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NUCLEAR MATTER APPROACH TO THEINTERACTION POTENTIAL BETWEEN HEAVY IONS�J. D¡browskiTheoreti
al Division, A. Soªtan Institute for Nu
lear StudiesHo»a 69, 00-681 Warsaw, PolandH.S. KöhlerUniversity of Arizona, Tu
son, AZ 85721, USA(Re
eived July 10, 2002)Dedi
ated to Adam Sobi
zewski in honour of his 70th birthdayA simple theory of the intera
tion potential between heavy ions V , basedon the lo
al density approa
h and the frozen density model, is presentedfor nu
lei with neutron ex
ess. The energy density needed for 
al
ulatingV is expressed in a simple way through the known properties of nu
learmatter.PACS numbers: 25.70.�z 1. Introdu
tionThe theoreti
al des
ription of the synthesis of the heaviest elements inheavy ion 
ollisions requires the knowledge of the intera
tion potential Vbetween the two 
olliding ions. The 
al
ulation of V, based on a simplenu
lear matter (NM) approa
h was presented in Refs. [1�4℄. We 
all theapproa
h simple, be
ause it allows to determine V dire
tly from the knownproperties of NM. In a simpli�ed form, the approa
h was applied a long timeago by Brue
kner at al. [5℄ (see also [6℄).The simple NM approa
h was restri
ted in Refs. [1�4℄ to heavy ions withequal numbers of neutrons and protons, and 
ould not be applied to reallyheavy ions with an appre
iable neutron ex
ess. In the present paper weextend our simple NM approa
h to V to the s
attering of ions with neutronex
ess, i.e., to the 
ase relevant in the synthesis of the heaviest elements.� This resear
h was partly supported by the Polish State Committee for S
ienti�
Resear
h (KBN) under Grant No. 2P03B7522.(1987)



1988 J. D¡browski, H.S. KöhlerThe paper is organized as follows. In Se
tion 2, the intera
tion poten-tial V is de�ned as the energy di�eren
e between overlapping and separatednu
lei. In Se
tion 3 the lo
al density approximation and the frozen den-sity model are presented and the density and momentum distributions ofneutrons and protons in the system of two 
olliding nu
lei are des
ribed.Final 
omments, espe
ially 
on
erning results obtained previously for nu-
lei with equal number of neutrons and protons, are presented in Se
tion 4.Properties of the energy and the single parti
le (s.p.) energies in NM withneutron ex
ess, in parti
ular their density dependen
e, are des
ribed in theAppendix. 2. The de�nition of VWe 
onsider nu
lei 1(target) and 2 (proje
tile) (with masses M1, M2,and with the redu
ed mass � = M1M2=(M1 + M2), moving with relativemomentum KREL (in units of ~). We denote by R the relative positionve
tor between the 
enters of mass of 1 and 2 (dire
ted from 1 to 2). Thede�nition of V as the di�eren
e between the energies of the overlapping andspatially separated nu
lei 1 and 2 does not depend on the referen
e frame.As the most 
onvenient one, we 
hose the rest frame of 1, whi
h we 
all the�laboratory� (lab) frame (at R =1, it 
oin
ides with the laboratory (LAB)frame of the two nu
lei). In this frameV(E;R) = Elab(KREL; R)� ~2K22=2M2 � Ein(1)� Ein(2) ; (1)where Ein(i) is the intrinsi
 nu
lear energy of the isolated nu
leus i, Elab isthe nu
lear energy of the total system in the lab frame, andK2 = (M2=�)KREL (2)is the proje
tile momentum in the lab frame.The 
onservation of the total energy implies that the instantaneous rel-ative momentum KREL =KREL(R) is 
hanging with R:~2KREL(R)2=2�+ V(E;R) + VC(R) = ~2KREL(1)2=2� = E ; (3)where VC(R) is the Coulomb potential between nu
lei 1 and 2, and E is theCMS kineti
 energy . 3. The NM approa
h to VWe apply the lo
al density approximation, and write Elab in the form:Elab(KREL; R) = Z drHlab(KREL; R; r); (4)



Nu
lear Matter Approa
h to the Intera
tion Potential . . . 1989where Hlab is the energy density (in the lab frame) at r. For a given distan
eR between the two nu
lei, the system is approximated lo
ally (at ea
h pointr) by a pie
e of NM with the neutron and proton densities �n and �p,and with the 
orresponding momentum distributions nn(k0n) and np(k0p).Obviously, we have�n = [2=(2�)3℄Z dk0nnn(k0n); �p = [2=(2�)3℄Z dk0pnp(k0p) : (5)(The assumed spin saturation leads to the fa
tors 2. Neutron and protonmomenta in the lab frame are denoted by k0n and k0p.)Instead of �n and �p, as an alternative des
ription of the the lo
al NM wealso shall use the total density � = �n+�p and the neutron ex
ess parameter� = (�n � �p)=�.For �y and ny(k0y), we apply the frozen density model (the sudden ap-proximation) in whi
h all degrees of freedom are frozen, ex
ept for R. Hereand further on, we use the notation y = n; p. The neutron (proton) densityof the 
ombined system at r is equal to the sum of the original neutron(proton) densities of nu
lei 1 and 2:�y(r) = �1y(r) + �2y(jr �Rj) : (6)(The origin of the position ve
tor r is the same as that of R, i.e., the 
enterof 1. We assume that both nu
lei are spheri
ally symmetri
.)The motion of ea
h of the 
olliding nu
lei resembles that of a rigid body:the instantaneous velo
ity of ea
h point of the nu
leus 1 (2) is the same. Thusin the lab frame the velo
ity of ea
h point of 1 vanishes, and the velo
ity ofea
h point of 2 is ~K2=M2 = ~KREL=�, and the average momentum Kr ofneutrons and protons in nu
leus 2 isKr = (m=�)KREL ; (7)where m is the nu
leon mass. Consequently in the lab frame (see Fig 1), thelo
al momentum distributions at r of neutrons and protons in nu
leus 1 arethe respe
tive Fermi spheres (surfa
es F1n = F10n and F1p = F10p) 
enteredin O1, with the lo
al Fermi momentakF10y = kF10y(r) = [3�2�1y(r)℄1=3 ; (8)and those of neutrons and protons in 2 are the respe
tive Fermi spheres(surfa
es F2n = F20n and F2p = F20p) 
entered in O2 (with �!O1O2 = Kr),with the lo
al Fermi momentakF20y = kF20y(r) = [3�2�2y(jr �Rj)℄1=3 : (9)



1990 J. D¡browski, H.S. KöhlerFor the 
ombined system of nu
lei 1 and 2, we obtain the lo
al neutron andproton momentum distributions ny(k0y) 
onsisting of two Fermi spheres F1yand F2y: ny(k0y) = 1 for k0y within Fy = F1y+F2y and ny(k0y) = 0 otherwise.As long as Kr > kF10y + kF20y (Fig. 1(a)), our de�nition of ny(k0y)presents no problems. If however Kr < kF10y + kF20y (Fig. 1(b)), the twoFermi spheres F10y and F20y overlap, and we fa
e the problem of the dou-ble o

upan
y in the overlap region. We resolve this problem by in
reasingkF10y ! kF1y and kF20y ! kF2y, and obtain our �nal momentum distribu-tions ny(k0y) with the Fermi surfa
es Fy = F1y+F2y , with a single o

upan
yinside Fy. This reshu�ing of neutrons and protons from the original distri-

Fig. 1. The lo
al momentum distribution of neutrons or protons (y = n or p) intwo 
olliding nu
lei.butions ~ny with the Fermi surfa
es F10y + F20y (with the double o

upan
yin the overlap region) to our �nal distributions ny should leave the neutronand proton densities un
hanged:�y = �1y + �2y = [2=(2�)3℄VFy = [2=(2�)3℄(VF1y + VF2y) ; (10)where VFy is the volume within Fy and VF1y (VF2y) is the volume within Fyto the left (right) of the plane F12y . We have (i = 1; 2):VFy = �f23 (k3F1y + k3F2y) + 12Kr(k2F1y + k2F2y) + 14K3r (x2y � 13)g ;VFiy = �f23k3Fiy + 12Kr(1 + �ixy)k2Fiy � 13 [12Kr(1 + �ixy)℄3g ; (11)where �1 = 1; �2 = �1, and xy = (k2F1y � k2F2y)=K2r .To determine kF1y and kF2y, we need one 
ondition more for ea
h valueof y (n and p) in addition to Eq. (10)1. Let us denote by kGy the average1 Here, we apply the pres
ription of Ref. [7℄ (see also [4℄).



Nu
lear Matter Approa
h to the Intera
tion Potential . . . 1991neutron (y = n) or proton (y = p) average momentum in the lo
al NM at rin the lab frame:kGy = R dk0yny(k0y)k0yR dk0yny(k0y) = �Kr�2y=�y for Kr > kF10y + kF20y ,KrVF2y=VFy otherwise . (12)Before reshu�ing neutrons and protons, in the original distributions ~ny, wehave kGy = Kr�2y=�y also for Kr < kF10y + kF20y. Let us insist that thereshu�ing does not 
hange the average neutron and proton momenta kGy:VF2yVFy = �2y�y : (13)Eqs. (13) and (10) are equivalent to the following system of two equationsfor both neutrons and protons:VF1y = 4�3 k3F10y ; VF2y = 4�3 k3F20y ; (14)from whi
h both (kF1n; kF2n) and (kF1p; kF2p) may be determined (numer-i
ally)2.To simplify the presentation, we go over to the rest frame of NM, inwhi
h the total momentum vanishes. The nu
leon momenta in this frameare denoted by ky. This frame depends on r (is lo
al). The energy densityin this frame is denoted by H, and � in agreement with the König theoremof the 
lassi
al me
hani
s � we have (see Ref. [4℄):Hlab = H + ~22mK2r�22� ; (15)where we use the notation �i = �in + �ip.Let us 
onsider normal NM (i.e., NM in its ground state) with the sameneutron density �n and proton density �p as the lo
al neutron and protondensities of our system or equivalently with the same total density � andneutron ex
ess � as the lo
al total density and neutron ex
ess of our system.In this normal NM, the neutron and proton momentum distributions aren0y(ky) = �(kFy � ky), where kFy = (3�2�y)1=3, and the energy density isHNM0 = ENMA � = f(�; �)� ; (16)where f(�; �) = ENM=A is the energy per nu
leon in our normal NM. TheNM by whi
h our system is lo
ally approximated, di�ers from the normal2 As it turns out, one always �nds jkF1y � kF2yj < Kr.



1992 J. D¡browski, H.S. KöhlerNM by the momentum distributions ny (the two sphere distributions inFig. 1). We denote its energy density by HNM, and use the approximaterelationHNM �= HNM0 + 2(2�)3 Xy=n;pZ dky[ny(ky)� n0y(ky)℄e0y(�; �; ky) ; (17)where e0y is the s.p. energy of the y-nu
leon in normal NM. Eq. (17)represents the 
hange in the energy density 
aused by the redistributionof nu
leons in the momentum spa
e with un
hanged s.p. energies. If weexpressed the energy density through an e�e
tive two-body intera
tion, thenwe would obtain expression (17) by negle
ting the 
hange in the e�e
tiveintera
tion indu
ed by the 
hange in the neutron and proton momentumdistributions.If we assume for e0y the e�e
tive mass approximation [see Appendix,Eq. (A.1)℄, then Eqs. (16,17) lead to the following result for HNM:HNM = f(�; �)�+ 1� (�n + �p � �0n � �0p) ; (18)where �y and �0y are the kineti
 energy densities (in the rest frame of NM)in our system and in normal NM:�y = [2=(2�)3℄Z dkyny(ky)"(ky) ; �0y = 35"(kFy)�y : (19)Let us noti
e that with the help of Eqs. (A.8), (A.10) we may write expression(18) in the alternative form:HNM = f0(�)�+ 1� (�n + �p � �0) + 12�2 14V1� ; (20)where �0 = 35"(kF )�.To take into a

ount density gradient 
orre
tions, we follow Brue
kneret al. [8℄ and add to the energy density of the lo
al NM the gradient 
orre
-tion Hr: H = HNM +Hr ; (21)where Hr = Hr(�) = �W (r�)2� + �V (r�)2; (22)where �W = ~2=72m. The �rst term in (22) is the Weizsä
ker 
orre
tion tothe kineti
 energy density, and the se
ond one is the gradient 
orre
tion tothe potential energy density, in whi
h �V is treated as a phenomenologi
alparameter.



Nu
lear Matter Approa
h to the Intera
tion Potential . . . 1993In 
al
ulating the intrinsi
 energies Ein(i) we apply the expression:Ein(i) = Z drff(�i; �i)�i +Hr(�i)g ; (23)where �i = (�in � �ip)=�i.Following the pro
edure explained in Ref. [4℄ we insert our results pre-sented in Eqs. (23,21,18,15,4) into de�nition (1) of V, and write our �nalexpression for the intera
tion potential V in the form:V(E;R) = Z drv(Kr; R; r); (24)v(Kr; R; r) = f(�; �)� + 1� (�n + �p � �0n � �0p) +Hr(�)� Xi=1;2[f(�i; �i)�i +Hr(�i)℄� ~2K2r2m �1�2� ; (25)where �1 = �1(r), �2 = �2(jr �Rj), and � = �1 + �2.Let us noti
e that Kr = Kr(R) = (m=�)KREL(R), and this R depen-den
e of Kr and KREL is determined by relation (3) wi
h 
ontains V(E;R).One may solve this problem by applying the iteration pro
edure des
ribedin Refs. [2, 3℄. 4. Final 
ommentsIn the limiting 
ase of �i = 0, the reliability of our approa
h was dis-
ussed in Refs. [1�3℄. In this 
ase we 
ould 
ompare our results with thoseobtained by the Faessler group (see [7,9℄ and referen
es quoted there). In thisgroup, the �exa
t� energy density HNM was 
al
ulated within the Brue
knertheory. Our results for V � based on HNM0 �tted to known properties ofNM, and on relation (17) � turned out to be in a satisfying agreement withthe most extensive 
al
ulations of the Faessler group. It should be pointedout, that these extensive 
al
ulations would be
ome extremely 
ompli
atedin the 
ase of heavy ions with neutron ex
ess (even normal NM with neutronex
ess presents serious 
omputational problems in ab initio 
al
ulations �see e.g. [10℄). On the other hand, our approa
h to heavy ions with neutronex
ess remains simple.Re
ently, the stati
 nu
leus�nu
leus potential has been 
al
ulated bySkalski [11℄ who applied the Hartree�Fo
k method. In parti
ular, he 
onsid-ers the 
ase of 40Ca-40Ca potential, whi
h we also 
onsidered in Refs. [3, 4℄.Our result obtained for the total potential Vtot = V + VC, 
al
ulated withKr � Kr(1) = 0, is shown in Fig. 2. In 
al
ulating V, we used for 40Castandard Woods�Saxon density, �V = 22 MeV fm5 was �tted to binding



1994 J. D¡browski, H.S. Köhlerenergies of 40Ca and 16O, and �0 = :83 was taken from [12℄. The 
harge dis-tributions in the two 40Ca nu
lei were approximated by equivalent uniformdistributions, and VC(R) was 
al
ulated as the Coulomb intera
tion betweenthese two uniform 
harge distributions. Our potential Vtot turns out to besimilar to the potential 
al
ulated in [11℄. Espe
ially the maximum of Vtotequal to 54.5 MeV at R = 9:4 fm is 
lose to the fusion barrier of 53 MeVobtained in [11℄ (and is 
onsistent with the threshold barrier of 50.2�0.2MeV estimated in [13℄). This agreement between the essentially adiabati
approa
h of Ref. [11℄ and our approa
h involving the sudden approximationtakes pla
e at distan
es R at whi
h the tails of the two densities overlap. Atsmaller distan
es our frozen density ex
eeds the adiabati
 density and ourpotential is bigger (more repulsive) than the potential determined in [11℄.

Fig. 2. The total intera
tion potential V(R) + VC(R) for 40Ca�40Ca at Kr = 0.The appli
ation of the s
heme des
ribed in this paper to a number ofheavy ion partners will be presented in the future. This appli
ation requiresthe knowledge of both proton and neutron distributions in the 
ollidingpartners, of whi
h the neutron distribution is empiri
ally less known and itsdetailed shape has to be dis
ussed.Appendix AThe energy and the s.p. potential in normal NMFor the s.p. energies e0y, we assume the following e�e
tive mass approx-imation: e0n(�; �; kn) = "(kn)�(�) + C(�; �) ;e0p(�; �; kp) = "(kp)�(�) +C(�;��) ; (A.1)



Nu
lear Matter Approa
h to the Intera
tion Potential . . . 1995where "(ky) = ~2k2y=2m, and � = m�=m is the ratio of the e�e
tive tothe real nu
leon mass. The dependen
e on �� of C follows from the 
hargesymmetry of nu
lear for
es. For the dependen
e of � on �, we use the relation(�0 is the equilibrium density of NM):1=�(�) � 11=�0 � 1 = ��0 ; (A.2)where �0 = �(�0). This relation follows from the assumption that �V0y=�kyis proportional to �, where V0y is the s.p. potential:V0y(�; �; ky) = e0y(�; �; ky)� "(ky) : (A.3)We assume that our s.p. energies e0y lead to the 
orre
t energy pernu
leon ENM=A in normal NM:ENMA =f(�; �)= 12 Xy=n;p kFyZ0 dkyk2y["(ky) + 12V0y(�; �; ky)℄=13k3F ; (A.4)where kF = (3�2�=2)1=3, kFn = (3�2�n)1=3 = kF (1 + �)1=3, and kFp =(3�2�p)1=3 = kF (1� �)1=3.Let us now introdu
e the linear approximation in � of V0y:V0n(�; �; kn) = V0(�; kn) + 14�V1(�) ;V0p(�; �; kp) = V0(�; kp)� 14�V1(�) ; (A.5)where V0(�; ky) = � 1�(�) � 1� "(ky) + C(�; 0); (A.6)and the Lane potential V1 is:V1(�) = 4�C(�; �)�� ������=0: (A.7)For the energy per nu
leon in normal NM, f = ENM=A, we use on theleft hand side of Eq. (A.4) the quadrati
3 approximation in �:f(�; �) = f0(�) + 12�2f1(�) : (A.8)On the right hand side of Eq. (A.4), we insert expressions (A.5) for V0yand expand this side in powers of � up to quadrati
 terms (terms linear3 Terms linear in � vanish for 
harge symmetri
 nu
lear for
es.



1996 J. D¡browski, H.S. Köhlerin � vanish). By 
omparing the 
orresponding terms on both sides of theresulting equation, we get:f0(�) = 12 [35(1 + 1=�)"(kF ) + C(�; 0)℄ ; (A.9)f1(�) = 23"(kF ) + 13 [k�V0(�; k)=�k℄k=kF + 14V1(�)= 23"(kF )=�(�) + 14V1(�) : (A.10)For f0, we assume the form:f0(�) = 35"(kF ) + 5Xj=3 aj(kF =kF0)j ; (A.11)where kF0 is the Fermi momentum at equilibrium density �0, and the 
oe�-
ients aj are determined by kF0, by the volume energy of NM, "vol = f0(�0),and by the 
ompressibility K
 = k2F0(d2f0=dk2F )kF0 :a3 = 10"vol � 95"(kF0) + 12K
 ;a4 = 95"(kF0)� 15"vol �K
 ;a5 = 12K
 � 35"(kE0) + 6"vol : (A.12)With the assumed form of f0(�) one 
ould use Eq. (A.9) to determineC(�; 0), although in our present 
al
ulation of V the value of C(�; 0) is notrequired. On the other hand, we shall use Eq. (A.10) to determine thefun
tion f1(�). Empiri
ally we only know the symmetry energy "sym =f1(�0). To �x the dependen
e of f1 on � we use Eq. (A.10) in whi
h weassume that V1(�) is proportional to �:V1(�) = ��0V1(�0) ; (A.13)where V1(�0) is determined by:"sym = 23 "(kF0)�0 + 14V1(�0) : (A.14)(For kF0 = 1.35 fm�1, �0 = 0:7, and "sym = 60 MeV, we get V1(�0) =96 MeV, in good agreement with existing estimates of the Lane potential.)Thus our �nal expression for f1(�) is:f1(�) = 23"(kF ) �1 + (1=�0 � 1)��0 �+ 14V1(�0) ��0 : (A.15)



Nu
lear Matter Approa
h to the Intera
tion Potential . . . 1997One 
onsequen
e of the density dependen
e of f1 is that the equilibriumdensity is shifted by the neutron ex
ess (towards lower densities). It is easyto estimate this shift (with an �2 a

ura
y):�kF=kF0 = �12 [kF df1=dkF ℄kF0K
 �2 : (A.16)For K
 = 235 MeV (and with the remaining NM parameters quoted above)we get �kF=kF0 = �0:375�2. This agrees with other estimates [10, 14℄,whi
h indi
ates that our expression (A.15) for f1(�) appears to be a reason-able approximation. REFERENCES[1℄ J. D¡browski, H.S. Köhler, Nu
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