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FUSION BY DIFFUSION�W.J. �wi¡te
kiNu
lear S
ien
e Division, Lawren
e Berkeley National LaboratoryBerkeley, California 94720, USAK. Siwek-Wil
zy«skaInstitute of Experimental Physi
s, Warsaw UniversityHo»a 69, 00-681 Warsaw, Polandand J. Wil
zy«skiThe Andrzej Soªtan Institute for Nu
lear Studies05-400 Otwo
k-�wierk, Poland(Re
eived September 24, 2002)We present a theoreti
al interpretation of the 
ross se
tions to produ
eelements with atomi
 numbers Z = 102�118, in bombardments of a 208Pbtarget with proje
tiles ranging from 48Ca to 86Kr. The formation 
rossse
tion is taken to be the produ
t of three fa
tors: the 
ross se
tion for theproje
tile and target to sti
k, the probability for the resulting 
ompositenu
leus to rea
h the 
ompound nu
leus 
on�guration by di�usion, and theprobability for the latter to survive �ssion and to emit only one neutron.The �rst and third fa
tors are treated a

ording to more or less 
onventionalformulae, whilst the middle one is based on the statisti
al (Brownian-like)di�usion of probability over a barrier in the form of an inverted parabola.The early dynami
s of the ne
k growth is repla
ed by an assumption of arapid inje
tion into a ma
ros
opi
ally 
al
ulated asymmetri
 �ssion valley,after whi
h the di�usion pro
ess begins. The measured 
ross se
tions 
anbe reprodu
ed fairly well by introdu
ing an assumption about the separa-tion between the surfa
es of the approa
hing nu
lei at whi
h inje
tion takespla
e. The optimum bombarding energies 
orresponding to the peaks ofthe ex
itation fun
tions 
an be predi
ted by an elementary `optimum en-ergy rule', and the narrow widths of the measured ex
itation fun
tions arereadily a

ounted for.PACS numbers: 24.60.Ky, 25.70.Jj� Presented at the XXXVII Zakopane S
hool of Physi
s �Trends in Nu
lear Physi
s�,Zakopane, Poland, September 3�10, 2002.(2049)



2050 W.J. �wi¡te
ki, K. Siwek-Wil
zy«ska, J. Wil
zy«ski1. Introdu
tionFig. 1 shows, on a logarithmi
 s
ale, experimental 
ross se
tions for pro-du
ing a number of very heavy elements in bombardments of a lead targetwith proje
tiles ranging from 48Ca to 86Kr [1�4℄. (In ea
h 
ase only oneneutron was emitted from the 
ompound nu
leus.) One would like to have atheoreti
al understanding of these 
ross se
tions and be able to extrapolatethe trends to other heavy systems. For experimentalists engaged in synthe-sizing heavy elements this is obviously important. Moreover, there is someinstru
tive physi
s behind these numbers, whi
h may be of general interest.
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Fig. 1. Measured 
ross se
tions for the produ
tion of elements with atomi
 numbersZ in bombardments of a 208Pb target with the proje
tiles shown. The 
ross se
tionsrefer to the maxima of the Gaussian representations of the data in Fig. 19 of Ref. [1℄,supplemented by [2,3℄. Ex
ept for the rea
tions with 50Ti and 58Fe, the 
rossse
tions are based on very few events at one, two or three bombarding energies,and are subje
t to 
onsiderable un
ertainty. In the 
ase of the 
ompound nu
lei270110 and 272110, the 
ross se
tions are displayed (here and in subsequent �gures)at Z = 109:9 and 110.1 in order to fa
ilitate their identi�
ation. The upper limitfor Z = 118 is based on Ref. [4℄.To bring this out, let me re-plot the above 
ross se
tions by dividingthem by 
ross se
tions that would be expe
ted on the basis of theories thatwork quite well for all but the heaviest systems. I will say more about thesetheories in Se
tions 5 and 6, but for now let me just note that they have twoingredients:



Fusion by Di�usion 2051(1) an estimate of the 
ross se
tion �s for the 
olliding nu
lei to sti
k, and(2) the probability P for the ex
ited 
ompound nu
leus � assumed tohave been formed automati
ally after sti
king � to survive �ssion andemit exa
tly one neutron.Using these `
onventional' ingredients we 
al
ulated the expe
ted peak 
rossse
tions for the eight rea
tions under 
onsideration. They are denoted by�
on(max) and listed in 
olumn 6 in Table I. Column 7 lists the measuredor estimated 
ross se
tions, nominally at the maxima of the ex
itation fun
-tions, denoted by �exp(max) [1�4℄. Column 8 and Fig. 2 show the logarithmof the ratios �exp(max)=�
on(max), whi
h I will refer to as `experimental'hindran
e fa
tors, H. (Column 4 will be dis
ussed later.) In the 
ase ofelement 112 the hindran
e H is some four and a half orders of magnitude.The trend, if extrapolated to the rea
tion 86Kr + 208Pb, would suggest afurther hindran
e of about 100. What is the physi
s of these mysterioushindran
es? TABLE IPeak 
ross se
tions and hindran
e fa
tors for 1n rea
tions.Proje
- ZCN �s(max) �n=�t P �
on(max) �exp(max) logHtile nb � 105 � 105 nb nb48Ca 102 22,600 2983 2367 534.4 260 �0:31350Ti 104 32,100 640.4 543.3 174.3 10.4 �1:2254Cr 106 73,500 130.2 129.7 95.32 0.50 �2:2858Fe 108 194,000 21.16 16.31 31.68 0.067 �2:6862Ni 110 356,000 0.953 0.709 2.521 0.0035 �2:8664Ni 110 536,000 6.787 6.787 36.37 0.0150 �3:3970Zn 112 697,000 2.449 2.449 17.06 0.0005 �4:5386Kr 118 4,540,000 3.239 3.052 138.6 < 0:0006 < �5:36I should not have said `mysterious' be
ause, qualitatively at least, it hasbeen known sin
e the eighties that the hindran
e has to do with a simplegeometri
al feature of nu
leus�nu
leus 
ollisions, namely the shrinking of theoverall length of the �ssion saddle point shape with in
reasing atomi
 numberZ [5�7℄. For su�
iently heavy systems, the overall length of the saddle-pointshape shrinks below the length of the entran
e 
hannel 
onta
t 
on�guration(approximately equal to the sum of target and proje
tile diameters). Hen
e,after 
onta
t and the formation of a very heavy 
omposite mononu
leus,the system �nds itself outside rather than inside the above 
riti
al potentialenergy barrier. As a result, automati
 fusion no longer takes pla
e after
onta
t. The underlying physi
s is simply that the ele
trostati
 repulsion has
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Fig. 2. Hindran
e fa
tors obtained by dividing the 
ross se
tions from Fig. 1 bypeak 
ross se
tions obtained by taking the produ
t of the sti
king 
ross se
tionfrom Eq. (7) and the survival probability from Eq. (11). The line is a �t to thepoints. Nominal error bars of half an order of magnitude are displayed in orderto draw attention to both the experimental un
ertainties in the data and to thelimited a

ura
y of Eqs. (7) and (11).be
ome stronger than the nu
lear attra
tion, and the system is then for
edto re-disintegrate in a `fast �ssion' pro
ess instead of forming a 
ompoundnu
leus.In the past twenty years this phenomenon has been illustrated by numer-ous (
lassi
al) dynami
al 
al
ulations (see for example [8, 9℄). Su
h dynam-i
al models 
on�rm the geometri
al interpretation of the entran
e 
hannelhindran
e, and are even su

essful in a

ounting roughly for the 
riti
al 
on-dition where the hindran
e to fusion makes its appearan
e. But they areunable to give a useful estimate of the hindran
e itself. This is be
ause ina 
lassi
al dynami
al 
al
ulation the predi
ted probability to fuse is eitherone or zero, depending on whether or not the barrier has been over
ome. Inthe past years it has been generally re
ognized that dynami
al 
al
ulationshave to in
lude statisti
al �u
tuations leading to a di�usion of probabilitiesin order to have a 
han
e of reprodu
ing data. A large number of su
hstudies is now available (for example [9�14℄ and the reviews [15, 16℄ withtheir numerous referen
es). What I hope to do in this talk is to bring outthe basi
 physi
s of the observed hindran
e, and to estimate its magnitudeby an elementary formula. This means that I will fo
us on the middle oneof the three fa
tors that go into an estimate of heavy-element fusion 
rossse
tions: Fusion = (Sti
king) � (Di�usion)� (Survival) . (1)



Fusion by Di�usion 20532. An equation for the hindran
e fa
torIn order to illustrate the bare-bones essen
e of the hindran
e phenome-non let us analyze what happens when a system is started o� on the `wrong'side of a potential energy barrier, assumed to be in the form of an invertedparabola. (This problem has re
ently been treated in [12, 13℄ as a spe
ial
ase of a more general formalism.) We shall also assume that the dynami
s,in
luding statisti
al �u
tuations, is des
ribed by a pro
ess analogous to themotion of a swarm of Brownian parti
les suspended in a �uid at temper-ature T . The bulk of the swarm will be sliding down the shoulder of theparabola but, be
ause the swarm's width in
reases with time, some of theparti
les will di�use `up hill', and a fra
tion will be able to over
ome thebarrier and a
hieve fusion. Can we make an estimate of this fra
tion?Let us write the paraboli
 potential energy asV (x) = �12bx2 ; (2)where x is some suitable elongation 
oordinate. The driving for
e in thex-dire
tion is bx. Let us inje
t, at time t = 0, a delta fun
tion swarm ofBrownian parti
les at a point x0, where the potential is�B. Thus the barrierheight to be over
ome by di�usion grows quadrati
ally with x0 a

ording to:B = 12bx20 : (3)The equation des
ribing the drift and the spreading of the probability dis-tribution W (x; t) (the probability to �nd a Brownian parti
le at position xat time t) is the text-book Smolu
howski di�usion equation (a spe
ial 
aseof a Fokker�Plan
k equation [17℄). Allow me to simply write it down for the
ase of our assumed paraboli
 potential:G�W�t = �(bxW )0 + TW 00; (4)where primes denote partial di�erentiations with respe
t to x. The �rstterm on the right, 
ontaining the driving for
e bx, determines the drift, these
ond, proportional to the temperature T , determines the spreading of thedistribution. The 
onstant G is a fri
tion 
oe�
ient. In the 
ase of Brownianparti
les it is proportional to the vis
osity of the �uid in whi
h the parti
lesare suspended. Very fortunately it will turn out that the fusion probabilitythat we shall derive is independent of G, so we need not say more about thefri
tion 
oe�
ient at this stage.The exa
t solution of Eq. (4) turns out to be a Gaussian whose averageposition slides towards in�nity in the x-dire
tion, and whose width in
reasesmonotoni
ally with time. The fra
tion H of parti
les in the Gaussian distri-bution that has a
hieved fusion is equal to the area under the distribution's



2054 W.J. �wi¡te
ki, K. Siwek-Wil
zy«ska, J. Wil
zy«skitail in the regime of negative x-values. This area is readily written down asa fun
tion of time, but I shall merely quote the asymptoti
 result for t!1.This gives the theoreti
al hindran
e fa
tor (see Appendix A):H = 12erf
p� for x0 > 0 ; (5a)H = 1� 12erf
p� for x0 < 0 ; (5b)where � = B=T , and erf
 is the error fun
tion 
omplement, equal to1 � erf. For inje
tion at the top of the barrier (i.e., for x0 = 0, B = 0)we have H = 0:5, as expe
ted by symmetry. For large positive x0 we �ndH � 1p4�� exp(��): (6)For negative x0 (inje
tion inside the barrier) H tends to unity as x0 be
omesin
reasingly negative.Note that the formula for H is independent of the fri
tion 
oe�
ientG, and that the inje
tion point x0 and the for
e 
onstant b do not enterseparately, but only through B. In the end, the only parameter 
ontrollingthe fusion probability is the barrier parameter B=T , i.e., the barrier height(as seen from the inje
tion point) in units of the temperature (assumed in-dependent of x). Moreover, with in
reasing x0, the hindran
e soon be
omesdominated by the familiar Boltzmann fa
tor exp(�B=T ). It was not initiallyobvious that things would turn out that simple be
ause, in 
ontrast to themore familiar quasi-stationary situation where a Boltzmann fa
tor 
ontrolsthe slow leakage of probability out of a potential energy hollow, we are nowdealing with a dynami
al, non-stationary system a

elerating to in�nity ina repulsive �eld of for
e.Owing to the wel
ome simpli
ity of Eq. (5) we 
an now easily translatethe experimental hindran
e fa
tors H into barrier parameters �, as shown inFig. 3. It turns out that for all the rea
tions in question the inje
tion tem-perature T is approximately the same (about 0.6 MeV) so that the prin
ipalreason for the in
rease of the hindran
e with atomi
 number is the in
reasein the height of the barrier that needs to be over
ome `from outside' in orderto rea
h the 
ompound nu
leus 
on�guration. As I mentioned before, thisis 
aused by the shrinking of the saddle point shape, whi
h leaves the inje
-tion point in
reasingly farther from, and lower than, the top of the barrier.This is the so-
alled `extra push' phenomenon: in the absen
e of �u
tua-tions one would need an extra bombarding energy to for
e a highly 
hargedsystem dynami
ally over the barrier. This extra push in
reases rapidly withatomi
 number and 
an assume values mu
h in ex
ess of the barrier B itself,espe
ially if the dynami
s is strongly dissipative [8, 12℄.
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Fig. 3. The barrier fa
tors B=T obtained by equating the experimental hindran
efa
tors from Fig. 2 to the theoreti
al Smolu
howski fa
tors (1=2)erf
pB=T . Thes
ale on the right gives the resulting barriers obtained by taking 0.6 MeV for thetemperature T .Up to now all I did was to introdu
e a little pie
e of mathemati
s dealingwith di�usion in an idealized paraboli
 potential in order to 
onvert `exper-imental' hindran
e fa
tors H into `experimental' barrier parameters �, orbarrier heights B (equal to about 0:6� MeV). As you 
an see from Fig. 3,these barriers range from around zero for 48Ca + 208Pb to about 5 MeV for70Zn + 208Pb. Can we a

ount for these values on the basis of some simplemodel of the fusion pro
ess?3. Inje
tion into the asymmetri
 �ssion valleyI will try to answer this by using the following pi
ture of the dynami
alevolution of the system after 
onta
t of target and proje
tile. It is a familiareveryday observation that after 
onta
t of two �uid drops there takes pla
ea sudden ne
k growth that �lls in part of the spa
e between them: the dropsget zipped together to form a mononu
leus. This happens on a time s
alefaster than other 
olle
tive motions, su
h as the 
hange in the overall lengthof the 
on�guration. The driving for
e for this ne
k zip is the great savingin surfa
e energy 
ountera
ted by only small inertial for
es asso
iated withminor lo
al rearrangements of the density distribution in the ne
k region.Let us denote by s the distan
e between the half-density surfa
es of targetand proje
tile at whi
h the ne
k zip is assumed to take pla
e. (The value ofs is expe
ted to be in a range determined by the di�useness of the nu
lear
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ki, K. Siwek-Wil
zy«ska, J. Wil
zy«skisurfa
es. For sharp surfa
es, s would be zero.) Instead of trying to follow indetail the dynami
s of the ne
k growth, let us approximate the end result ofthe zip by a stati
 
al
ulation, in whi
h the potential energy is minimizedwith respe
t to the ne
k size at �xed elongation of the system and at �xedasymmetry. We shall refer to the resulting 
on�guration as lying in the`asymmetri
 �ssion valley'. Thus we pi
ture the system, originally in the fu-sion valley of two approa
hing fragments, to be inje
ted into the asymmetri
�ssion valley at a point de�ned by the initial elongation, the initial asymme-try and by an optimized ne
k size. (The initial elongation is the sum of thefragment diameters augmented by s.) The suggested stati
 approximationis not a unique pres
ription be
ause it depends on the assumed parameteri-zation of the nu
lear shapes. In what follows we shall adopt the frequentlyused parameterization 
onsisting of two spheres 
onne
ted smoothly by aportion of a hyperboloidal (or spheroidal) ne
k. Appropriate maps of nu-
lear deformation energies of su
h shapes (in a ma
ros
opi
 approximation)are available in [18℄. Using these maps we 
onstru
ted algebrai
 expressions(detailed in the Appendix B) for the deformation energy V (s) along theasymmetri
 �ssion valley. Fig. 4 shows these deformation energies for theeight systems under dis
ussion.Taking the top 
urve as an example (it refers to the rea
tion 48Ca +208Pb) we see that the potential V (s) is almost independent of s in therange of interest, so that B � 0 for any reasonable value of s at inje
tion.This means that, a

ording to Eq. (5), we expe
t a hindran
e fa
tor ofabout 0.5. Thus Fig. 4 predi
ts that, for the sequen
e of the eight rea
tions
onsidered, the rea
tion 48Ca + 208Pb marks the approximate point beyondwhi
h signi�
ant entran
e 
hannel hindran
es make their appearan
e. Thisis a bona �de predi
tion of the ne
k-zip pres
ription, obtained without theadjustment of parameters.At the other extreme, for the rea
tion 70Zn + 208Pb, a 
hoi
e of s � 0:5fm would reprodu
e the barrier of about 5 MeV and thus the asso
iated`experimental' hindran
e of 10�4:5.The situation at this stage may be summarized as follows. We haveassumed the 
ross se
tion for fusion to be the produ
t of three fa
tors a
-
ording to Eq. (1). For the 
ross se
tion for sti
king and for the survivalprobability we used formulae that work for not too heavy systems. Weestimated the theoreti
al hindran
e fa
tor by 
onstru
ting the potential en-ergy along a (ma
ros
opi
) asymmetri
 �ssion valley, and assuming that thesystem is inje
ted into this valley at a point determined by the surfa
e sep-aration parameter s. This enabled us to 
al
ulate the Smolu
howski fa
tor(1=2)erf
p�. What we get out of this s
heme is:
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Fig. 4. Ma
ros
opi
 deformation energies in an asymmetri
 �ssion valley obtainedby minimizing the energy with respe
t to ne
k size at �xed asymmetry and overalllength. The nu
lear shapes were parameterized as two spheres 
onne
ted smoothlyby a hyperboloid or spheroid a

ording to Ref. [30℄. The variable s is the overalllength minus the sum of the diameters of target and proje
tile. The dashed verti
alline shows approximately the value of s where the semi-
lassi
al (Thomas�Fermi)edges of the density distributions tou
h. The 
urves with s less than about �1 fmare extrapolations of un
ertain a

ura
y.(1) a predi
tion of the �rst appearan
e of substantial hindran
es aroundthe rea
tion 48Ca + 208Pb, and(2) an estimate that the hindran
e for the rea
tion 70Zn + 208Pb 
ouldbe a

ounted for by assuming a value of about 0.5 fm for the inje
tionseparation s. 4. Predi
ted 
ross se
tionsNow we 
an go ahead and 
al
ulate the peak 
ross se
tions for the eightrea
tions under 
onsideration, for any given assumption about the value ofs at inje
tion. The upper line in Fig. 5 shows what happens if we take a
ommon value s = 0 for all 
ases. (This means inje
tion at the 
onta
t ofthe half-density surfa
es.) The very poor �t to the data 
an be improvedby taking s = 1:2 fm, but the experimental trend with Z is still not wellreprodu
ed. Motivated by the idea of `unshielding' from [19℄ we tried a pre-s
ription in whi
h the inje
tion distan
e is taken to be a de
reasing fun
tion
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zy«ska, J. Wil
zy«skiof Z. The thi
k line in Fig. 6 shows the result of assuming s to de
reaselinearly from 2.1 fm for Z = 102 to �0:3 fm for Z = 118. This gives aboutthe optimum �t to the data using a linear dependen
e of s on Z. The impli-
ation is that the heavier systems a
hieve a greater 
ompa
tness at inje
tion.This is in line with the de
reasing role of the Coulomb barrier in shieldingthe saddle-point 
on�guration from a dire
t atta
k by the approa
hing pro-je
tile [19℄. Taking the extrapolation of the thi
k line to Z = 118 at fa
evalue, the 
ross se
tion for the 86Kr+208Pb rea
tion 
omes out about oneorder of magnitude below that for Z = 112. The un
ertainties atta
hed tothis estimate are very large, at least plus or minus an order of magnitude,as shown by the upper and lower dashed lines in Fig. 6, 
orresponding to
hanging the range of s values from the previous (2.1 fm to �0:3 fm) toeither (2.4 fm to �0:8 fm) or (1.8 fm to 0.2 fm). But even these large un-
ertainties are not the only sour
e of error in estimating 
ross se
tions usingthe s
heme outlined above. Further un
ertainties are related to the way inwhi
h the sti
king 
ross se
tion and the survival probability were estimated.We shall give a brief des
ription of these estimates in what follows. A fullera

ount is not attempted in the present paper, whose main 
on
ern is withthe hindran
e fa
tors des
ribed in terms of a di�usion pro
ess.
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Fig. 5. Comparison of experimental (points) and theoreti
al (lines) 
ross se
tions.The latter were based on assuming inje
tion into the asymmetri
 �ssion valley tohave taken pla
e either at a surfa
e separation of target and proje
tile s equal tozero (the tou
hing of the half-density surfa
es), or at a separation s = 1:2 fm.
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es was assumed tode
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reasing from 2.4 fm to�0:8 fm, or from 2.1 fm to �0:3 fm, or from 1.8 fm to 0.2 fm between Z = 102 andZ = 118:
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48Ca 70Zn 86KrFig. 7. This �gure illustrates the three assumptions about the dependen
e of thesurfa
e separation s at inje
tion that were used in 
onstru
ting Fig. 6. It suggeststhat in the heavier systems inje
tion may be taking pla
e at a more intimate 
onta
tof the surfa
es, as might be expe
ted from the unshielding hypothesis of Ref. [19℄.
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zy«ska, J. Wil
zy«ski5. Sti
king 
ross se
tionThe sti
king or 
apture 
ross se
tions were 
al
ulated using the formalismof e�e
tive barrier distributions in the version des
ribed in [20℄. The formulafor the 
ross se
tion reads:�s = �R2 wEp2� �p�X(1 + erfX) + exp(�X2)� ; (7)where R stands for the sum of the target and proje
tile radii, taken as1:27(A1=3T + A1=3P ) fm, and where X = (E � V )=wp2, with V equal to themean and w the width (the square root of the varian
e) of the distributionof barrier heights (assumed Gaussian) on whi
h Eq. (7) is based. The valuesof V and w were 
al
ulated using the systemati
s des
ribed in Ref. [20℄, andare listed in Table II. TABLE IIMean barrier V and width w used in Eq. (7).Rea
tion Mean Barrier V Width w(MeV) (MeV)48Ca + 208Pb 178.1 3.2450Ti + 208Pb 198.6 4.7254Cr + 208Pb 218.3 5.9658Fe + 208Pb 238.4 7.3062Ni + 208Pb 258.8 8.7164Ni + 208Pb 257.4 8.2570Zn + 208Pb 276.7 9.4786Kr + 208Pb 337.8 13.13Equation (7) gives a fair a

ount of the 
apture 
ross se
tions for about50 rea
tions listed in Refs. [20, 21℄, but extrapolation to still heavier systemsis, naturally, subje
t to 
onsiderable un
ertainty.6. The survival probabilityWe used the 
anoni
al transition state theory of rea
tion rates to 
al
u-late the probability for the 
ompound nu
leus to survive �ssion. Considerthe 
ompound nu
leus with mass number A formed in a 
ollision with 
enterof mass energy E. Let the mass of the saddle point for �ssion � the �ssiontransition state � be Vf in energy units, as measured with respe
t to the sumof the target and proje
tile masses. (We take this as our referen
e baselinerather than the mass of the ground state of the 
ompound nu
leus, be
ausethe latter is often not known experimentally for the very heavy nu
lei in



Fusion by Di�usion 2061question, and this introdu
es a spurious un
ertainty in the analysis.) LetVn stand for the mass of the transition state for neutron emission (takenwith respe
t to the above baseline). This is the mass of the residual nu
leus(A� 1) in its ground state plus the mass of a neutron minus the sum of theground state masses of the target and proje
tile. A

ording to the transi-tion state theory of rea
tion rates (see, for example, Ref. [22℄) the ratio ofneutron to �ssion disintegration widths is given by�n�f = NnNf = R Un0 �n(")d"R Uf0 �f (")d" ; (8)where Nn and Nf are the numbers of states (
hannels) of the neutron and�ssion transition states in the intervals Un = E � Vn and Uf = E � Vf ,respe
tively. Expressing the level density �(") in terms of the exponentialof the entropy S("), and using the standard approximation to evaluate theintegrals by an expansion of the integrand about the upper limit, we �ndthe result �n�f = S0fS0n exp(Sn � Sf ) ; (9)where Sn and the derivative S0n (the inverse of temperature) are evaluatedat Un, and Sf and S0f are evaluated at Uf . We used formulae for the en-tropies that in
lude 
orre
tions for shell and pairing e�e
ts, as well as forthe dependen
e of the level densities on nu
lear shape (Appendix C).The probability for the 
ompound nu
leus to emit a neutron rather than�ssion is now given by �n=�t, where �t = �n + �f . After this emission, thenu
leus must neither �ssion nor emit a se
ond neutron. For this to be the
ase the �rst neutron must have 
arried o� su�
ient energy to bring thesystem below the thresholds for neutron emission and �ssion. (We negle
tsub-barrier �ssion on the one hand and, on the other, gamma emission at ex-
itation energies above the �ssion barrier.) In the 
ase of the eight rea
tionsin question the threshold for emitting a se
ond neutron is always higher thanthe threshold for �ssion. We denote the latter by V A�1f , equal to the mass ofthe �ssion transition state of the residual nu
leus (A� 1) plus the mass of aneutron minus the sum of the ground state masses of target and proje
tile.The energy available to over
ome this �ssion threshold is E �K, where Kis the kineti
 energy of the originally emitted neutron. If E < V A�1f , thereis no restri
tion on the possible values of K. But if E>V A�1f then, in orderto prevent �ssion, we must have K > K1, whereK1 = E � V A�1f : (10)
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zy«skiUsing a Maxwellian distribution of the neutron's kineti
 energies, propor-tional to Kexp(�K=T ), where T is the temperature of the neutron tran-sition state, we �nd for the probability that K > K1 the expression (1 +K1)exp(�K1=T ). Hen
e the �nal expression for the probability for the 
om-pound nu
leus to survive �ssion and emit just one neutron isP (E) = �n�t ; if E < V A�1f ; (11a)P (E) = �n�t (1 +K1)exp(�K1=T ) ; if E > V A�1f : (11b)7. Theoreti
al ex
itation fun
tionsThe produ
t of the above expressions for �s(E) and P (E) gives thetheoreti
al ex
itation fun
tion for the rea
tion in question in the absen
e ofany hindran
e. An example is shown in Fig. 8. The dashed line indi
ates theaverage of the ex
itation fun
tion, and the point with the nominal 0.5 MeVhorizontal error bar indi
ates the position of the average of the experimentalex
itation fun
tion dedu
ed from Fig. 19 in Ref. [1℄.
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Fig. 8. The ex
itation fun
tion for the rea
tion 50Ti + 208Pb as 
al
ulated usingEqs. (7) and (11) in the text. The average (a little higher than the maximum) isindi
ated by the dashed line. The point with a nominal 0.5 MeV error bar lo
atesthe maximum of the experimental ex
itation fun
tion. The predi
ted theoreti
alex
itation fun
tion would be obtained with fair approximation by multipli
ation bythe theoreti
al hindran
e fa
tor at the maximum, be
ause the energy dependen
eof the Smolu
howski fa
tor (entering through the temperature T ) is rather slightin the range of energies of interest.



Fusion by Di�usion 2063The qualitative appearan
e of su
h ex
itation fun
tions is readily a
-
ounted for. When E < V A�1f the 
ross se
tion is dominated by the steeplyin
reasing fun
tion �s(E). (In the 
ases under 
onsideration, the energy Eis well below the mean barrier position V in Eq. (7), in the `sub-barrier'regime of the explosively growing tail of �s(E).) This in
rease 
ontinuesup to E = V A�1f , after whi
h it is very soon reversed by the even moresteeply de
reasing fun
tion P (E), whose 
hara
teristi
 fall-o� range is equalto the temperature Tn of the neutron transition state, a mere 0.4 to 0.6 MeV.The result is a sharply peaked ex
itation fun
tion with a maximum a little(about 0.5 MeV) above V A�1f and a narrow width. The de
rease of P isso abrupt � almost razor sharp � that, at the maximum, the a
tual 
rossse
tion has not had a 
han
e to de
rease mu
h below its former trend. Thisis illustrated in Table I, where the values of �n=�t and P hardly di�er, andin two 
ases are a
tually equal. (That this latter result is not an error is ex-plained by the fa
t that the values listed in Table I are not true maxima, butthe highest values found in a s
an in steps of 1 MeV.) Note the interestinginsight that emerges from the above mentioned interpretation, namely thatthe bombarding energy asso
iated with the sudden downturn in the 
rossse
tion, when added to the masses of the fragments at in�nity, leads to analmost dire
t determination of the saddle point mass of the nu
leus (A� 1).Conversely, if the mass of the saddle point is known, or 
an be estimated,we arrive at the following �Optimum energy rule�:�The optimum 
enter-of-mass bombarding energy in a one-neutron-outheavy ion rea
tion is approximately equal to the mass of the �ssion saddlepoint of the residual nu
leus plus the mass of a neutron minus the masses oftarget and proje
tile plus about 0.5 MeV: ECM �MSP +Mn �MT �MP+ 0.5 MeV�.Here is how it works in the 
ase of the rea
tion 50Ti + 208Pb !258Rf.Using mass ex
esses instead of masses, we have: measured mass ex
ess ofground state of 257Rf = 96.01 MeV; �ssion barrier in 257Rf (assumed the sameas in 258Rf) = 6.39 MeV (Appendix C); mass ex
ess of saddle point of 257Rf= 102.40 MeV; mass ex
ess of neutron 8.07 MeV; sum of mass ex
esses oftarget and proje
tile = �73:20 MeV. It follows that the expe
ted downturnin the ex
itation fun
tion should be 
lose to E = 102.40 + 8.07 + 73.20 + 0.5= 184.17 MeV. This agrees with the theoreti
al 
urve in Fig. 8, and is a littlelower than the measured maximum at about 184.8 MeV. (A small di�eren
ewith this sign 
ould be due to gamma emission 
ompeting su

essfully with�ssion just above the nominal threshold, so that the e�e
tive threshold for�ssion would be a little higher than V A�1f .)An alternative way of making the above estimate is to rely on the �to-pographi
 theorem� (des
ribed in Appendix C of Ref. [23℄) and to assumethat the e�e
t of shell stru
ture on the saddle point energy is negligible, so
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Fig. 9. The 
al
ulated average values hE�i of the ex
itation fun
tions are plottedagainst Z for the eight rea
tions under study. After a slight de
rease from about15 MeV to 12 MeV between Z = 102 and Z = 112, the 
al
ulations show a levelingo� at Z = 118. The two available measurements are shown with nominal errorbars of �0:5 MeV.
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Fig. 10. A 
omparison of the 
al
ulated and measured RMS widths of ex
itationfun
tions. The former show a systemati
 de
rease between Z = 102 and Z = 112,followed by a slight rise at Z = 118. A 
orre
tion for energy dispersion in thetarget has not been in
luded in the theoreti
al widths.



Fusion by Di�usion 2065that the use of a ma
ros
opi
 estimate of the saddle point mass is adequate.We now have the following numbers: ma
ros
opi
 mass ex
ess of spheri
al257Rf = 101.15 MeV (from Ref. [24℄); ma
ros
opi
 �ssion barrier = 0.76 MeV(this follows from the liquid drop approximation: barrier = (98=135)Es(1�x)3, where formulae for the surfa
e energy Es and the �ssility x are givenin Appendix B); hen
e mass ex
ess of saddle point of 257Rf = 101.91 MeV,and the maximum of the ex
itation fun
tion should be about 183.68 MeV,i.e., 0.49 MeV below the previous estimate.Fig. 9 shows the 
al
ulated average positions of the ex
itation fun
tions,and Fig. 10 their RMS widths for the eight rea
tions under dis
ussion. Thetwo experimental points refer to 50Ti + 208Pb and 58Fe + 208Pb, the only
ases out of the eight for whi
h the ex
itation fun
tions had been approxi-mately established. 8. Summary and 
on
lusionWe have outlined a theory of fusion 
ross se
tions for very heavy systemsin terms of the produ
t of three fa
tors: a sti
king 
ross se
tion, a Smolu-
howski fa
tor (1=2)erf
p� and a survival probability. The �rst and third
orrespond more or less to standard treatments that, on a logarithmi
 s
ale,reprodu
e very well fusion 
ross se
tions for not too heavy systems. Themiddle one is based on the Smolu
howski di�usion equation in an invertedparaboli
 potential. This potential was estimated using a ma
ros
opi
 de-formation energy in an asymmetri
 �ssion valley. For a given rea
tion thereis in this s
heme one adjustable parameter, s, the point of inje
tion intothe above valley. We found that the values of s that reprodu
e the orderof magnitude of the experimental 
ross se
tions are in the range expe
tedon physi
al grounds. This range is determined by the nu
lear surfa
e dif-fuseness, and spans approximately situations intermediate between the 
on-ta
t of the half-density surfa
es and the 
onta
t of the semi-
lassi
al, i.e.Thomas�Fermi, edges of the density distributions. Pressing the �t of the-ory to data beyond a qualitative 
orresponden
e, there is an indi
ation for aneed to make the value of s at inje
tion a de
reasing fun
tion of Z. This is inline with the expe
tation of an unshielding of the saddle point 
on�guration
aused by the lowering of the Coulomb barrier relative to the saddle-pointenergy. It remains to be seen whether this is the 
orre
t interpretation ofthe overall trend of the measured 
ross se
tions. A 
loser look at the energydependen
e of the theoreti
al 
ross se
tions leads to a useful insight regard-ing the optimum bombarding energies for fusion (the `optimum energy rule')and the expe
ted RMS widths of the ex
itation fun
tions. Note that theseresults depend only on the �rst and third fa
tors in Eq. (1). They providewhat appears to be quite pre
ise determinations of two out of the three 
ru-
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ial quantities needed in planning heavy element produ
tion experiments,and are not subje
t to the un
ertainties asso
iated with the di�usion fa
tor.The latter is needed only to establish the absolute magnitudes of the 
rossse
tions, whi
h is the third important 
hara
teristi
 of a rea
tion.There are, indeed, reasons for being 
autious about the signi�
an
e ofour estimates of the absolute magnitudes of the 
ross se
tions, dedu
ed asthey are from a very idealized theory, adjusted to data by an assumption
on
erning the separation s at inje
tion. A large number of approximationswere introdu
ed in formulating the model, too numerous for a detailed dis-
ussion here. To single out an important one: our ma
ros
opi
 deformationenergies negle
t shell e�e
ts, ex
ept as these are re�e
ted in the groundstates of the target, proje
tile and the 
ompound nu
leus. We may takesome 
omfort in the observation that, for the rea
tions in question, the ob-served 
ross se
tions are fairly smooth fun
tions of Z (ex
ept for a glit
hbetween 270110 and 272110). The fa
t that a smooth ma
ros
opi
 treatmentis able to reprodu
e them (in
luding the glit
h!) is some indi
ation that atleast the variations in the negle
ted shell e�e
ts in going from 48Ca to 70Znproje
tiles are not very signi�
ant. On the other hand, the shell e�e
t asso-
iated with 208Pb is expe
ted to be important, and is likely to have a�e
tedsigni�
antly the values of s dedu
ed from the data.Looking towards the future, an obvious extension of the present workis the appli
ation to other rea
tions, in the �rst pla
e those using a bis-muth target. In
lusion of rea
tions where more than one neutron is emittedwill be another test of the self-
onsisten
y of the model and of its range ofappli
ability.We would like to thank W.D. Myers for many unpublished results ob-tained with the Thomas�Fermi model and used in this paper, and R. Smo-la«
zuk for information on mi
ros
opi
 �ssion barriers and saddle-point de-formations. One of us (W.J.S.) thanks J. Randrup for an illuminating dis-
ussion 
on
erning di�usion equations. This work was supported in partby the Poland USA Maria Sklodowska-Curie Joint Fund II, under proje
tNo. PAA/DOE-98-34, and by the D.O.E. under 
ontra
t No. DE-AC03-76SF00098 (LBNL). One of us (J.W.) a
knowledges support by the PolishState Committee for S
ienti�
 Resear
h (KBN), Grant No. 2P03B05419.Appendix AIntrodu
ing a dimensionless time by � = t=t0, where t0 = G=b, Eq. (4)in the text be
omes �W�� = �(xW )0 + �W 00 ; (A.1)



Fusion by Di�usion 2067where � = T=b. It may then be veri�ed by dire
t substitution that thesolution of Eq. (A.1), with the initial 
ondition that W is a Æ-fun
tion atx = x0, t = 0, is given byW (x; �) = 1p2�� exp��(x� x0 exp �)22� � ; (A.2)where � = �(exp 2� � 1).Integrating Eq. (A.2) from x = �1 to x = 0 and taking the limit� ! 1, gives Eq. (5) in the text. We note in passing that if at t = 0 wepostulate as the initial 
ondition a Gaussian distribution with varian
e �,i.e., W (x0; 0) = 1p2�� exp��(x� x0)22� � ; (A.3)the solution of Eq. (A.1) is still of the form of Eq. (A2), but with the varian
e� now given by � = � exp 2� + �(exp 2� � 1) : (A.4)The expression for the resulting hindran
e fa
tor is still of the form of Eq. (5),but with T repla
ed by T = T + b�.Appendix BThe following formulae provide approximations to the ma
ros
opi
 defor-mation energy �E of a nu
leus idealized as a uniformly 
harged liquid drop.The shape of the drop, originally spheri
al with radius R, is parameterizedby two spheres 
onne
ted smoothly by a portion of a spheroid or hyperboloid[30℄. Three variables spe
ify a given shape: elongation, asymmetry and ne
ksize.Let � denote the deformation energy in units of the surfa
e energy Esof the spheri
al shape. Let � stand for the surfa
e-separation variable s inunits of R. (This � should not be 
onfused with the � in Appendix A.)Re
all that s is the ex
ess of the overall length L of the shape in questionover the sum of the diameters of target and proje
tile. Thuss = L� 2(RT +RP); � = sR ; � = �EEs : (B.1)For ea
h value of s, the energy is 
onsidered to have been minimized withrespe
t to the ne
k variable at �xed asymmetry. The resulting deforma-tion energy is 
onsequently a fun
tion of the single variable s. In a rangeof parameters to be spe
i�ed later, a quadrati
 approximation to �(�) isadequate: � � a+ b� + 
�2 : (B.2)
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zy«skiThe 
oe�
ients a, b, 
 are fun
tions of the asymmetry variable � and of the�ssility x de�ned as follows: � = RT �RPRT +RP ; (B.3)x = Ele
trostati
 energy of sphere2Es : (B.4)Using the notations D = �2 and t = 1� x, we havea = �a + �at+ 
t2 ; (B.5)b = �b + �bt ; (B.6)
 = �
 + �
t ; (B.7)where �a = �0:00557 � 0:01929exp(�D=0:02283) ; (B.8)�a = 0:048 + 0:12151exp(�D=0:04053) ; (B.9)
 = �0:073 + 0:94D ; (B.10)�b = �0:00858 � 0:05303exp(�D=0:03205) ; (B.11)�b = 0:019 + 0:25663exp(�D=0:07331) ; (B.12)�
 = �0:0256 + 0:1944D ; (B.13)�
 = 0:0214 + 0:6158D : (B.14)The above formulae have been tested for adequate a

ura
y in the range0:85 < x < 1:05, �0:25 < � < 0:25 and �0:1 < � < 0:44.In order to 
onvert the dimensionless quantities into MeV, the followingequations should be used:Es = 17:9439(1 � 1:7826I2)A2=3MeV ; (B.15)x = Z2=A50:883(1 � 1:7826I2) ; (B.16)where I = (N � Z)=A.To 
onvert dimensionless lengths into fm use R = 1:155A1=3 fm.Appendix CWe used the following expression for Sn(Un), based on Refs. [25, 26℄:Sn(Un) = 2panfU�n + SH[1� exp(�U�n=k)℄g ; (C.1)



Fusion by Di�usion 2069where U�n = Un � 12MeV=pA� 1 (for the odd mass numbers A � 1), k =A1=3=0:47 MeV, and SH is the shell e�e
t, in MeV, in the ground state ofnu
leus (A� 1), as given in Refs. [24, 27℄, Un is the ex
itation energy givenby E � Vn , and the level density parameter an was taken asan = 0:076(A� 1) + 0:180(A� 1)2=3F (�n) + 0:157(A� 1)1=3G(�n) MeV�1 :(C.2)The last two terms allow approximately for the dependen
e of the leveldensity on the deformation of the nu
leus, as spe
i�ed by the parameter �,de�ned by � = (Rmax � R)=R, where Rmax is the semi-major axis of the(axially symmetri
) nu
leus (of radius R before deformation). The fun
tionsF and G were 
hosen to be given byF (�) = 1 + (0:6416� � 0:1421�2)2 ; (C.3)G(�) = 1 + (0:6542� � 0:0483�2)2 : (C.4)They reprodu
e 
losely, for � < 1, the relative surfa
e area and integrated
urvature for the symmetri
 saddle point shapes in Table 7.1 of Ref. [30℄,and may be expe
ted to give at least an approximate representation of the
orre
tions for the asymmetri
 shapes with whi
h we are 
on
erned.For the entropy Sf (Uf ) we used the expressionSf (Uf ) = 2qafU�f ; (C.5)where U�f = Uf � 24MeV=pA (for even�even 
ompound nu
lei) ; (C.6)Uf = E � Vf : (C.7)The level density parameter af was taken a

ording to Eq. (C.2), using theappropriate mass number and deformation for the transition state for �ssion.Originally two sets of values of Vf and V A�1f were studied. The �rstassumed that shell e�e
ts at the saddle point were negligible (see the �Topo-graphi
 theorem� in [23℄), and the ma
ros
opi
 Thomas�Fermi barrier 
al
u-lations of [28℄ were used to determine Vf . The se
ond took a

ount of possi-ble deviations from this idealized limit, for whi
h there is, in fa
t, empiri
aleviden
e in Fig. 4 in Ref. [28℄. The Hartree�Fo
k 
al
ulations of Ref. [29℄also suggest related deviations between the �ssion barriers 
al
ulated mi-
ros
opi
ally and those using the ma
ros
opi
 Thomas�Fermi saddle pointenergies and a shell-
orre
ted ground state. Thus, for the eight 
ompoundnu
lei in question, the 
omparison of 
al
ulated �ssion barriers (in MeV)looks like this: Hartree�Fo
k/Thomas�Fermi/Di�eren
e = 7.23/5.44/1.79;
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zy«ski6.87/5.22/1.65; 6.30/5.08/1.22; 5.70/4.89/0.81; 4.88/4.34/0.54;5.56/4.53/1.03; 4.05/4.28/�0:23; 5.45/5.57/�0:12. If the di�eren
eswere as
ribed entirely to shell e�e
ts at the saddle, the values of Vf wouldbe 
orrespondingly a�e
ted. In the end we adopted a pres
ription in whi
hthe values of Vf were taken to be a weighted average of the Hartree�Fo
kand Thomas�Fermi numbers, with a weight of 0.7 for the former and 0.3 forthe latter. This weighting ensures that the hindran
e fa
tor for the 48Carea
tion is about 0.5, in agreement with the expe
tation based on Fig. 4.For rea
tions with progressively heavier proje
tiles, the di�eren
es betweenthe two ways of estimating Vf be
ome insigni�
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