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We determine the static nucleus—nucleus potential from Hartree-Fock
(HF) calculations with the Skyrme interaction. To this aim, HF equations
are solved on a spatial mesh, with the initial configuration consisting of
target and projectile positioned at various relative distances. For a number
of reaction partners, the calculated barrier heights reasonably well compare
with those extracted from the measured fusion and capture cross sections.
At smaller target-projectile distances, our results show the intrinsic barriers
to heavy compound nucleus formation. We speculate on their possible
connection with the fusion hindrance observed for large ZtZp.

PACS numbers: 25.70.Jj, 21.60.Jz

1. Introduction

The experimental synthesis of the heaviest elements depends on the dy-
namics of nuclear fusion. Overcoming the fusion barrier is the first stage of
this process, followed by the compound nucleus (CN) formation and then
its deexcitation. The difficulty in making very heavy systems lies not only
in the high fission probability of the newly formed excited CN, but also in
the substantial hindrance of the CN formation. This hindrance is observed
experimentally as a large probability of quasifission in reactions between
targets and projectiles with the large charge product ZtZp >1800. In spite
of many efforts spent on its theoretical modelling, the phenomenon of fusion
hindrance is still not sufficiently well understood. In its explanation, the
crucial role of dissipation of collective motion is usually invoked, as it was
done in [1,2], where the fusion hindrance was expressed in terms of the so
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called extra-extra-push energy above the fusion barrier, needed in order to
produce CN.

Nucleus—nucleus potential, as encountered in the heavy ion collisions at
energies close to the fusion barrier, is important for the understanding of
the two first stages of the heavy ion fusion reaction. In this work, we pro-
vide its picture on the basis of the selfconsistent Hartree-Fock (HF) theory.
Starting from an initial configuration of target and projectile at the specific
distance R, we calculate the lowest possible final HF state and its energy.
Such treatment involves polarization effects meant in the following sense:
Two approaching nuclei adjust their matter and charge densities to their
mutual long-range Coulomb and short-range nuclear interaction. This in-
duced correlation reduces somehow the total energy of the two fragments as
compared to energy they would have remainig in their ground states. As
it turns out, using this method we obtain adiabatic potential at large dis-
tances (and thus also adiabatic fusion barrier), but excited configurations
for smaller distances, deeper in mononuclear regime.

As it was often argued, a non-adiabatic fusion barrier may be expected
in actual heavy ion collisions due to the short time scale involved in passing
over the barrier. Nevertheless, we think that the adiabatic potential is a
necessary ingredient in a selfconsistent study of nuclear fusion in much the
same way as the static barrier is a necessary first step in a study of nuclear
fission. Difficulty in reaching the adiabatic HF state when starting from
overlapping target and projectile may signal a kind of dynamical fusion
hindrance.

We notice, that the mean field study essentially contains the same physics
as the alternative coupled channels (and transfer channels) approach. The
coupling to collective excitations is replaced by various deformations (or
more generally, degrees of freedom) of the mean field. Inaccuracies of both
methods are complementary: The lack of good quantum numbers in the
mean-field vs. schematic couplings of channels. The coupled channels ap-
proach, however, seems impractical for very heavy systems.

Within the mean field, for a deformed target or projectile, there is not
one, but many fusion barriers, depending on the relative orientation of the
fragment symmetry axes with respect to the relative distance vector. These
represent some weighted averages over barriers in various quantum states
with definite intrinsic and relative angular momenta. In particular, the con-
figuration with the symmetry axis of the deformed fragment perpendicular
(parallel) to the relative distance vector corresponds to the side (tip) colli-
sion. Quite recently, experimental evidence was presented [3-5] showing that
at least part of the CN formation hindrance is related to the dominance of
quasifission in tip collisions.
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We have performed HF calculations for a number of target-projectile
combinations and found the nucleus—nucleus potential and the (outer) adi-
abatic fusion barrier. For deformed targets, we have calculated potentials
for both tip and side collisions. We have used mostly the Skyrme SkM*
interaction [6], originally invented to properly fit the fission barriers. We are
aware of one similar HF calculation of the potential energy in a dinuclear
system [7], where, however, scission of 24°Pu was the main objective.

Since this calculation may be considered as a test of the method as much
as a prediction, we include in our study some systems with well measured
fusion cross sections in addition to the *®Ca-induced reactions used in recent
experiments at JINR in Dubna which, according to the reports [8-10], lead
to the synthesis of the heaviest elements. We test our results against experi-
mental fusion (capture) barriers and make comparison to recent calculations
within the frozen density regime [11]. We close with some speculations con-
cerning possible relevance of the potentials obtained in our HF study for the
fusion hindrance phenomenon.

2. Nucleus—nucleus potential

The potential between nuclei 1 and 2 is calculated as
V(R) = E(R) + B1 + Bs, (1)

where E(R) is the (negative) HF energy of a dinuclear complex at the dis-
tance R and B; are the (positive) binding energies of target and projectile.
In order to have a consistent treatment, B;, i = 1,2, and E(R) are calcu-
lated with the same HF code. We reckon that in this way a large part of the
inconsistency between the particular Skyrme model and experimental bind-
ing energies cancels out. At kinetic energies close to the Coulomb barrier,
the terms involving current in the Skyrme energy functional are small and
we neglect them, i.e. the treatment is static.

Some care has to be taken about the center of mass (c.m.) correction,
which usually is calculated within the HF as the average kinetic energy, (t) =
>y oeelV | T ] V)/A, with v labelling single particle states, and subtracted
from the total kinetic energy. The c.m. correction present in By + By is
(t1) + (t2). For two widely separated fragments, the c.m. correction in
E(R) equals —(t12) = —(A1(t1) + A2(t2))/(A1 + Ag). Thus, with separation
tending to infinity, V(R) tends to (Aa(t1) + Ai(t2))/(A1 + As) instead of
zero. In order to preserve the usual meaning of the Coulomb barrier the
subtraction of this asymptotic term is understood in Eq. (1).

It has to be emphasized that this subtraction is incorrect for small target-
projectile distances, i.e. for compact configurations of the system. Some-
where on the way towards CN configuration, kinetic energy of the relative
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motion of the two fragments should transform into potential energy of the
combined system. Unfortunately, at present, we do not know how to imple-
ment this matching. Therefore we do not continue our calculations down to
the CN configuration.

It is precisely at small target-projectile distances where a more exact
definition of the configuration of the system becomes necessary in order to
make Eq. (1) definite. We choose this configuration in the same way as for
the large distances, by taking two nuclei at the prescribed c.m. separation
as the starting point of the HF iteration. The final HF states obtained from
such a starting configuration always have a constriction dividing the system
into two pieces, with mass and charge numbers nearly equal to those of target
and projectile. Certainly, although for large distances such configurations
are natural when studying fusion barriers, in mononuclear regime at smaller
distances there are many other configurations, e.g. corresponding to other
mass and charge asymmetries, or other necking, which may define lower
potential V(R).

In the present calculation pairing is neglected. As far as the fusion
barriers are concerned, this omission is not expected to induce any sizable
effect.

3. Method of calculations

We have solved HF equations on a spatial mesh of a size proper to the
colliding system. Our code assumes two plane symmetries, i.e. it allows for
the mass asymmetry along one direction. Along the same direction both
fragments can acquire dipole and other odd-multipole moments. With this
symmetry limitation it is still possible to consider tip and side collisions,
with the angle between the symmetry axis of a deformed nucleus and the
line connecting the centers of two fragments equal to 0° and 90°. Angles in
between are outside the scope of the imposed symmetry.

Initially, two sets of wave functions corresponding to two fragments are
placed at a chosen distance being an integer multiple of the mesh spacing
(in the range 0.5-0.77 fm). Then the HF proceeds by the imaginary-time
evolution. Wave functions are kept orthonormal and this enforces the Pauli
principle. For fragments placed close enough, the necessary rearrangement
of orbitals occurs already at the beginning of the HF procedure and avoids
higher than normal densities. Final wave functions correspond to the local
minima of the energy functional to which the initial configuration converged.
For smaller distances R = 7-10 fm, these minima are mostly excited above
the adiabatic configuration at the same R.

The distance R between two fragments is calculated as the distance be-
tween c.m. of two half-spaces containing A; and A, nucleons. It changes
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during iteration. This change is usually small for larger distances, but it be-
comes sizable for more compact configurations for which the final distance is
always larger than the initial one. In other words, the convergence towards
CN configuration by means of the procedure described above turns out to
be difficult.

4. Results and discussion

The contour maps of nuclear density corresponding to the tip and side
collision barriers for the 238U +48Ca system are shown in Fig. 1. The distance
of ~ 14.3 fm between the mass centers of the two fragments at the tip
collision barrier is reduced by about 2 fm to ~ 12.5 fm at the side collision
barrier. The individuality of the two fragments is well pronounced at both
barrier configurations.
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Fig.1. Density distribution at the fusion barrier for 2?3U+48Ca system: For tip
collision, in plane parallel to the symmetry axis (left), for side collision, in plane
parallel to the symmetry axis of 233U (center), and in plane perpendicular to this
symmetry axis (right). The planes lie 0.387 fm off the origin, contour lines are
drawn every 0.02 fm~3.

The nucleus—nucleus potentials calculated with the SkM* force for six
systems are shown in Fig. 2. One can distinguish two types of entrance
channel potentials. For smaller ZZp, after passing the fusion barier, V/(R)
decreases with decreasing distance. For systems with larger Z1Zp, the
potential has a minimum behind the barrier, and V(R) rises for smaller
distances, sometimes above the barrier. It is quite possible that for R
sufficiently small, V(R) rises above the barrier for all heavier systems, al-
though we have not checked it yet. For systems with large ZpZ1 ~ 2500
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(not shown), there is a continuous fall of V(R) with R, i.e. there is no min-
imum, but only a plateau as its remnant. One can observe in Fig. 2, that
V rises more steeply with decreasing R for the 28Pb+48Ca system than for
reactions with deformed actinides. At R ~8 fm, V(R) is more than 10 MeV
above the fusion barrier in the first case, while it is still under the (side) fu-
sion barrier for the much heavier 248Cm+8Ca system. This would suggest
some advantage of the side collisions with prolate deformed targets.

V(R) [MeV,
55 (R) [MeV] 757/ (R) [MeV]
+ o X
50. 40 . 40 + 1 16O+238U N x .
45. t Ca+ Ca i 65. | +><+ +
- X
+ + +
40. | 1 55 | x
+ +
35. 1 X
+ +
30. 1 45 x
+ . +
25. | + ] oy
‘ ‘ ‘ TR[m > a0 an 14 15 1a a4 R[m
6. 7. 8. 9. 10. 8. 9. 10. 11. 12. 13. 14.
V(R) [MeV] V(R) [MeV]
180. + | 190, | 48,238, i *
90, .90 + + x x
Zr+""Zr 185. +
+ X« x
175, |, 1 180. t x X x x
. * 175. | + + oy
+
170. | + 7 1 170 . * 1
.
165. | * L
165. : : : L —
9. 10. 11. 12, RIm] 8. 9. 10 11. 12. 13. 14 RIfm]
V(R) [MeV] V(R) [MeV]
+
175. ]
. 200. | 48,248, x
+ + X
170. + + { 195 ¢ X
+ X X
. . 190. | x ;
165. | ]
: 185. + o,
48Can‘—zong 180. | + +
160. | ¥ ] ' . R .
175. _—
155. N <N N
8. 9. 10. 11. 12. 13. 14. (fm] 8. 9. 10. 11. 12. 13. 14 RIml

Fig. 2. Nucleus—nucleus potentials obtained with SkM* force, normalized to energy
of separated fragments. For deformed targets, both potentials for tip (pluses) and
side (crosses) collisions are given.
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Comparison of our HF potentials to those in [11], obtained within the
frozen density Thomas—Fermi approach, shows that the qualitative features
of both potentials are the same. However, there are important quantitative
differences: (1) The selfconsistent fusion barriers are systematically lower by
5-10 MeV; (2) The rise of the selfconsistent potentials for smaller distances
is much smaller than that seen in [11]. This follows mainly from the fact
that, at smaller R, densities in [11] start to double, whereas our densities are
always close to normal. This difference is particularly drastic for reactions
with actinides, e.g. for side collision **Ca+23%U at R = 7.7 fm, our V(R) =
182.5 MeV, while V(R) > 230 MeV in [11|. As a consequence, the minima
of V(R), if present, are shifted in [11]| towards larger R.

Calculated fusion barriers By, taken as the locally highest value of
V(R), rounded to 0.5 MeV, are compared in Table I to the Bass fusion
barriers [12] and to the recently given threshold barriers Bipe [13]. The
latter quantities are derived from the fusion data and are expected to cor-
respond to the calculated adiabatic barriers. The values of Bip for the
heaviest systems are based on the capture data [14]. For deformed targets,
both the calculated tip and side (in parentheses) collision barriers are given.
Relative to By + B, the compound nucleus ground states have energies:
14.3 MeV (8%Zr), 57.3 MeV (13°Nd), 41.1 MeV (13°Nd), 157.3 MeV (180Hg),
38.3 MeV (%*Fm), 153.8 MeV (?*No) [16], and 160.8 MeV (?%6112),
163.0 MeV (292114), 169.3 MeV (2%116), 177.0 (?*8118) [17].

TABLE 1
Calculated fusion barriers for tip (side) collisions in MeV wvs threshold [13] and Bass

fusion barriers [12]. The threshold barrier for *°Zr+%9Zr is inferred from [15], that
for 238U+160 from [3].

SyStem Bear Binre Bgass
0Ca+*Ca 53 50.240.2  53.5
907r1+40Ca 95 92.74+0.6  102.2
967r+40Ca 88.5 87.54+0.3 100.8
07y 1907y 180 ~175.85 195.3

208phH+48Ca 173.5 169+2 1874
ZYL160 65 (71) ~T1 85.3
B8U+48Ca | 174.5 (191) 18242  206.9
244pu+48Ca | 181 (196.5) - 210.8
28Cm+*8Ca | 185.5 (200.5) - 215.0
200f+18Ca 190 (205) - 219.7

For spherical target and projectile pairs, B¢, are slightly larger than
Binre. The experimental difference in barriers for the reactions of 4°Ca
on 2°7r and %Zr is nicely reproduced by our calculations. The calculated
barrier for the reaction 233U+!60 seems to be lower than that suggested



1984 J. SKALSKI

by the experimental data [3]. For *8Ca+23U, By, is nearly equal to the
average of the calculated tip and side collision barriers. For other heavy
actinide targets, there are too few experimental data for extracting Bipre.
However, the data on evaporation residue formation give some idea on the
height of the fusion barrier. Two events observed in the reaction on 238U
target for Eep, =192.2 MeV [18], three events for 24 Pu target at Eep, =194.5-
202 MeV [19] and one event for 248Cm target at Eep, = 199.7-205.1 MeV [10]
suggest similar, or slightly lower, values of the corresponding fusion barriers.

It has to be emphasized that the binding energies B; of the individual
fragments calculated with the SkM* force sometimes differ by few MeV from
the experimental values. The hope is that this inaccuracy mostly cancels
in V(R) due to subtraction in Eq. (1). This expectation is correct, e.g. for
the 248Cm+*8Ca reaction: Although *¥Ca is overbound by the SkM* force
by ~ 5 MeV (this nucleus was not included when this force was fitted) and
roughly correctly bound by the SkP force [20], the fusion barriers of 185
MeV (200 MeV), calculated with SkP, well agree with the values of Table I.

Although calculated potentials are presented here as functions of the
c.m. distance R, one can use conventional multipole moments to characterize
deformation of target-projectile systems in a more precise way. For example,
for tip collisions of “8Ca on actinides, the distances in Fig. 2 correspond
to quadrupole moments varying in the range: ) = 90+ 220 b, octupole
deformations (r3Y3p) = 10+70x 103 fm?, and necking given by the moments
(r'Yy0) = 14 =+ 120 x 10* fm*. Dipole moments D reach 14-16 efm for the
most elongated configurations, while they change sign for more compact
configurations. For side collisions, nonaxial moments are present, like Qoo +
Q22 and (r3(Y3y + Y3 3)). For symmetric systems, for which it is easy to
define multipole moments of fragments, one finds induced dipole moments D
of 0.5-1 efm in 4°Ca, and 2-2.5 efm in °Zr fragments. Induced quadrupole
moments @Q are small —0.1b (*°Ca) and 0.3 b (°°Zr) at most. For asymmetric
systems, multipole moments of individual fragments are very sensitive to the
way the division of the whole system into two fragments is made.

The most intriguing question coming to mind when looking at Fig. 2
is whether the calculated potentials V (R) have anything to do with the fu-
sion hindrance seen in experiment. They indeed show that the configuration
of two approaching fragments leads to the intrinsic barrier for heavy sys-
tems. This barrier appears and then becomes more stiff with rising ZtZp.
Strictly, this follows from a non-adiabatic character of the potential and may
be related to dissipation of collective motion. Phrasing differently, the HF
ralaxation of the entrance channel configuration to the adiabatic configura-
tion becomes ineffective at smaller distances R. Further, the barriers for tip
and side collisions show that the latter can lead to smaller R, thus favouring
CN formation.
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On the other hand, the intrinsic barrier appears already for *°Zr+%0Zr
and 298Pb+48Ca reactions, for which no fusion hindrance is experimentally
observed [14,15]. Intuitively, in order to be captured in the CN configuration,
a system must pass inside the CN fission barrier, placed at Rgs. While Rgg
for the first system (18°Hg) is large, so that the intrinsic barrier occurs at
R < Rgg, it is not so for 2°6No, for which we expect Rgs ~ Ry = r0A1/3 ~7
fm. Clearly, some intervening concept of the configuration change when the
intrinsic barrier is hit is required in order to explain that the latter reaction
leads to CN. Still, such configuration change should incur some probability
loss which would lead to some fusion hindrance.

Ultimately, it seems that a more detailed study of competing compact
configurations of target and projectile and of configuration changes may lead
to a better understanding of the fusion hindrance. We plan to continue our
study in this direction.

Enlightening comments of Janusz Wilczyniski on the experimental and
threshold fusion barriers are gratefully acknowledged.
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