula with the trans-
mission coefficient by Hill and Wheeler [33] and with Strutinski correction
factor. The fission barrier BfLDM is that of the empirical formula given for
heavy elements by Schmidt et al. in reference [34].

The level density parameters a, and a¢ are calculated with Tdke and
Swiatecki formula [35] by taking into account of shapes of the ground state
and the saddle point. At the ground state the shape of the nucleus is assumed
to be spherical and we take into account the shell correction effect with the
Ignatyuk prescription [30] with E; = 18 MeV as given in Eq. (27). At saddle
point, deformation is evaluated by the Hasse and Myers formula [36] and no
shell correction effect is taken into account.

The KEWPIE calculation has few free parameters, the scaling factor of
the shell correction taken from Mgller et al. ’s table [2] and the parameters of
Kramer factor K¢. The latter is calculated with Aw = 1 MeV and a friction
factor f =5 x 10?Y sec™".

For *8Ca+208Pb system, fusion probabilities are calculated with the prox-
imity potential [37], because no fusion hindrance is observed there. With
the parameters fixed, we calculate xn residue cross sections, whose results
are shown in the Fig. 5. The experimental cross sections [38] are seen to be
well reproduced, which appears to guarantee the code KEWPIE.

For 8Ca+244Pu reaction, we use fusion probabilities calculated accord-
ing to Eq. (2) with the realistic calculations of Prm given in Section 5. As
discussed in Section 6, the crucial parameter in the survival probability Py
is the shell correction energy. The scaling factor of 2/3 or even smaller has
turned out to be necessary to the shell correction energies of P. Mgller et al.
in order to be consistent with the data [39], as is shown on Fig. 6. As theo-
retical values of the shell correction energy are very different from one model
to another, more precise investigations are desired. We are now studying the
reactions of ¥Ca + actinide targets, using several predictions of the shell
correction energy, which would be very informative on the models of nuclear
structure for heavy and superheavy nuclei.
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Fig. 5. Residue cross sections calculated by the statistical code KEWPIE are shown
for 48Ca+2%Pb, compared with the experimental data [38].
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reduction factor 2/3.
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