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2050 W.J. �wi¡teki, K. Siwek-Wilzy«ska, J. Wilzy«ski1. IntrodutionFig. 1 shows, on a logarithmi sale, experimental ross setions for pro-duing a number of very heavy elements in bombardments of a lead targetwith projetiles ranging from 48Ca to 86Kr [1�4℄. (In eah ase only oneneutron was emitted from the ompound nuleus.) One would like to have atheoretial understanding of these ross setions and be able to extrapolatethe trends to other heavy systems. For experimentalists engaged in synthe-sizing heavy elements this is obviously important. Moreover, there is someinstrutive physis behind these numbers, whih may be of general interest.
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Fig. 1. Measured ross setions for the prodution of elements with atomi numbersZ in bombardments of a 208Pb target with the projetiles shown. The ross setionsrefer to the maxima of the Gaussian representations of the data in Fig. 19 of Ref. [1℄,supplemented by [2,3℄. Exept for the reations with 50Ti and 58Fe, the rosssetions are based on very few events at one, two or three bombarding energies,and are subjet to onsiderable unertainty. In the ase of the ompound nulei270110 and 272110, the ross setions are displayed (here and in subsequent �gures)at Z = 109:9 and 110.1 in order to failitate their identi�ation. The upper limitfor Z = 118 is based on Ref. [4℄.To bring this out, let me re-plot the above ross setions by dividingthem by ross setions that would be expeted on the basis of theories thatwork quite well for all but the heaviest systems. I will say more about thesetheories in Setions 5 and 6, but for now let me just note that they have twoingredients:



Fusion by Di�usion 2051(1) an estimate of the ross setion �s for the olliding nulei to stik, and(2) the probability P for the exited ompound nuleus � assumed tohave been formed automatially after stiking � to survive �ssion andemit exatly one neutron.Using these `onventional' ingredients we alulated the expeted peak rosssetions for the eight reations under onsideration. They are denoted by�on(max) and listed in olumn 6 in Table I. Column 7 lists the measuredor estimated ross setions, nominally at the maxima of the exitation fun-tions, denoted by �exp(max) [1�4℄. Column 8 and Fig. 2 show the logarithmof the ratios �exp(max)=�on(max), whih I will refer to as `experimental'hindrane fators, H. (Column 4 will be disussed later.) In the ase ofelement 112 the hindrane H is some four and a half orders of magnitude.The trend, if extrapolated to the reation 86Kr + 208Pb, would suggest afurther hindrane of about 100. What is the physis of these mysterioushindranes? TABLE IPeak ross setions and hindrane fators for 1n reations.Proje- ZCN �s(max) �n=�t P �on(max) �exp(max) logHtile nb � 105 � 105 nb nb48Ca 102 22,600 2983 2367 534.4 260 �0:31350Ti 104 32,100 640.4 543.3 174.3 10.4 �1:2254Cr 106 73,500 130.2 129.7 95.32 0.50 �2:2858Fe 108 194,000 21.16 16.31 31.68 0.067 �2:6862Ni 110 356,000 0.953 0.709 2.521 0.0035 �2:8664Ni 110 536,000 6.787 6.787 36.37 0.0150 �3:3970Zn 112 697,000 2.449 2.449 17.06 0.0005 �4:5386Kr 118 4,540,000 3.239 3.052 138.6 < 0:0006 < �5:36I should not have said `mysterious' beause, qualitatively at least, it hasbeen known sine the eighties that the hindrane has to do with a simplegeometrial feature of nuleus�nuleus ollisions, namely the shrinking of theoverall length of the �ssion saddle point shape with inreasing atomi numberZ [5�7℄. For su�iently heavy systems, the overall length of the saddle-pointshape shrinks below the length of the entrane hannel ontat on�guration(approximately equal to the sum of target and projetile diameters). Hene,after ontat and the formation of a very heavy omposite mononuleus,the system �nds itself outside rather than inside the above ritial potentialenergy barrier. As a result, automati fusion no longer takes plae afterontat. The underlying physis is simply that the eletrostati repulsion has
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Fig. 2. Hindrane fators obtained by dividing the ross setions from Fig. 1 bypeak ross setions obtained by taking the produt of the stiking ross setionfrom Eq. (7) and the survival probability from Eq. (11). The line is a �t to thepoints. Nominal error bars of half an order of magnitude are displayed in orderto draw attention to both the experimental unertainties in the data and to thelimited auray of Eqs. (7) and (11).beome stronger than the nulear attration, and the system is then foredto re-disintegrate in a `fast �ssion' proess instead of forming a ompoundnuleus.In the past twenty years this phenomenon has been illustrated by numer-ous (lassial) dynamial alulations (see for example [8, 9℄). Suh dynam-ial models on�rm the geometrial interpretation of the entrane hannelhindrane, and are even suessful in aounting roughly for the ritial on-dition where the hindrane to fusion makes its appearane. But they areunable to give a useful estimate of the hindrane itself. This is beause ina lassial dynamial alulation the predited probability to fuse is eitherone or zero, depending on whether or not the barrier has been overome. Inthe past years it has been generally reognized that dynamial alulationshave to inlude statistial �utuations leading to a di�usion of probabilitiesin order to have a hane of reproduing data. A large number of suhstudies is now available (for example [9�14℄ and the reviews [15, 16℄ withtheir numerous referenes). What I hope to do in this talk is to bring outthe basi physis of the observed hindrane, and to estimate its magnitudeby an elementary formula. This means that I will fous on the middle oneof the three fators that go into an estimate of heavy-element fusion rosssetions: Fusion = (Stiking) � (Di�usion)� (Survival) . (1)



Fusion by Di�usion 20532. An equation for the hindrane fatorIn order to illustrate the bare-bones essene of the hindrane phenome-non let us analyze what happens when a system is started o� on the `wrong'side of a potential energy barrier, assumed to be in the form of an invertedparabola. (This problem has reently been treated in [12, 13℄ as a speialase of a more general formalism.) We shall also assume that the dynamis,inluding statistial �utuations, is desribed by a proess analogous to themotion of a swarm of Brownian partiles suspended in a �uid at temper-ature T . The bulk of the swarm will be sliding down the shoulder of theparabola but, beause the swarm's width inreases with time, some of thepartiles will di�use `up hill', and a fration will be able to overome thebarrier and ahieve fusion. Can we make an estimate of this fration?Let us write the paraboli potential energy asV (x) = �12bx2 ; (2)where x is some suitable elongation oordinate. The driving fore in thex-diretion is bx. Let us injet, at time t = 0, a delta funtion swarm ofBrownian partiles at a point x0, where the potential is�B. Thus the barrierheight to be overome by di�usion grows quadratially with x0 aording to:B = 12bx20 : (3)The equation desribing the drift and the spreading of the probability dis-tribution W (x; t) (the probability to �nd a Brownian partile at position xat time t) is the text-book Smoluhowski di�usion equation (a speial aseof a Fokker�Plank equation [17℄). Allow me to simply write it down for thease of our assumed paraboli potential:G�W�t = �(bxW )0 + TW 00; (4)where primes denote partial di�erentiations with respet to x. The �rstterm on the right, ontaining the driving fore bx, determines the drift, theseond, proportional to the temperature T , determines the spreading of thedistribution. The onstant G is a frition oe�ient. In the ase of Brownianpartiles it is proportional to the visosity of the �uid in whih the partilesare suspended. Very fortunately it will turn out that the fusion probabilitythat we shall derive is independent of G, so we need not say more about thefrition oe�ient at this stage.The exat solution of Eq. (4) turns out to be a Gaussian whose averageposition slides towards in�nity in the x-diretion, and whose width inreasesmonotonially with time. The fration H of partiles in the Gaussian distri-bution that has ahieved fusion is equal to the area under the distribution's



2054 W.J. �wi¡teki, K. Siwek-Wilzy«ska, J. Wilzy«skitail in the regime of negative x-values. This area is readily written down asa funtion of time, but I shall merely quote the asymptoti result for t!1.This gives the theoretial hindrane fator (see Appendix A):H = 12erfp� for x0 > 0 ; (5a)H = 1� 12erfp� for x0 < 0 ; (5b)where � = B=T , and erf is the error funtion omplement, equal to1 � erf. For injetion at the top of the barrier (i.e., for x0 = 0, B = 0)we have H = 0:5, as expeted by symmetry. For large positive x0 we �ndH � 1p4�� exp(��): (6)For negative x0 (injetion inside the barrier) H tends to unity as x0 beomesinreasingly negative.Note that the formula for H is independent of the frition oe�ientG, and that the injetion point x0 and the fore onstant b do not enterseparately, but only through B. In the end, the only parameter ontrollingthe fusion probability is the barrier parameter B=T , i.e., the barrier height(as seen from the injetion point) in units of the temperature (assumed in-dependent of x). Moreover, with inreasing x0, the hindrane soon beomesdominated by the familiar Boltzmann fator exp(�B=T ). It was not initiallyobvious that things would turn out that simple beause, in ontrast to themore familiar quasi-stationary situation where a Boltzmann fator ontrolsthe slow leakage of probability out of a potential energy hollow, we are nowdealing with a dynamial, non-stationary system aelerating to in�nity ina repulsive �eld of fore.Owing to the welome simpliity of Eq. (5) we an now easily translatethe experimental hindrane fators H into barrier parameters �, as shown inFig. 3. It turns out that for all the reations in question the injetion tem-perature T is approximately the same (about 0.6 MeV) so that the prinipalreason for the inrease of the hindrane with atomi number is the inreasein the height of the barrier that needs to be overome `from outside' in orderto reah the ompound nuleus on�guration. As I mentioned before, thisis aused by the shrinking of the saddle point shape, whih leaves the inje-tion point inreasingly farther from, and lower than, the top of the barrier.This is the so-alled `extra push' phenomenon: in the absene of �utua-tions one would need an extra bombarding energy to fore a highly hargedsystem dynamially over the barrier. This extra push inreases rapidly withatomi number and an assume values muh in exess of the barrier B itself,espeially if the dynamis is strongly dissipative [8, 12℄.



Fusion by Di�usion 2055��

0

2

4

6

8

10

12

14

100 102 104 106 108 110 112 114 116 118 120

$WRPLF�QXPEHU�=

%
�7

1.2

2.4

3.6

4.8

6.0

7.2

0

8.4

%
��0
H9
�

Fig. 3. The barrier fators B=T obtained by equating the experimental hindranefators from Fig. 2 to the theoretial Smoluhowski fators (1=2)erfpB=T . Thesale on the right gives the resulting barriers obtained by taking 0.6 MeV for thetemperature T .Up to now all I did was to introdue a little piee of mathematis dealingwith di�usion in an idealized paraboli potential in order to onvert `exper-imental' hindrane fators H into `experimental' barrier parameters �, orbarrier heights B (equal to about 0:6� MeV). As you an see from Fig. 3,these barriers range from around zero for 48Ca + 208Pb to about 5 MeV for70Zn + 208Pb. Can we aount for these values on the basis of some simplemodel of the fusion proess?3. Injetion into the asymmetri �ssion valleyI will try to answer this by using the following piture of the dynamialevolution of the system after ontat of target and projetile. It is a familiareveryday observation that after ontat of two �uid drops there takes plaea sudden nek growth that �lls in part of the spae between them: the dropsget zipped together to form a mononuleus. This happens on a time salefaster than other olletive motions, suh as the hange in the overall lengthof the on�guration. The driving fore for this nek zip is the great savingin surfae energy ounterated by only small inertial fores assoiated withminor loal rearrangements of the density distribution in the nek region.Let us denote by s the distane between the half-density surfaes of targetand projetile at whih the nek zip is assumed to take plae. (The value ofs is expeted to be in a range determined by the di�useness of the nulear



2056 W.J. �wi¡teki, K. Siwek-Wilzy«ska, J. Wilzy«skisurfaes. For sharp surfaes, s would be zero.) Instead of trying to follow indetail the dynamis of the nek growth, let us approximate the end result ofthe zip by a stati alulation, in whih the potential energy is minimizedwith respet to the nek size at �xed elongation of the system and at �xedasymmetry. We shall refer to the resulting on�guration as lying in the`asymmetri �ssion valley'. Thus we piture the system, originally in the fu-sion valley of two approahing fragments, to be injeted into the asymmetri�ssion valley at a point de�ned by the initial elongation, the initial asymme-try and by an optimized nek size. (The initial elongation is the sum of thefragment diameters augmented by s.) The suggested stati approximationis not a unique presription beause it depends on the assumed parameteri-zation of the nulear shapes. In what follows we shall adopt the frequentlyused parameterization onsisting of two spheres onneted smoothly by aportion of a hyperboloidal (or spheroidal) nek. Appropriate maps of nu-lear deformation energies of suh shapes (in a marosopi approximation)are available in [18℄. Using these maps we onstruted algebrai expressions(detailed in the Appendix B) for the deformation energy V (s) along theasymmetri �ssion valley. Fig. 4 shows these deformation energies for theeight systems under disussion.Taking the top urve as an example (it refers to the reation 48Ca +208Pb) we see that the potential V (s) is almost independent of s in therange of interest, so that B � 0 for any reasonable value of s at injetion.This means that, aording to Eq. (5), we expet a hindrane fator ofabout 0.5. Thus Fig. 4 predits that, for the sequene of the eight reationsonsidered, the reation 48Ca + 208Pb marks the approximate point beyondwhih signi�ant entrane hannel hindranes make their appearane. Thisis a bona �de predition of the nek-zip presription, obtained without theadjustment of parameters.At the other extreme, for the reation 70Zn + 208Pb, a hoie of s � 0:5fm would reprodue the barrier of about 5 MeV and thus the assoiated`experimental' hindrane of 10�4:5.The situation at this stage may be summarized as follows. We haveassumed the ross setion for fusion to be the produt of three fators a-ording to Eq. (1). For the ross setion for stiking and for the survivalprobability we used formulae that work for not too heavy systems. Weestimated the theoretial hindrane fator by onstruting the potential en-ergy along a (marosopi) asymmetri �ssion valley, and assuming that thesystem is injeted into this valley at a point determined by the surfae sep-aration parameter s. This enabled us to alulate the Smoluhowski fator(1=2)erfp�. What we get out of this sheme is:
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Fig. 4. Marosopi deformation energies in an asymmetri �ssion valley obtainedby minimizing the energy with respet to nek size at �xed asymmetry and overalllength. The nulear shapes were parameterized as two spheres onneted smoothlyby a hyperboloid or spheroid aording to Ref. [30℄. The variable s is the overalllength minus the sum of the diameters of target and projetile. The dashed vertialline shows approximately the value of s where the semi-lassial (Thomas�Fermi)edges of the density distributions touh. The urves with s less than about �1 fmare extrapolations of unertain auray.(1) a predition of the �rst appearane of substantial hindranes aroundthe reation 48Ca + 208Pb, and(2) an estimate that the hindrane for the reation 70Zn + 208Pb ouldbe aounted for by assuming a value of about 0.5 fm for the injetionseparation s. 4. Predited ross setionsNow we an go ahead and alulate the peak ross setions for the eightreations under onsideration, for any given assumption about the value ofs at injetion. The upper line in Fig. 5 shows what happens if we take aommon value s = 0 for all ases. (This means injetion at the ontat ofthe half-density surfaes.) The very poor �t to the data an be improvedby taking s = 1:2 fm, but the experimental trend with Z is still not wellreprodued. Motivated by the idea of `unshielding' from [19℄ we tried a pre-sription in whih the injetion distane is taken to be a dereasing funtion



2058 W.J. �wi¡teki, K. Siwek-Wilzy«ska, J. Wilzy«skiof Z. The thik line in Fig. 6 shows the result of assuming s to dereaselinearly from 2.1 fm for Z = 102 to �0:3 fm for Z = 118. This gives aboutthe optimum �t to the data using a linear dependene of s on Z. The impli-ation is that the heavier systems ahieve a greater ompatness at injetion.This is in line with the dereasing role of the Coulomb barrier in shieldingthe saddle-point on�guration from a diret attak by the approahing pro-jetile [19℄. Taking the extrapolation of the thik line to Z = 118 at faevalue, the ross setion for the 86Kr+208Pb reation omes out about oneorder of magnitude below that for Z = 112. The unertainties attahed tothis estimate are very large, at least plus or minus an order of magnitude,as shown by the upper and lower dashed lines in Fig. 6, orresponding tohanging the range of s values from the previous (2.1 fm to �0:3 fm) toeither (2.4 fm to �0:8 fm) or (1.8 fm to 0.2 fm). But even these large un-ertainties are not the only soure of error in estimating ross setions usingthe sheme outlined above. Further unertainties are related to the way inwhih the stiking ross setion and the survival probability were estimated.We shall give a brief desription of these estimates in what follows. A fulleraount is not attempted in the present paper, whose main onern is withthe hindrane fators desribed in terms of a di�usion proess.
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Fig. 5. Comparison of experimental (points) and theoretial (lines) ross setions.The latter were based on assuming injetion into the asymmetri �ssion valley tohave taken plae either at a surfae separation of target and projetile s equal tozero (the touhing of the half-density surfaes), or at a separation s = 1:2 fm.
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2060 W.J. �wi¡teki, K. Siwek-Wilzy«ska, J. Wilzy«ski5. Stiking ross setionThe stiking or apture ross setions were alulated using the formalismof e�etive barrier distributions in the version desribed in [20℄. The formulafor the ross setion reads:�s = �R2 wEp2� �p�X(1 + erfX) + exp(�X2)� ; (7)where R stands for the sum of the target and projetile radii, taken as1:27(A1=3T + A1=3P ) fm, and where X = (E � V )=wp2, with V equal to themean and w the width (the square root of the variane) of the distributionof barrier heights (assumed Gaussian) on whih Eq. (7) is based. The valuesof V and w were alulated using the systematis desribed in Ref. [20℄, andare listed in Table II. TABLE IIMean barrier V and width w used in Eq. (7).Reation Mean Barrier V Width w(MeV) (MeV)48Ca + 208Pb 178.1 3.2450Ti + 208Pb 198.6 4.7254Cr + 208Pb 218.3 5.9658Fe + 208Pb 238.4 7.3062Ni + 208Pb 258.8 8.7164Ni + 208Pb 257.4 8.2570Zn + 208Pb 276.7 9.4786Kr + 208Pb 337.8 13.13Equation (7) gives a fair aount of the apture ross setions for about50 reations listed in Refs. [20, 21℄, but extrapolation to still heavier systemsis, naturally, subjet to onsiderable unertainty.6. The survival probabilityWe used the anonial transition state theory of reation rates to alu-late the probability for the ompound nuleus to survive �ssion. Considerthe ompound nuleus with mass number A formed in a ollision with enterof mass energy E. Let the mass of the saddle point for �ssion � the �ssiontransition state � be Vf in energy units, as measured with respet to the sumof the target and projetile masses. (We take this as our referene baselinerather than the mass of the ground state of the ompound nuleus, beausethe latter is often not known experimentally for the very heavy nulei in



Fusion by Di�usion 2061question, and this introdues a spurious unertainty in the analysis.) LetVn stand for the mass of the transition state for neutron emission (takenwith respet to the above baseline). This is the mass of the residual nuleus(A� 1) in its ground state plus the mass of a neutron minus the sum of theground state masses of the target and projetile. Aording to the transi-tion state theory of reation rates (see, for example, Ref. [22℄) the ratio ofneutron to �ssion disintegration widths is given by�n�f = NnNf = R Un0 �n(")d"R Uf0 �f (")d" ; (8)where Nn and Nf are the numbers of states (hannels) of the neutron and�ssion transition states in the intervals Un = E � Vn and Uf = E � Vf ,respetively. Expressing the level density �(") in terms of the exponentialof the entropy S("), and using the standard approximation to evaluate theintegrals by an expansion of the integrand about the upper limit, we �ndthe result �n�f = S0fS0n exp(Sn � Sf ) ; (9)where Sn and the derivative S0n (the inverse of temperature) are evaluatedat Un, and Sf and S0f are evaluated at Uf . We used formulae for the en-tropies that inlude orretions for shell and pairing e�ets, as well as forthe dependene of the level densities on nulear shape (Appendix C).The probability for the ompound nuleus to emit a neutron rather than�ssion is now given by �n=�t, where �t = �n + �f . After this emission, thenuleus must neither �ssion nor emit a seond neutron. For this to be thease the �rst neutron must have arried o� su�ient energy to bring thesystem below the thresholds for neutron emission and �ssion. (We negletsub-barrier �ssion on the one hand and, on the other, gamma emission at ex-itation energies above the �ssion barrier.) In the ase of the eight reationsin question the threshold for emitting a seond neutron is always higher thanthe threshold for �ssion. We denote the latter by V A�1f , equal to the mass ofthe �ssion transition state of the residual nuleus (A� 1) plus the mass of aneutron minus the sum of the ground state masses of target and projetile.The energy available to overome this �ssion threshold is E �K, where Kis the kineti energy of the originally emitted neutron. If E < V A�1f , thereis no restrition on the possible values of K. But if E>V A�1f then, in orderto prevent �ssion, we must have K > K1, whereK1 = E � V A�1f : (10)



2062 W.J. �wi¡teki, K. Siwek-Wilzy«ska, J. Wilzy«skiUsing a Maxwellian distribution of the neutron's kineti energies, propor-tional to Kexp(�K=T ), where T is the temperature of the neutron tran-sition state, we �nd for the probability that K > K1 the expression (1 +K1)exp(�K1=T ). Hene the �nal expression for the probability for the om-pound nuleus to survive �ssion and emit just one neutron isP (E) = �n�t ; if E < V A�1f ; (11a)P (E) = �n�t (1 +K1)exp(�K1=T ) ; if E > V A�1f : (11b)7. Theoretial exitation funtionsThe produt of the above expressions for �s(E) and P (E) gives thetheoretial exitation funtion for the reation in question in the absene ofany hindrane. An example is shown in Fig. 8. The dashed line indiates theaverage of the exitation funtion, and the point with the nominal 0.5 MeVhorizontal error bar indiates the position of the average of the experimentalexitation funtion dedued from Fig. 19 in Ref. [1℄.
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Fig. 8. The exitation funtion for the reation 50Ti + 208Pb as alulated usingEqs. (7) and (11) in the text. The average (a little higher than the maximum) isindiated by the dashed line. The point with a nominal 0.5 MeV error bar loatesthe maximum of the experimental exitation funtion. The predited theoretialexitation funtion would be obtained with fair approximation by multipliation bythe theoretial hindrane fator at the maximum, beause the energy dependeneof the Smoluhowski fator (entering through the temperature T ) is rather slightin the range of energies of interest.



Fusion by Di�usion 2063The qualitative appearane of suh exitation funtions is readily a-ounted for. When E < V A�1f the ross setion is dominated by the steeplyinreasing funtion �s(E). (In the ases under onsideration, the energy Eis well below the mean barrier position V in Eq. (7), in the `sub-barrier'regime of the explosively growing tail of �s(E).) This inrease ontinuesup to E = V A�1f , after whih it is very soon reversed by the even moresteeply dereasing funtion P (E), whose harateristi fall-o� range is equalto the temperature Tn of the neutron transition state, a mere 0.4 to 0.6 MeV.The result is a sharply peaked exitation funtion with a maximum a little(about 0.5 MeV) above V A�1f and a narrow width. The derease of P isso abrupt � almost razor sharp � that, at the maximum, the atual rosssetion has not had a hane to derease muh below its former trend. Thisis illustrated in Table I, where the values of �n=�t and P hardly di�er, andin two ases are atually equal. (That this latter result is not an error is ex-plained by the fat that the values listed in Table I are not true maxima, butthe highest values found in a san in steps of 1 MeV.) Note the interestinginsight that emerges from the above mentioned interpretation, namely thatthe bombarding energy assoiated with the sudden downturn in the rosssetion, when added to the masses of the fragments at in�nity, leads to analmost diret determination of the saddle point mass of the nuleus (A� 1).Conversely, if the mass of the saddle point is known, or an be estimated,we arrive at the following �Optimum energy rule�:�The optimum enter-of-mass bombarding energy in a one-neutron-outheavy ion reation is approximately equal to the mass of the �ssion saddlepoint of the residual nuleus plus the mass of a neutron minus the masses oftarget and projetile plus about 0.5 MeV: ECM �MSP +Mn �MT �MP+ 0.5 MeV�.Here is how it works in the ase of the reation 50Ti + 208Pb !258Rf.Using mass exesses instead of masses, we have: measured mass exess ofground state of 257Rf = 96.01 MeV; �ssion barrier in 257Rf (assumed the sameas in 258Rf) = 6.39 MeV (Appendix C); mass exess of saddle point of 257Rf= 102.40 MeV; mass exess of neutron 8.07 MeV; sum of mass exesses oftarget and projetile = �73:20 MeV. It follows that the expeted downturnin the exitation funtion should be lose to E = 102.40 + 8.07 + 73.20 + 0.5= 184.17 MeV. This agrees with the theoretial urve in Fig. 8, and is a littlelower than the measured maximum at about 184.8 MeV. (A small di�erenewith this sign ould be due to gamma emission ompeting suessfully with�ssion just above the nominal threshold, so that the e�etive threshold for�ssion would be a little higher than V A�1f .)An alternative way of making the above estimate is to rely on the �to-pographi theorem� (desribed in Appendix C of Ref. [23℄) and to assumethat the e�et of shell struture on the saddle point energy is negligible, so
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Fusion by Di�usion 2065that the use of a marosopi estimate of the saddle point mass is adequate.We now have the following numbers: marosopi mass exess of spherial257Rf = 101.15 MeV (from Ref. [24℄); marosopi �ssion barrier = 0.76 MeV(this follows from the liquid drop approximation: barrier = (98=135)Es(1�x)3, where formulae for the surfae energy Es and the �ssility x are givenin Appendix B); hene mass exess of saddle point of 257Rf = 101.91 MeV,and the maximum of the exitation funtion should be about 183.68 MeV,i.e., 0.49 MeV below the previous estimate.Fig. 9 shows the alulated average positions of the exitation funtions,and Fig. 10 their RMS widths for the eight reations under disussion. Thetwo experimental points refer to 50Ti + 208Pb and 58Fe + 208Pb, the onlyases out of the eight for whih the exitation funtions had been approxi-mately established. 8. Summary and onlusionWe have outlined a theory of fusion ross setions for very heavy systemsin terms of the produt of three fators: a stiking ross setion, a Smolu-howski fator (1=2)erfp� and a survival probability. The �rst and thirdorrespond more or less to standard treatments that, on a logarithmi sale,reprodue very well fusion ross setions for not too heavy systems. Themiddle one is based on the Smoluhowski di�usion equation in an invertedparaboli potential. This potential was estimated using a marosopi de-formation energy in an asymmetri �ssion valley. For a given reation thereis in this sheme one adjustable parameter, s, the point of injetion intothe above valley. We found that the values of s that reprodue the orderof magnitude of the experimental ross setions are in the range expetedon physial grounds. This range is determined by the nulear surfae dif-fuseness, and spans approximately situations intermediate between the on-tat of the half-density surfaes and the ontat of the semi-lassial, i.e.Thomas�Fermi, edges of the density distributions. Pressing the �t of the-ory to data beyond a qualitative orrespondene, there is an indiation for aneed to make the value of s at injetion a dereasing funtion of Z. This is inline with the expetation of an unshielding of the saddle point on�gurationaused by the lowering of the Coulomb barrier relative to the saddle-pointenergy. It remains to be seen whether this is the orret interpretation ofthe overall trend of the measured ross setions. A loser look at the energydependene of the theoretial ross setions leads to a useful insight regard-ing the optimum bombarding energies for fusion (the `optimum energy rule')and the expeted RMS widths of the exitation funtions. Note that theseresults depend only on the �rst and third fators in Eq. (1). They providewhat appears to be quite preise determinations of two out of the three ru-



2066 W.J. �wi¡teki, K. Siwek-Wilzy«ska, J. Wilzy«skiial quantities needed in planning heavy element prodution experiments,and are not subjet to the unertainties assoiated with the di�usion fator.The latter is needed only to establish the absolute magnitudes of the rosssetions, whih is the third important harateristi of a reation.There are, indeed, reasons for being autious about the signi�ane ofour estimates of the absolute magnitudes of the ross setions, dedued asthey are from a very idealized theory, adjusted to data by an assumptiononerning the separation s at injetion. A large number of approximationswere introdued in formulating the model, too numerous for a detailed dis-ussion here. To single out an important one: our marosopi deformationenergies neglet shell e�ets, exept as these are re�eted in the groundstates of the target, projetile and the ompound nuleus. We may takesome omfort in the observation that, for the reations in question, the ob-served ross setions are fairly smooth funtions of Z (exept for a glithbetween 270110 and 272110). The fat that a smooth marosopi treatmentis able to reprodue them (inluding the glith!) is some indiation that atleast the variations in the negleted shell e�ets in going from 48Ca to 70Znprojetiles are not very signi�ant. On the other hand, the shell e�et asso-iated with 208Pb is expeted to be important, and is likely to have a�etedsigni�antly the values of s dedued from the data.Looking towards the future, an obvious extension of the present workis the appliation to other reations, in the �rst plae those using a bis-muth target. Inlusion of reations where more than one neutron is emittedwill be another test of the self-onsisteny of the model and of its range ofappliability.We would like to thank W.D. Myers for many unpublished results ob-tained with the Thomas�Fermi model and used in this paper, and R. Smo-la«zuk for information on mirosopi �ssion barriers and saddle-point de-formations. One of us (W.J.S.) thanks J. Randrup for an illuminating dis-ussion onerning di�usion equations. This work was supported in partby the Poland USA Maria Sklodowska-Curie Joint Fund II, under projetNo. PAA/DOE-98-34, and by the D.O.E. under ontrat No. DE-AC03-76SF00098 (LBNL). One of us (J.W.) aknowledges support by the PolishState Committee for Sienti� Researh (KBN), Grant No. 2P03B05419.Appendix AIntroduing a dimensionless time by � = t=t0, where t0 = G=b, Eq. (4)in the text beomes �W�� = �(xW )0 + �W 00 ; (A.1)



Fusion by Di�usion 2067where � = T=b. It may then be veri�ed by diret substitution that thesolution of Eq. (A.1), with the initial ondition that W is a Æ-funtion atx = x0, t = 0, is given byW (x; �) = 1p2�� exp��(x� x0 exp �)22� � ; (A.2)where � = �(exp 2� � 1).Integrating Eq. (A.2) from x = �1 to x = 0 and taking the limit� ! 1, gives Eq. (5) in the text. We note in passing that if at t = 0 wepostulate as the initial ondition a Gaussian distribution with variane �,i.e., W (x0; 0) = 1p2�� exp��(x� x0)22� � ; (A.3)the solution of Eq. (A.1) is still of the form of Eq. (A2), but with the variane� now given by � = � exp 2� + �(exp 2� � 1) : (A.4)The expression for the resulting hindrane fator is still of the form of Eq. (5),but with T replaed by T = T + b�.Appendix BThe following formulae provide approximations to the marosopi defor-mation energy �E of a nuleus idealized as a uniformly harged liquid drop.The shape of the drop, originally spherial with radius R, is parameterizedby two spheres onneted smoothly by a portion of a spheroid or hyperboloid[30℄. Three variables speify a given shape: elongation, asymmetry and neksize.Let � denote the deformation energy in units of the surfae energy Esof the spherial shape. Let � stand for the surfae-separation variable s inunits of R. (This � should not be onfused with the � in Appendix A.)Reall that s is the exess of the overall length L of the shape in questionover the sum of the diameters of target and projetile. Thuss = L� 2(RT +RP); � = sR ; � = �EEs : (B.1)For eah value of s, the energy is onsidered to have been minimized withrespet to the nek variable at �xed asymmetry. The resulting deforma-tion energy is onsequently a funtion of the single variable s. In a rangeof parameters to be spei�ed later, a quadrati approximation to �(�) isadequate: � � a+ b� + �2 : (B.2)



2068 W.J. �wi¡teki, K. Siwek-Wilzy«ska, J. Wilzy«skiThe oe�ients a, b,  are funtions of the asymmetry variable � and of the�ssility x de�ned as follows: � = RT �RPRT +RP ; (B.3)x = Eletrostati energy of sphere2Es : (B.4)Using the notations D = �2 and t = 1� x, we havea = �a + �at+ t2 ; (B.5)b = �b + �bt ; (B.6) = � + �t ; (B.7)where �a = �0:00557 � 0:01929exp(�D=0:02283) ; (B.8)�a = 0:048 + 0:12151exp(�D=0:04053) ; (B.9) = �0:073 + 0:94D ; (B.10)�b = �0:00858 � 0:05303exp(�D=0:03205) ; (B.11)�b = 0:019 + 0:25663exp(�D=0:07331) ; (B.12)� = �0:0256 + 0:1944D ; (B.13)� = 0:0214 + 0:6158D : (B.14)The above formulae have been tested for adequate auray in the range0:85 < x < 1:05, �0:25 < � < 0:25 and �0:1 < � < 0:44.In order to onvert the dimensionless quantities into MeV, the followingequations should be used:Es = 17:9439(1 � 1:7826I2)A2=3MeV ; (B.15)x = Z2=A50:883(1 � 1:7826I2) ; (B.16)where I = (N � Z)=A.To onvert dimensionless lengths into fm use R = 1:155A1=3 fm.Appendix CWe used the following expression for Sn(Un), based on Refs. [25, 26℄:Sn(Un) = 2panfU�n + SH[1� exp(�U�n=k)℄g ; (C.1)



Fusion by Di�usion 2069where U�n = Un � 12MeV=pA� 1 (for the odd mass numbers A � 1), k =A1=3=0:47 MeV, and SH is the shell e�et, in MeV, in the ground state ofnuleus (A� 1), as given in Refs. [24, 27℄, Un is the exitation energy givenby E � Vn , and the level density parameter an was taken asan = 0:076(A� 1) + 0:180(A� 1)2=3F (�n) + 0:157(A� 1)1=3G(�n) MeV�1 :(C.2)The last two terms allow approximately for the dependene of the leveldensity on the deformation of the nuleus, as spei�ed by the parameter �,de�ned by � = (Rmax � R)=R, where Rmax is the semi-major axis of the(axially symmetri) nuleus (of radius R before deformation). The funtionsF and G were hosen to be given byF (�) = 1 + (0:6416� � 0:1421�2)2 ; (C.3)G(�) = 1 + (0:6542� � 0:0483�2)2 : (C.4)They reprodue losely, for � < 1, the relative surfae area and integratedurvature for the symmetri saddle point shapes in Table 7.1 of Ref. [30℄,and may be expeted to give at least an approximate representation of theorretions for the asymmetri shapes with whih we are onerned.For the entropy Sf (Uf ) we used the expressionSf (Uf ) = 2qafU�f ; (C.5)where U�f = Uf � 24MeV=pA (for even�even ompound nulei) ; (C.6)Uf = E � Vf : (C.7)The level density parameter af was taken aording to Eq. (C.2), using theappropriate mass number and deformation for the transition state for �ssion.Originally two sets of values of Vf and V A�1f were studied. The �rstassumed that shell e�ets at the saddle point were negligible (see the �Topo-graphi theorem� in [23℄), and the marosopi Thomas�Fermi barrier alu-lations of [28℄ were used to determine Vf . The seond took aount of possi-ble deviations from this idealized limit, for whih there is, in fat, empirialevidene in Fig. 4 in Ref. [28℄. The Hartree�Fok alulations of Ref. [29℄also suggest related deviations between the �ssion barriers alulated mi-rosopially and those using the marosopi Thomas�Fermi saddle pointenergies and a shell-orreted ground state. Thus, for the eight ompoundnulei in question, the omparison of alulated �ssion barriers (in MeV)looks like this: Hartree�Fok/Thomas�Fermi/Di�erene = 7.23/5.44/1.79;
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