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NUCLEAR MATTER APPROACH TO THEINTERACTION POTENTIAL BETWEEN HEAVY IONS�J. D¡browskiTheoretial Division, A. Soªtan Institute for Nulear StudiesHo»a 69, 00-681 Warsaw, PolandH.S. KöhlerUniversity of Arizona, Tuson, AZ 85721, USA(Reeived July 10, 2002)Dediated to Adam Sobizewski in honour of his 70th birthdayA simple theory of the interation potential between heavy ions V , basedon the loal density approah and the frozen density model, is presentedfor nulei with neutron exess. The energy density needed for alulatingV is expressed in a simple way through the known properties of nulearmatter.PACS numbers: 25.70.�z 1. IntrodutionThe theoretial desription of the synthesis of the heaviest elements inheavy ion ollisions requires the knowledge of the interation potential Vbetween the two olliding ions. The alulation of V, based on a simplenulear matter (NM) approah was presented in Refs. [1�4℄. We all theapproah simple, beause it allows to determine V diretly from the knownproperties of NM. In a simpli�ed form, the approah was applied a long timeago by Bruekner at al. [5℄ (see also [6℄).The simple NM approah was restrited in Refs. [1�4℄ to heavy ions withequal numbers of neutrons and protons, and ould not be applied to reallyheavy ions with an appreiable neutron exess. In the present paper weextend our simple NM approah to V to the sattering of ions with neutronexess, i.e., to the ase relevant in the synthesis of the heaviest elements.� This researh was partly supported by the Polish State Committee for Sienti�Researh (KBN) under Grant No. 2P03B7522.(1987)



1988 J. D¡browski, H.S. KöhlerThe paper is organized as follows. In Setion 2, the interation poten-tial V is de�ned as the energy di�erene between overlapping and separatednulei. In Setion 3 the loal density approximation and the frozen den-sity model are presented and the density and momentum distributions ofneutrons and protons in the system of two olliding nulei are desribed.Final omments, espeially onerning results obtained previously for nu-lei with equal number of neutrons and protons, are presented in Setion 4.Properties of the energy and the single partile (s.p.) energies in NM withneutron exess, in partiular their density dependene, are desribed in theAppendix. 2. The de�nition of VWe onsider nulei 1(target) and 2 (projetile) (with masses M1, M2,and with the redued mass � = M1M2=(M1 + M2), moving with relativemomentum KREL (in units of ~). We denote by R the relative positionvetor between the enters of mass of 1 and 2 (direted from 1 to 2). Thede�nition of V as the di�erene between the energies of the overlapping andspatially separated nulei 1 and 2 does not depend on the referene frame.As the most onvenient one, we hose the rest frame of 1, whih we all the�laboratory� (lab) frame (at R =1, it oinides with the laboratory (LAB)frame of the two nulei). In this frameV(E;R) = Elab(KREL; R)� ~2K22=2M2 � Ein(1)� Ein(2) ; (1)where Ein(i) is the intrinsi nulear energy of the isolated nuleus i, Elab isthe nulear energy of the total system in the lab frame, andK2 = (M2=�)KREL (2)is the projetile momentum in the lab frame.The onservation of the total energy implies that the instantaneous rel-ative momentum KREL =KREL(R) is hanging with R:~2KREL(R)2=2�+ V(E;R) + VC(R) = ~2KREL(1)2=2� = E ; (3)where VC(R) is the Coulomb potential between nulei 1 and 2, and E is theCMS kineti energy . 3. The NM approah to VWe apply the loal density approximation, and write Elab in the form:Elab(KREL; R) = Z drHlab(KREL; R; r); (4)



Nulear Matter Approah to the Interation Potential . . . 1989where Hlab is the energy density (in the lab frame) at r. For a given distaneR between the two nulei, the system is approximated loally (at eah pointr) by a piee of NM with the neutron and proton densities �n and �p,and with the orresponding momentum distributions nn(k0n) and np(k0p).Obviously, we have�n = [2=(2�)3℄Z dk0nnn(k0n); �p = [2=(2�)3℄Z dk0pnp(k0p) : (5)(The assumed spin saturation leads to the fators 2. Neutron and protonmomenta in the lab frame are denoted by k0n and k0p.)Instead of �n and �p, as an alternative desription of the the loal NM wealso shall use the total density � = �n+�p and the neutron exess parameter� = (�n � �p)=�.For �y and ny(k0y), we apply the frozen density model (the sudden ap-proximation) in whih all degrees of freedom are frozen, exept for R. Hereand further on, we use the notation y = n; p. The neutron (proton) densityof the ombined system at r is equal to the sum of the original neutron(proton) densities of nulei 1 and 2:�y(r) = �1y(r) + �2y(jr �Rj) : (6)(The origin of the position vetor r is the same as that of R, i.e., the enterof 1. We assume that both nulei are spherially symmetri.)The motion of eah of the olliding nulei resembles that of a rigid body:the instantaneous veloity of eah point of the nuleus 1 (2) is the same. Thusin the lab frame the veloity of eah point of 1 vanishes, and the veloity ofeah point of 2 is ~K2=M2 = ~KREL=�, and the average momentum Kr ofneutrons and protons in nuleus 2 isKr = (m=�)KREL ; (7)where m is the nuleon mass. Consequently in the lab frame (see Fig 1), theloal momentum distributions at r of neutrons and protons in nuleus 1 arethe respetive Fermi spheres (surfaes F1n = F10n and F1p = F10p) enteredin O1, with the loal Fermi momentakF10y = kF10y(r) = [3�2�1y(r)℄1=3 ; (8)and those of neutrons and protons in 2 are the respetive Fermi spheres(surfaes F2n = F20n and F2p = F20p) entered in O2 (with �!O1O2 = Kr),with the loal Fermi momentakF20y = kF20y(r) = [3�2�2y(jr �Rj)℄1=3 : (9)



1990 J. D¡browski, H.S. KöhlerFor the ombined system of nulei 1 and 2, we obtain the loal neutron andproton momentum distributions ny(k0y) onsisting of two Fermi spheres F1yand F2y: ny(k0y) = 1 for k0y within Fy = F1y+F2y and ny(k0y) = 0 otherwise.As long as Kr > kF10y + kF20y (Fig. 1(a)), our de�nition of ny(k0y)presents no problems. If however Kr < kF10y + kF20y (Fig. 1(b)), the twoFermi spheres F10y and F20y overlap, and we fae the problem of the dou-ble oupany in the overlap region. We resolve this problem by inreasingkF10y ! kF1y and kF20y ! kF2y, and obtain our �nal momentum distribu-tions ny(k0y) with the Fermi surfaes Fy = F1y+F2y , with a single oupanyinside Fy. This reshu�ing of neutrons and protons from the original distri-

Fig. 1. The loal momentum distribution of neutrons or protons (y = n or p) intwo olliding nulei.butions ~ny with the Fermi surfaes F10y + F20y (with the double oupanyin the overlap region) to our �nal distributions ny should leave the neutronand proton densities unhanged:�y = �1y + �2y = [2=(2�)3℄VFy = [2=(2�)3℄(VF1y + VF2y) ; (10)where VFy is the volume within Fy and VF1y (VF2y) is the volume within Fyto the left (right) of the plane F12y . We have (i = 1; 2):VFy = �f23 (k3F1y + k3F2y) + 12Kr(k2F1y + k2F2y) + 14K3r (x2y � 13)g ;VFiy = �f23k3Fiy + 12Kr(1 + �ixy)k2Fiy � 13 [12Kr(1 + �ixy)℄3g ; (11)where �1 = 1; �2 = �1, and xy = (k2F1y � k2F2y)=K2r .To determine kF1y and kF2y, we need one ondition more for eah valueof y (n and p) in addition to Eq. (10)1. Let us denote by kGy the average1 Here, we apply the presription of Ref. [7℄ (see also [4℄).



Nulear Matter Approah to the Interation Potential . . . 1991neutron (y = n) or proton (y = p) average momentum in the loal NM at rin the lab frame:kGy = R dk0yny(k0y)k0yR dk0yny(k0y) = �Kr�2y=�y for Kr > kF10y + kF20y ,KrVF2y=VFy otherwise . (12)Before reshu�ing neutrons and protons, in the original distributions ~ny, wehave kGy = Kr�2y=�y also for Kr < kF10y + kF20y. Let us insist that thereshu�ing does not hange the average neutron and proton momenta kGy:VF2yVFy = �2y�y : (13)Eqs. (13) and (10) are equivalent to the following system of two equationsfor both neutrons and protons:VF1y = 4�3 k3F10y ; VF2y = 4�3 k3F20y ; (14)from whih both (kF1n; kF2n) and (kF1p; kF2p) may be determined (numer-ially)2.To simplify the presentation, we go over to the rest frame of NM, inwhih the total momentum vanishes. The nuleon momenta in this frameare denoted by ky. This frame depends on r (is loal). The energy densityin this frame is denoted by H, and � in agreement with the König theoremof the lassial mehanis � we have (see Ref. [4℄):Hlab = H + ~22mK2r�22� ; (15)where we use the notation �i = �in + �ip.Let us onsider normal NM (i.e., NM in its ground state) with the sameneutron density �n and proton density �p as the loal neutron and protondensities of our system or equivalently with the same total density � andneutron exess � as the loal total density and neutron exess of our system.In this normal NM, the neutron and proton momentum distributions aren0y(ky) = �(kFy � ky), where kFy = (3�2�y)1=3, and the energy density isHNM0 = ENMA � = f(�; �)� ; (16)where f(�; �) = ENM=A is the energy per nuleon in our normal NM. TheNM by whih our system is loally approximated, di�ers from the normal2 As it turns out, one always �nds jkF1y � kF2yj < Kr.



1992 J. D¡browski, H.S. KöhlerNM by the momentum distributions ny (the two sphere distributions inFig. 1). We denote its energy density by HNM, and use the approximaterelationHNM �= HNM0 + 2(2�)3 Xy=n;pZ dky[ny(ky)� n0y(ky)℄e0y(�; �; ky) ; (17)where e0y is the s.p. energy of the y-nuleon in normal NM. Eq. (17)represents the hange in the energy density aused by the redistributionof nuleons in the momentum spae with unhanged s.p. energies. If weexpressed the energy density through an e�etive two-body interation, thenwe would obtain expression (17) by negleting the hange in the e�etiveinteration indued by the hange in the neutron and proton momentumdistributions.If we assume for e0y the e�etive mass approximation [see Appendix,Eq. (A.1)℄, then Eqs. (16,17) lead to the following result for HNM:HNM = f(�; �)�+ 1� (�n + �p � �0n � �0p) ; (18)where �y and �0y are the kineti energy densities (in the rest frame of NM)in our system and in normal NM:�y = [2=(2�)3℄Z dkyny(ky)"(ky) ; �0y = 35"(kFy)�y : (19)Let us notie that with the help of Eqs. (A.8), (A.10) we may write expression(18) in the alternative form:HNM = f0(�)�+ 1� (�n + �p � �0) + 12�2 14V1� ; (20)where �0 = 35"(kF )�.To take into aount density gradient orretions, we follow Bruekneret al. [8℄ and add to the energy density of the loal NM the gradient orre-tion Hr: H = HNM +Hr ; (21)where Hr = Hr(�) = �W (r�)2� + �V (r�)2; (22)where �W = ~2=72m. The �rst term in (22) is the Weizsäker orretion tothe kineti energy density, and the seond one is the gradient orretion tothe potential energy density, in whih �V is treated as a phenomenologialparameter.



Nulear Matter Approah to the Interation Potential . . . 1993In alulating the intrinsi energies Ein(i) we apply the expression:Ein(i) = Z drff(�i; �i)�i +Hr(�i)g ; (23)where �i = (�in � �ip)=�i.Following the proedure explained in Ref. [4℄ we insert our results pre-sented in Eqs. (23,21,18,15,4) into de�nition (1) of V, and write our �nalexpression for the interation potential V in the form:V(E;R) = Z drv(Kr; R; r); (24)v(Kr; R; r) = f(�; �)� + 1� (�n + �p � �0n � �0p) +Hr(�)� Xi=1;2[f(�i; �i)�i +Hr(�i)℄� ~2K2r2m �1�2� ; (25)where �1 = �1(r), �2 = �2(jr �Rj), and � = �1 + �2.Let us notie that Kr = Kr(R) = (m=�)KREL(R), and this R depen-dene of Kr and KREL is determined by relation (3) wih ontains V(E;R).One may solve this problem by applying the iteration proedure desribedin Refs. [2, 3℄. 4. Final ommentsIn the limiting ase of �i = 0, the reliability of our approah was dis-ussed in Refs. [1�3℄. In this ase we ould ompare our results with thoseobtained by the Faessler group (see [7,9℄ and referenes quoted there). In thisgroup, the �exat� energy density HNM was alulated within the Brueknertheory. Our results for V � based on HNM0 �tted to known properties ofNM, and on relation (17) � turned out to be in a satisfying agreement withthe most extensive alulations of the Faessler group. It should be pointedout, that these extensive alulations would beome extremely ompliatedin the ase of heavy ions with neutron exess (even normal NM with neutronexess presents serious omputational problems in ab initio alulations �see e.g. [10℄). On the other hand, our approah to heavy ions with neutronexess remains simple.Reently, the stati nuleus�nuleus potential has been alulated bySkalski [11℄ who applied the Hartree�Fok method. In partiular, he onsid-ers the ase of 40Ca-40Ca potential, whih we also onsidered in Refs. [3, 4℄.Our result obtained for the total potential Vtot = V + VC, alulated withKr � Kr(1) = 0, is shown in Fig. 2. In alulating V, we used for 40Castandard Woods�Saxon density, �V = 22 MeV fm5 was �tted to binding



1994 J. D¡browski, H.S. Köhlerenergies of 40Ca and 16O, and �0 = :83 was taken from [12℄. The harge dis-tributions in the two 40Ca nulei were approximated by equivalent uniformdistributions, and VC(R) was alulated as the Coulomb interation betweenthese two uniform harge distributions. Our potential Vtot turns out to besimilar to the potential alulated in [11℄. Espeially the maximum of Vtotequal to 54.5 MeV at R = 9:4 fm is lose to the fusion barrier of 53 MeVobtained in [11℄ (and is onsistent with the threshold barrier of 50.2�0.2MeV estimated in [13℄). This agreement between the essentially adiabatiapproah of Ref. [11℄ and our approah involving the sudden approximationtakes plae at distanes R at whih the tails of the two densities overlap. Atsmaller distanes our frozen density exeeds the adiabati density and ourpotential is bigger (more repulsive) than the potential determined in [11℄.

Fig. 2. The total interation potential V(R) + VC(R) for 40Ca�40Ca at Kr = 0.The appliation of the sheme desribed in this paper to a number ofheavy ion partners will be presented in the future. This appliation requiresthe knowledge of both proton and neutron distributions in the ollidingpartners, of whih the neutron distribution is empirially less known and itsdetailed shape has to be disussed.Appendix AThe energy and the s.p. potential in normal NMFor the s.p. energies e0y, we assume the following e�etive mass approx-imation: e0n(�; �; kn) = "(kn)�(�) + C(�; �) ;e0p(�; �; kp) = "(kp)�(�) +C(�;��) ; (A.1)



Nulear Matter Approah to the Interation Potential . . . 1995where "(ky) = ~2k2y=2m, and � = m�=m is the ratio of the e�etive tothe real nuleon mass. The dependene on �� of C follows from the hargesymmetry of nulear fores. For the dependene of � on �, we use the relation(�0 is the equilibrium density of NM):1=�(�) � 11=�0 � 1 = ��0 ; (A.2)where �0 = �(�0). This relation follows from the assumption that �V0y=�kyis proportional to �, where V0y is the s.p. potential:V0y(�; �; ky) = e0y(�; �; ky)� "(ky) : (A.3)We assume that our s.p. energies e0y lead to the orret energy pernuleon ENM=A in normal NM:ENMA =f(�; �)= 12 Xy=n;p kFyZ0 dkyk2y["(ky) + 12V0y(�; �; ky)℄=13k3F ; (A.4)where kF = (3�2�=2)1=3, kFn = (3�2�n)1=3 = kF (1 + �)1=3, and kFp =(3�2�p)1=3 = kF (1� �)1=3.Let us now introdue the linear approximation in � of V0y:V0n(�; �; kn) = V0(�; kn) + 14�V1(�) ;V0p(�; �; kp) = V0(�; kp)� 14�V1(�) ; (A.5)where V0(�; ky) = � 1�(�) � 1� "(ky) + C(�; 0); (A.6)and the Lane potential V1 is:V1(�) = 4�C(�; �)�� ������=0: (A.7)For the energy per nuleon in normal NM, f = ENM=A, we use on theleft hand side of Eq. (A.4) the quadrati3 approximation in �:f(�; �) = f0(�) + 12�2f1(�) : (A.8)On the right hand side of Eq. (A.4), we insert expressions (A.5) for V0yand expand this side in powers of � up to quadrati terms (terms linear3 Terms linear in � vanish for harge symmetri nulear fores.



1996 J. D¡browski, H.S. Köhlerin � vanish). By omparing the orresponding terms on both sides of theresulting equation, we get:f0(�) = 12 [35(1 + 1=�)"(kF ) + C(�; 0)℄ ; (A.9)f1(�) = 23"(kF ) + 13 [k�V0(�; k)=�k℄k=kF + 14V1(�)= 23"(kF )=�(�) + 14V1(�) : (A.10)For f0, we assume the form:f0(�) = 35"(kF ) + 5Xj=3 aj(kF =kF0)j ; (A.11)where kF0 is the Fermi momentum at equilibrium density �0, and the oe�-ients aj are determined by kF0, by the volume energy of NM, "vol = f0(�0),and by the ompressibility K = k2F0(d2f0=dk2F )kF0 :a3 = 10"vol � 95"(kF0) + 12K ;a4 = 95"(kF0)� 15"vol �K ;a5 = 12K � 35"(kE0) + 6"vol : (A.12)With the assumed form of f0(�) one ould use Eq. (A.9) to determineC(�; 0), although in our present alulation of V the value of C(�; 0) is notrequired. On the other hand, we shall use Eq. (A.10) to determine thefuntion f1(�). Empirially we only know the symmetry energy "sym =f1(�0). To �x the dependene of f1 on � we use Eq. (A.10) in whih weassume that V1(�) is proportional to �:V1(�) = ��0V1(�0) ; (A.13)where V1(�0) is determined by:"sym = 23 "(kF0)�0 + 14V1(�0) : (A.14)(For kF0 = 1.35 fm�1, �0 = 0:7, and "sym = 60 MeV, we get V1(�0) =96 MeV, in good agreement with existing estimates of the Lane potential.)Thus our �nal expression for f1(�) is:f1(�) = 23"(kF ) �1 + (1=�0 � 1)��0 �+ 14V1(�0) ��0 : (A.15)
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