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A simple theory of the interaction potential between heavy ions V, based
on the local density approach and the frozen density model, is presented
for nuclei with neutron excess. The energy density needed for calculating
V is expressed in a simple way through the known properties of nuclear
matter.
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1. Introduction

The theoretical description of the synthesis of the heaviest elements in
heavy ion collisions requires the knowledge of the interaction potential V
between the two colliding ions. The calculation of V, based on a simple
nuclear matter (NM) approach was presented in Refs. [1-4]. We call the
approach simple, because it allows to determine V directly from the known
properties of NM. In a simplified form, the approach was applied a long time
ago by Brueckner at al. [5] (see also [6]).

The simple NM approach was restricted in Refs. [1-4] to heavy ions with
equal numbers of neutrons and protons, and could not be applied to really
heavy ions with an appreciable neutron excess. In the present paper we
extend our simple NM approach to V to the scattering of ions with neutron
excess, i.e., to the case relevant in the synthesis of the heaviest elements.

* This research was partly supported by the Polish State Committee for Scientific
Research (KBN) under Grant No. 2P03B7522.
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The paper is organized as follows. In Section 2, the interaction poten-
tial V is defined as the energy difference between overlapping and separated
nuclei. In Section 3 the local density approximation and the frozen den-
sity model are presented and the density and momentum distributions of
neutrons and protons in the system of two colliding nuclei are described.
Final comments, especially concerning results obtained previously for nu-
clei with equal number of neutrons and protons, are presented in Section 4.
Properties of the energy and the single particle (s.p.) energies in NM with
neutron excess, in particular their density dependence, are described in the
Appendix.

2. The definition of V

We consider nuclei 1(target) and 2 (projectile) (with masses M;, Mo,
and with the reduced mass u = MM, /(M; + Ms), moving with relative
momentum Kgpgp, (in units of A). We denote by R the relative position
vector between the centers of mass of 1 and 2 (directed from 1 to 2). The
definition of V as the difference between the energies of the overlapping and
spatially separated nuclei 1 and 2 does not depend on the reference frame.
As the most convenient one, we chose the rest frame of 1, which we call the
“laboratory” (lab) frame (at R = oo, it coincides with the laboratory (LAB)
frame of the two nuclei). In this frame

V(E,R) = Eap(KrEL, R) — B2K3 /2My — (1) — En(2) , (1)

where & (7) is the intrinsic nuclear energy of the isolated nucleus i, &y is
the nuclear energy of the total system in the lab frame, and

Ky = (My/p) KRy (2)

is the projectile momentum in the lab frame.
The conservation of the total energy implies that the instantaneous rel-
ative momentum Kgrgr, = Kgrgr(R) is changing with R:

h?Kre(R)?/2u 4+ V(E, R) + Vo(R) = B Krpn(00)?/2u=E,  (3)

where V¢ (R) is the Coulomb potential between nuclei 1 and 2, and E is the
CMS kinetic energy .

3. The NM approach to V

We apply the local density approximation, and write a1, in the form:

Elab(Krer, R) = /dT'Hlab(KREL,R; ), (4)
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where Hp,y, is the energy density (in the lab frame) at r. For a given distance
R between the two nuclei, the system is approximated locally (at each point
r) by a piece of NM with the neutron and proton densities p, and p,,
and with the corresponding momentum distributions n,(k;,) and ny(k;,).
Obviously, we have

on = [2/(27)%) / K (kL),  pp = [2/(27)°) / dkLny(KD) . ()

(The assumed spin saturation leads to the factors 2. Neutron and proton
momenta in the lab frame are denoted by k;, and k;,.)

Instead of p, and pp, as an alternative description of the the local NM we
also shall use the total density p = p;, + pp and the neutron excess parameter
a = (pn — pp)/p-

For p, and ny(k;), we apply the frozen density model (the sudden ap-
proximation) in which all degrees of freedom are frozen, except for R. Here
and further on, we use the notation y = n, p. The neutron (proton) density
of the combined system at r is equal to the sum of the original neutron
(proton) densities of nuclei 1 and 2:

py(r) = p1y(r) + p2y (|7 — R) . (6)

(The origin of the position vector r is the same as that of R, i.e., the center
of 1. We assume that both nuclei are spherically symmetric.)

The motion of each of the colliding nuclei resembles that of a rigid body:
the instantaneous velocity of each point of the nucleus 1 (2) is the same. Thus
in the lab frame the velocity of each point of 1 vanishes, and the velocity of
each point of 2 is hKo/My = hKRrpr/u, and the average momentum K, of
neutrons and protons in nucleus 2 is

K, = (m/p)KggrL , (7)

where m is the nucleon mass. Consequently in the lab frame (see Fig 1), the
local momentum distributions at 7 of neutrons and protons in nucleus 1 are
the respective Fermi spheres (surfaces Fi, = Fig, and Fi, = Figp) centered
in O1, with the local Fermi momenta

krioy = krioy(r) = [32p1,(r)]1/3, (8)

and those of neutrons and protons in 2 are the respective Fermi spheres

iy
(surfaces Fy, = Fyp and Fy, = Fy,) centered in Oz (with 0,0, = K,),
with the local Fermi momenta

kpaoy = kraoy(r) = [37% pay(I7 — R)]M/? . (9)
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For the combined system of nuclei 1 and 2, we obtain the local neutron and
proton momentum distributions ny(k;) consisting of two Fermi spheres Fi,
and Fyy,: n, (k) = 1 for kj, within F, = Fy, + Fy, and n,(kj) = 0 otherwise.

As long as K, > krioy + kraoy (Fig. 1(a)), our definition of n,(k;)
presents no problems. If however K, < kpioy + kraoy (Fig. 1(b)), the two
Fermi spheres Fig, and Fyg, overlap, and we face the problem of the dou-
ble occupancy in the overlap region. We resolve this problem by increasing
krioy — kr1y and kpagy — kpay, and obtain our final momentum distribu-
tions ny(k;) with the Fermi surfaces Fy = F,+Fb,, with a single occupancy
inside Fy. This reshuffling of neutrons and protons from the original distri-

(b) Kr < krioy + Ke2oy

(@) K > Krioy + Kooy

Fig.1. The local momentum distribution of neutrons or protons (y = n or p) in
two colliding nuclei.

butions 7, with the Fermi surfaces Fig, + Fao, (with the double occupancy
in the overlap region) to our final distributions n, should leave the neutron
and proton densities unchanged:

py = pry +pay = 2/ (20)°|Vr, = [2/20)°)(VFy, + VR,,),  (10)
where V, is the volume within F, and Vg, (Vp, ) is the volume within F
to the left (right) of the plane Fig,. We have (i = 1,2):
Vr, = ﬂ-{%(k%‘ly + k%‘?y) + %KT(k%‘ly + k%‘?y) + %KS(I; - %)} )

Yy
VFi = ﬂ'{%k%‘zy + %Kr(l + nzxy)kl%‘zy - %[%Kr(l + nixy)]g}a (11)
where 1 =1, 7o = —1, and 2, = (k%ly — k%gy)/Kf

To determine kp1, and kpoy, we need one condition more for each value
of y (n and p) in addition to Eq. (10)'. Let us denote by k¢, the average

! Here, we apply the prescription of Ref. [7] (see also [4]).
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neutron (y = n) or proton (y = p) average momentum in the local NM at »
in the lab frame:

ke = fdk:’yny(k;)k; _ {Krpr/py for KT.> kFl()y + kFQQy, (12)
4 [ dkyn, (k) K, Vi, /VF, otherwise.

Before reshuffling neutrons and protons, in the original distributions 7, we

have kgy = K, pay/py also for K, < kpigy + krooy. Let us insist that the

reshuffling does not change the average neutron and proton momenta kgy:

Vi _ (13)
VFy Py

Egs. (13) and (10) are equivalent to the following system of two equations
for both neutrons and protons:

4 47
VFly = ?k%loya VFQy = ?k%20y7 (14)
from which both (kpin,kron) and (kpip, krop) may be determined (numer-
ically)?.

To simplify the presentation, we go over to the rest frame of NM, in
which the total momentum vanishes. The nucleon momenta in this frame
are denoted by k,. This frame depends on 7 (is local). The energy density
in this frame is denoted by H, and — in agreement with the Kénig theorem
of the classical mechanics — we have (see Ref. [4]):

2 12 2
Hlab:H‘i‘ﬁ—@a (15)
2m p
where we use the notation p; = pin + pip.

Let us consider normal NM (i.e., NM in its ground state) with the same
neutron density p, and proton density p, as the local neutron and proton
densities of our system or equivalently with the same total density p and
neutron excess « as the local total density and neutron excess of our system.
In this normal NM, the neutron and proton momentum distributions are
noy(ky) = 0(kry, — k), where kg, = (37%p,)'/3, and the energy density is

E
HM = =0 = f(p.)p, (16)

where f(p,a) = Exum/A is the energy per nucleon in our normal NM. The
NM by which our system is locally approximated, differs from the normal

% As it turns out, one always finds |kr1y, — kr2y| < K.
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NM by the momentum distributions n, (the two sphere distributions in
Fig. 1). We denote its energy density by H"M, and use the approximate
relation

HM o~ M (2i)3 > /dky[ny(ky) — noy(ky)leoy (p, s ky) ,  (17)

Yy=n,p

where eq, is the s.p. energy of the y-nucleon in normal NM. Eq. (17)
represents the change in the energy density caused by the redistribution
of nucleons in the momentum space with unchanged s.p. energies. If we
expressed the energy density through an effective two-body interaction, then
we would obtain expression (17) by neglecting the change in the effective
interaction induced by the change in the neutron and proton momentum
distributions.

If we assume for e, the effective mass approximation [see Appendix,
Eq. (A.1)], then Egs. (16,17) lead to the following result for HNM:

H"M = f(pa Ot)p + %(Tn +Tp — Ton — TOp) > (18)

where 7, and 79, are the kinetic energy densities (in the rest frame of NM)
in our system and in normal NM:

= /@) [ dkyny(e)e(hy), g = Selhry)oy. (19

Let us notice that with the help of Egs. (A.8), (A.10) we may write expression
(18) in the alternative form:

Hyw = folp)p+ L(1 + 75 — 10) + 2a*1Vip, (20)

where 79 = %6(kp)p.

To take into account density gradient corrections, we follow Brueckner
et al. [8] and add to the energy density of the local NM the gradient correc-
tion Hy:

H=H 4 Hy, (21)

where )
(Vp)

Hy = Hv(p) = nw +nv(Vp)?, (22)
where nw = A2/72m. The first term in (22) is the Weizséicker correction to
the kinetic energy density, and the second one is the gradient correction to
the potential energy density, in which 7y is treated as a phenomenological
parameter.
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In calculating the intrinsic energies &, (i) we apply the expression:

Eunli) = / dr{ (pir )i + Hy (p:)} (23)

where a; = (pin — pip)/pi-

Following the procedure explained in Ref. [4] we insert our results pre-
sented in Eqs. (23,21,18,15,4) into definition (1) of V, and write our final
expression for the interaction potential V in the form:

V(E,R) = /dm)(Kr,R; r), (24)
(K, R;r) = f(p, @)p + +(Tn + T — Ton — Top) + Hy(p)
h?K?
= [f (pi, i) pi + Hy(pi)] - Q—mT%, (25)

i=1,2

where p1 = p1(r), p2 = p2(|r — R|), and p = p1 + ps.

Let us notice that K, = K,(R) = (m/u)Kgrern(R), and this R depen-
dence of K, and Kggr, is determined by relation (3) wich contains V(E, R).
One may solve this problem by applying the iteration procedure described
in Refs. [2,3].

4. Final comments

In the limiting case of «; = 0, the reliability of our approach was dis-
cussed in Refs. [1-3]. In this case we could compare our results with those
obtained by the Faessler group (see [7,9] and references quoted there). In this
group, the “exact” energy density H M was calculated within the Brueckner
theory. Our results for ¥V — based on H(I)VM fitted to known properties of
NM, and on relation (17) — turned out to be in a satisfying agreement with
the most extensive calculations of the Faessler group. It should be pointed
out, that these extensive calculations would become extremely complicated
in the case of heavy ions with neutron excess (even normal NM with neutron
excess presents serious computational problems in ab initio calculations —
see e.g. [10]). On the other hand, our approach to heavy ions with neutron
excess remains simple.

Recently, the static nucleus—nucleus potential has been calculated by
Skalski [11] who applied the Hartree-Fock method. In particular, he consid-
ers the case of °Ca-4°Ca potential, which we also considered in Refs. [3,4].
Our result obtained for the total potential Vit = V + V¢, calculated with
K, = K,(00) = 0, is shown in Fig. 2. In calculating V, we used for 4°Ca
standard Woods-Saxon density, 1 = 22 MeV fm® was fitted to binding
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energies of °Ca and 160, and vy = .83 was taken from [12]. The charge dis-
tributions in the two “°Ca nuclei were approximated by equivalent uniform
distributions, and V¢ (R) was calculated as the Coulomb interaction between
these two uniform charge distributions. Our potential V;o; turns out to be
similar to the potential calculated in [11]. Especially the maximum of Vi
equal to 54.5 MeV at R = 9.4 fm is close to the fusion barrier of 53 MeV
obtained in [11] (and is consistent with the threshold barrier of 50.2+0.2
MeV estimated in [13]). This agreement between the essentially adiabatic
approach of Ref. [11] and our approach involving the sudden approximation
takes place at distances R at which the tails of the two densities overlap. At
smaller distances our frozen density exceeds the adiabatic density and our
potential is bigger (more repulsive) than the potential determined in [11].

50 " | /‘_‘Kﬁ

\\//

|\
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0 1 I L L
s R [fm] 10

Fig.2. The total interaction potential V(R) + Vo (R) for °Ca—°Ca at K, = 0.

The application of the scheme described in this paper to a number of
heavy ion partners will be presented in the future. This application requires
the knowledge of both proton and neutron distributions in the colliding
partners, of which the neutron distribution is empirically less known and its
detailed shape has to be discussed.

Appendix A
The energy and the s.p. potential in normal NM

For the s.p. energies eg,, we assume the following effective mass approx-
imation:

eOn(,Oa a; kn) = 61/(5:)) + C(:Oa a) ’
eoplpraity) = 02 oy ) (A1)
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where e(ky) = B?k;/2m, and v = m*/m is the ratio of the effective to
the real nucleon mass. The dependence on £« of C follows from the charge
symmetry of nuclear forces. For the dependence of v on p, we use the relation
(po is the equilibrium density of NM):

v(p) =1 _p
T T " (A.2)

where vy = v(pg). This relation follows from the assumption that dVj, /0k,
is proportional to p, where Vj, is the s.p. potential:

Voy (0, s ky) = eoy(p, s ky) — e(ky) - (A.3)

We assume that our s.p. energies ep, lead to the correct energy per
nucleon Exy/A in normal NM:

kry

Exm

P o) =h 3 [k le() + ook )/ RE . (A
y=np

where kp = (372p/2)'3, kpy = (372pn)/3 = kp(1 + @)/3, and kg, =
(372pp) /3 = k(1 — a)1/3.
Let us now introduce the linear approximation in « of Vj,:

Von(p, a; kn) = Vo(ps kn) + %avl(p) )

Vop(ps i kp) = Volps kp) — 10V1(p) (A.5)
where
Vol ) = (55 1) ell) + Clo.0) (4.6)
and the Lane potential V7 is:
‘MMzﬁ%%@ (A7)
a=0

For the energy per nucleon in normal NM, f = Enxy/A, we use on the
left hand side of Eq. (A.4) the quadratic® approximation in a:

flp, ) = folp) + 50° fi(p) - (A.8)

On the right hand side of Eq. (A.4), we insert expressions (A.5) for Vg,
and expand this side in powers of o up to quadratic terms (terms linear

3 Terms linear in « vanish for charge symmetric nuclear forces.
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in « vanish). By comparing the corresponding terms on both sides of the
resulting equation, we get:

folp) = HEQ+1/)e(kr) + C(p,0)]. (A.9)
Fi(p) = Ze(kn) + LkOVe(p, k) /OR]key + 3V ()
— Ze(kr) /o) + 1VA(p) (A.10)

For fy, we assume the form:

5
folp) = Ze(e) + 3 ajhr o)’ (A1)
=3

where kg is the Fermi momentum at equilibrium density pg, and the coeffi-
cients a; are determined by krg, by the volume energy of NM, e,q1 = fo(po),
and by the compressibility K. = k% (d? fo/dk?)

kpo -

ag = 10evo — 2e(kro) + 5K,
as = 2e(kpo) — 15evo — K,

as = %KC — %E(kE()) + 6eyor - (A.l?)

With the assumed form of fy(p) one could use Eq. (A.9) to determine
C(p,0), although in our present calculation of V the value of C(p,0) is not
required. On the other hand, we shall use Eq. (A.10) to determine the
function fi(p). Empirically we only know the symmetry energy esym =
fi(po). To fix the dependence of f; on p we use Eq. (A.10) in which we
assume that Vj(p) is proportional to p:

Vi(p) = LVi(po), (A.13)
Po

where Vi (pg) is determined by:

2 €(kF0)

Esym = g

1
+ —~V1(po) - (A.14)
140} 4
(For kpo = 1.35 fm™', vy = 0.7, and 4y, — 60 MeV, we get Vi(pg) —
96 MeV, in good agreement with existing estimates of the Lane potential.)
Thus our final expression for fi(p) is:

Filo) = Ze(kr) [1 n ‘1//)70‘”’)] SamL )
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One consequence of the density dependence of fy is that the equilibrium
density is shifted by the neutron excess (towards lower densities). It is easy

to estimate this shift (with an o? accuracy):
1 [kpdfi/dk
Akp [kpo = _g[Ffl;{—F]kmoﬁ_ (A.16)
C

For K. = 235 MeV (and with the remaining NM parameters quoted above)
we get Akp/kpo = —0.375a%. This agrees with other estimates [10, 14],
which indicates that our expression (A.15) for fi(p) appears to be a reason-
able approximation.
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