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We present a theoretical interpretation of the cross sections to produce
elements with atomic numbers Z = 102-118, in bombardments of a 2°®Ph
target with projectiles ranging from *®Ca to 3Kr. The formation cross
section is taken to be the product of three factors: the cross section for the
projectile and target to stick, the probability for the resulting composite
nucleus to reach the compound nucleus configuration by diffusion, and the
probability for the latter to survive fission and to emit only one neutron.
The first and third factors are treated according to more or less conventional
formulae, whilst the middle one is based on the statistical (Brownian-like)
diffusion of probability over a barrier in the form of an inverted parabola.
The early dynamics of the neck growth is replaced by an assumption of a
rapid injection into a macroscopically calculated asymmetric fission valley,
after which the diffusion process begins. The measured cross sections can
be reproduced fairly well by introducing an assumption about the separa-
tion between the surfaces of the approaching nuclei at which injection takes
place. The optimum bombarding energies corresponding to the peaks of
the excitation functions can be predicted by an elementary ‘optimum en-
ergy rule’; and the narrow widths of the measured excitation functions are
readily accounted for.
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1. Introduction

Fig. 1 shows, on a logarithmic scale, experimental cross sections for pro-
ducing a number of very heavy elements in bombardments of a lead target
with projectiles ranging from *®Ca to 86Kr [1-4]. (In each case only one
neutron was emitted from the compound nucleus.) One would like to have a
theoretical understanding of these cross sections and be able to extrapolate
the trends to other heavy systems. For experimentalists engaged in synthe-
sizing heavy elements this is obviously important. Moreover, there is some
instructive physics behind these numbers, which may be of general interest.
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Fig. 1. Measured cross sections for the production of elements with atomic numbers
Z in bombardments of a 298Pb target with the projectiles shown. The cross sections
refer to the maxima of the Gaussian representations of the data in Fig. 19 of Ref. [1],
supplemented by [2,3]. Except for the reactions with °Ti and °®Fe, the cross
sections are based on very few events at one, two or three bombarding energies,
and are subject to considerable uncertainty. In the case of the compound nuclei
270110 and 27110, the cross sections are displayed (here and in subsequent figures)
at Z = 109.9 and 110.1 in order to facilitate their identification. The upper limit
for Z = 118 is based on Ref. [4].

To bring this out, let me re-plot the above cross sections by dividing
them by cross sections that would be expected on the basis of theories that
work quite well for all but the heaviest systems. I will say more about these
theories in Sections 5 and 6, but for now let me just note that they have two
ingredients:
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(1) an estimate of the cross section oy for the colliding nuclei to stick, and

(2) the probability P for the excited compound nucleus — assumed to
have been formed automatically after sticking — to survive fission and
emit exactly one neutron.

Using these ‘conventional’ ingredients we calculated the expected peak cross
sections for the eight reactions under consideration. They are denoted by
Ocon(max) and listed in column 6 in Table I. Column 7 lists the measured
or estimated cross sections, nominally at the maxima of the excitation func-
tions, denoted by 0exp(max) [1-4]. Column 8 and Fig. 2 show the logarithm
of the ratios gexp(max)/o¢on(max), which I will refer to as ‘experimental’
hindrance factors, H. (Column 4 will be discussed later.) In the case of
element 112 the hindrance H is some four and a half orders of magnitude.
The trend, if extrapolated to the reaction 8Kr + 2%8Pb, would suggest a
further hindrance of about 100. What is the physics of these mysterious
hindrances?

TABLE 1

Peak cross sections and hindrance factors for 1n reactions.

Projec- Zcn os(max) I'y/Iy P 0Ocon(max) Oexp(max) logH

tile nb x 10> x 10° nb nb
48Ca 102 22,600 2983 2367 534.4 260 —-0.313
0Ti 104 32,100 640.4 543.3 174.3 10.4 —1.22
Cr 106 73,500 130.2 129.7  95.32 0.50 —2.28
58Fe 108 194,000 21.16 16.31  31.68 0.067 —2.68
62Ni 110 356,000 0.953 0.709  2.521 0.0035 —2.86
64Ni 110 536,000 6.787 6.787  36.37 0.0150 -3.39
07Zn 112 697,000 2.449 2449  17.06 0.0005 —4.53

86Kr 118 4,540,000 3.239 3.052 138.6 < 0.0006 < —5.36

I should not have said ‘mysterious’ because, qualitatively at least, it has
been known since the eighties that the hindrance has to do with a simple
geometrical feature of nucleus—nucleus collisions, namely the shrinking of the
overall length of the fission saddle point shape with increasing atomic number
7 [5-T7]. For sufficiently heavy systems, the overall length of the saddle-point
shape shrinks below the length of the entrance channel contact configuration
(approximately equal to the sum of target and projectile diameters). Hence,
after contact and the formation of a very heavy composite mononucleus,
the system finds itself outside rather than inside the above critical potential
energy barrier. As a result, automatic fusion no longer takes place after
contact. The underlying physics is simply that the electrostatic repulsion has
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Fig.2. Hindrance factors obtained by dividing the cross sections from Fig. 1 by
peak cross sections obtained by taking the product of the sticking cross section
from Eq. (7) and the survival probability from Eq. (11). The line is a fit to the
points. Nominal error bars of half an order of magnitude are displayed in order
to draw attention to both the experimental uncertainties in the data and to the
limited accuracy of Egs. (7) and (11).

become stronger than the nuclear attraction, and the system is then forced
to re-disintegrate in a ‘fast fission’ process instead of forming a compound
nucleus.

In the past twenty years this phenomenon has been illustrated by numer-
ous (classical) dynamical calculations (see for example [8,9]). Such dynam-
ical models confirm the geometrical interpretation of the entrance channel
hindrance, and are even successful in accounting roughly for the critical con-
dition where the hindrance to fusion makes its appearance. But they are
unable to give a useful estimate of the hindrance itself. This is because in
a classical dynamical calculation the predicted probability to fuse is either
one or zero, depending on whether or not the barrier has been overcome. In
the past years it has been generally recognized that dynamical calculations
have to include statistical fluctuations leading to a diffusion of probabilities
in order to have a chance of reproducing data. A large number of such
studies is now available (for example [9-14] and the reviews [15,16] with
their numerous references). What I hope to do in this talk is to bring out
the basic physics of the observed hindrance, and to estimate its magnitude
by an elementary formula. This means that I will focus on the middle one
of the three factors that go into an estimate of heavy-element fusion cross
sections:

Fusion = (Sticking) x (Diffusion) x (Survival) . (1)
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2. An equation for the hindrance factor

In order to illustrate the bare-bones essence of the hindrance phenome-
non let us analyze what happens when a system is started off on the ‘wrong’
side of a potential energy barrier, assumed to be in the form of an inverted
parabola. (This problem has recently been treated in [12,13] as a special
case of a more general formalism.) We shall also assume that the dynamics,
including statistical fluctuations, is described by a process analogous to the
motion of a swarm of Brownian particles suspended in a fluid at temper-
ature T. The bulk of the swarm will be sliding down the shoulder of the
parabola but, because the swarm’s width increases with time, some of the
particles will diffuse ‘up hill’, and a fraction will be able to overcome the
barrier and achieve fusion. Can we make an estimate of this fraction?

Let us write the parabolic potential energy as

V(z) = —3bz?, (2)

where x is some suitable elongation coordinate. The driving force in the
z-direction is bz. Let us inject, at time ¢ = 0, a delta function swarm of
Brownian particles at a point g, where the potential is —B. Thus the barrier
height to be overcome by diffusion grows quadratically with zg according to:
B =1baj. (3)
The equation describing the drift and the spreading of the probability dis-
tribution W (z,t) (the probability to find a Brownian particle at position
at time t) is the text-book Smoluchowski diffusion equation (a special case
of a Fokker—Planck equation [17]). Allow me to simply write it down for the
case of our assumed parabolic potential:
ow = —(bzW) +TW", (4)
ot
where primes denote partial differentiations with respect to xz. The first
term on the right, containing the driving force bz, determines the drift, the
second, proportional to the temperature T', determines the spreading of the
distribution. The constant G is a friction coefficient. In the case of Brownian
particles it is proportional to the viscosity of the fluid in which the particles
are suspended. Very fortunately it will turn out that the fusion probability
that we shall derive is independent of G, so we need not say more about the
friction coefficient at this stage.

The ezact solution of Eq. (4) turns out to be a Gaussian whose average
position slides towards infinity in the z-direction, and whose width increases
monotonically with time. The fraction H of particles in the Gaussian distri-
bution that has achieved fusion is equal to the area under the distribution’s
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tail in the regime of negative z-values. This area is readily written down as
a function of time, but I shall merely quote the asymptotic result for ¢ — oc.
This gives the theoretical hindrance factor (see Appendix A):

H = %erfc\/ﬁ for zy >0, (ba)
H = 1-lefe\/B  for z<0, (5b)
where § = B/T, and erfc is the error function complement, equal to

1 — erf. For injection at the top of the barrier (i.e., for zg = 0, B = 0)
we have H = 0.5, as expected by symmetry. For large positive 2y we find

1
Hw \/meXp(—B)- (6)

For negative z (injection inside the barrier) H tends to unity as 2y becomes
increasingly negative.

Note that the formula for H is independent of the friction coefficient
G, and that the injection point zg and the force constant b do not enter
separately, but only through B. In the end, the only parameter controlling
the fusion probability is the barrier parameter B/T, i.e., the barrier height
(as seen from the injection point) in units of the temperature (assumed in-
dependent of ). Moreover, with increasing z(, the hindrance soon becomes
dominated by the familiar Boltzmann factor exp(—B/T). It was not initially
obvious that things would turn out that simple because, in contrast to the
more familiar quasi-stationary situation where a Boltzmann factor controls
the slow leakage of probability out of a potential energy hollow, we are now
dealing with a dynamical, non-stationary system accelerating to infinity in
a repulsive field of force.

Owing to the welcome simplicity of Eq. (5) we can now easily translate
the experimental hindrance factors H into barrier parameters 3, as shown in
Fig. 3. It turns out that for all the reactions in question the injection tem-
perature T is approximately the same (about 0.6 MeV) so that the principal
reason for the increase of the hindrance with atomic number is the increase
in the height of the barrier that needs to be overcome ‘from outside’ in order
to reach the compound nucleus configuration. As I mentioned before, this
is caused by the shrinking of the saddle point shape, which leaves the injec-
tion point increasingly farther from, and lower than, the top of the barrier.
This is the so-called ‘extra push’ phenomenon: in the absence of fluctua-
tions one would need an extra bombarding energy to force a highly charged
system dynamically over the barrier. This extra push increases rapidly with
atomic number and can assume values much in excess of the barrier B itself,
especially if the dynamics is strongly dissipative [8,12].
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Fig. 3. The barrier factors B/T obtained by equating the experimental hindrance
factors from Fig. 2 to the theoretical Smoluchowski factors (1/2)erfcy/B/T. The
scale on the right gives the resulting barriers obtained by taking 0.6 MeV for the
temperature 7T'.

Up to now all I did was to introduce a little piece of mathematics dealing
with diffusion in an idealized parabolic potential in order to convert ‘exper-
imental’ hindrance factors H into ‘experimental’ barrier parameters (3, or
barrier heights B (equal to about 0.68 MeV). As you can see from Fig. 3,
these barriers range from around zero for 8Ca + 298Pb to about 5 MeV for
07n + 298Ph. Can we account for these values on the basis of some simple
model of the fusion process?

3. Injection into the asymmetric fission valley

I will try to answer this by using the following picture of the dynamical
evolution of the system after contact of target and projectile. It is a familiar
everyday observation that after contact of two fluid drops there takes place
a sudden neck growth that fills in part of the space between them: the drops
get zipped together to form a mononucleus. This happens on a time scale
faster than other collective motions, such as the change in the overall length
of the configuration. The driving force for this neck zip is the great saving
in surface energy counteracted by only small inertial forces associated with
minor local rearrangements of the density distribution in the neck region.
Let us denote by s the distance between the half-density surfaces of target
and projectile at which the neck zip is assumed to take place. (The value of
s is expected to be in a range determined by the diffuseness of the nuclear



2056 W.J. SWIATECKI, K. STWEK-WILCZYNSKA, J. WILCZYNSKI

surfaces. For sharp surfaces, s would be zero.) Instead of trying to follow in
detail the dynamics of the neck growth, let us approximate the end result of
the zip by a static calculation, in which the potential energy is minimized
with respect to the neck size at fixed elongation of the system and at fixed
asymmetry. We shall refer to the resulting configuration as lying in the
‘asymmetric fission valley’. Thus we picture the system, originally in the fu-
sion valley of two approaching fragments, to be injected into the asymmetric
fission valley at a point defined by the initial elongation, the initial asymme-
try and by an optimized neck size. (The initial elongation is the sum of the
fragment diameters augmented by s.) The suggested static approximation
is not a unique prescription because it depends on the assumed parameteri-
zation of the nuclear shapes. In what follows we shall adopt the frequently
used parameterization consisting of two spheres connected smoothly by a
portion of a hyperboloidal (or spheroidal) neck. Appropriate maps of nu-
clear deformation energies of such shapes (in a macroscopic approximation)
are available in [18]. Using these maps we constructed algebraic expressions
(detailed in the Appendix B) for the deformation energy V(s) along the
asymmetric fission valley. Fig. 4 shows these deformation energies for the
eight systems under discussion.

Taking the top curve as an example (it refers to the reaction **Ca +
208Ph) we see that the potential V(s) is almost independent of s in the
range of interest, so that B = 0 for any reasonable value of s at injection.
This means that, according to Eq. (5), we expect a hindrance factor of
about 0.5. Thus Fig. 4 predicts that, for the sequence of the eight reactions
considered, the reaction “4Ca + 208Pb marks the approximate point beyond
which significant entrance channel hindrances make their appearance. This
is a bona fide prediction of the neck-zip prescription, obtained without the
adjustment of parameters.

At the other extreme, for the reaction °Zn + 29%Pb, a choice of s ~ 0.5
fm would reproduce the barrier of about 5 MeV and thus the associated
‘experimental’ hindrance of 10~*.

The situation at this stage may be summarized as follows. We have
assumed the cross section for fusion to be the product of three factors ac-
cording to Eq. (1). For the cross section for sticking and for the survival
probability we used formulae that work for not too heavy systems. We
estimated the theoretical hindrance factor by constructing the potential en-
ergy along a (macroscopic) asymmetric fission valley, and assuming that the
system is injected into this valley at a point determined by the surface sep-
aration parameter s. This enabled us to calculate the Smoluchowski factor
(1/2)erfcy/B. What we get out of this scheme is:
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Fig.4. Macroscopic deformation energies in an asymmetric fission valley obtained
by minimizing the energy with respect to neck size at fixed asymmetry and overall
length. The nuclear shapes were parameterized as two spheres connected smoothly
by a hyperboloid or spheroid according to Ref. [30]. The variable s is the overall
length minus the sum of the diameters of target and projectile. The dashed vertical
line shows approximately the value of s where the semi-classical (Thomas—Fermi)
edges of the density distributions touch. The curves with s less than about —1 fm
are extrapolations of uncertain accuracy.

(1) a prediction of the first appearance of substantial hindrances around
the reaction *8Ca + 208Pb, and

(2) an estimate that the hindrance for the reaction °Zn + 2%8Pb could
be accounted for by assuming a value of about 0.5 fm for the injection
separation s.

4. Predicted cross sections

Now we can go ahead and calculate the peak cross sections for the eight
reactions under consideration, for any given assumption about the value of
s at injection. The upper line in Fig. 5 shows what happens if we take a
common value s = 0 for all cases. (This means injection at the contact of
the half-density surfaces.) The very poor fit to the data can be improved
by taking s = 1.2 fm, but the experimental trend with Z is still not well
reproduced. Motivated by the idea of ‘unshielding’ from [19] we tried a pre-
scription in which the injection distance is taken to be a decreasing function
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of Z. The thick line in Fig. 6 shows the result of assuming s to decrease
linearly from 2.1 fm for Z = 102 to —0.3 fm for Z = 118. This gives about
the optimum fit to the data using a linear dependence of s on Z. The impli-
cation is that the heavier systems achieve a greater compactness at injection.
This is in line with the decreasing role of the Coulomb barrier in shielding
the saddle-point configuration from a direct attack by the approaching pro-
jectile [19]. Taking the extrapolation of the thick line to Z = 118 at face
value, the cross section for the 86Kr+2%Pb reaction comes out about one
order of magnitude below that for Z = 112. The uncertainties attached to
this estimate are very large, at least plus or minus an order of magnitude,
as shown by the upper and lower dashed lines in Fig. 6, corresponding to
changing the range of s values from the previous (2.1 fm to —0.3 fm) to
either (2.4 fm to —0.8 fm) or (1.8 fm to 0.2 fm). But even these large un-
certainties are not the only source of error in estimating cross sections using
the scheme outlined above. Further uncertainties are related to the way in
which the sticking cross section and the survival probability were estimated.
We shall give a brief description of these estimates in what follows. A fuller
account is not attempted in the present paper, whose main concern is with
the hindrance factors described in terms of a diffusion process.
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Fig.5. Comparison of experimental (points) and theoretical (lines) cross sections.
The latter were based on assuming injection into the asymmetric fission valley to
have taken place either at a surface separation of target and projectile s equal to
zero (the touching of the half-density surfaces), or at a separation s = 1.2 fm.
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Fig.6. This is like Fig. 5, but the separation between the surfaces was assumed to
decrease linearly with Z. Three cases are shown, with s decreasing from 2.4 fm to
—0.8 fm, or from 2.1 fm to —0.3 fm, or from 1.8 fm to 0.2 fm between Z = 102 and

Z =118.
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Fig. 7. This figure illustrates the three assumptions about the dependence of the
surface separation s at injection that were used in constructing Fig. 6. It suggests
that in the heavier systems injection may be taking place at a more intimate contact
of the surfaces, as might be expected from the unshielding hypothesis of Ref. [19].
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5. Sticking cross section

The sticking or capture cross sections were calculated using the formalism
of effective barrier distributions in the version described in [20]. The formula
for the cross section reads:

05 = TR? [V7AX(1+erfX) +exp(—X?)] , (7)

w
B2
where R stands for the sum of the target and projectile radii, taken as
1.27(AlT/3 + Allg/s) fm, and where X = (FE — V) /wv/2, with V equal to the
mean and w the width (the square root of the variance) of the distribution
of barrier heights (assumed Gaussian) on which Eq. (7) is based. The values

of V and w were calculated using the systematics described in Ref. [20], and
are listed in Table II.

TABLE II
Mean barrier V' and width w used in Eq. (7).

Reaction Mean Barrier V. Width w

(MeV) (MeV)
48Ca + 298Pp 178.1 3.24
50T 4 208py, 198.6 4.72
54Cr + 208pp 218.3 5.96
58Fe 4 208Pp 238.4 7.30
62Nj 4 208pp 258.8 8.71
64Nj 4 208pp 257.4 8.25
07n + 208pY, 276.7 9.47
86Kr + 208pp 337.8 13.13

Equation (7) gives a fair account of the capture cross sections for about
50 reactions listed in Refs. |20, 21], but extrapolation to still heavier systems
is, naturally, subject to considerable uncertainty.

6. The survival probability

We used the canonical transition state theory of reaction rates to calcu-
late the probability for the compound nucleus to survive fission. Consider
the compound nucleus with mass number A formed in a collision with center
of mass energy F. Let the mass of the saddle point for fission — the fission
transition state — be V} in energy units, as measured with respect to the sum
of the target and projectile masses. (We take this as our reference baseline
rather than the mass of the ground state of the compound nucleus, because
the latter is often not known experimentally for the very heavy nuclei in
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question, and this introduces a spurious uncertainty in the analysis.) Let
V,, stand for the mass of the transition state for neutron emission (taken
with respect to the above baseline). This is the mass of the residual nucleus
(A —1) in its ground state plus the mass of a neutron minus the sum of the
ground state masses of the target and projectile. According to the transi-
tion state theory of reaction rates (see, for example, Ref. [22]) the ratio of
neutron to fission disintegration widths is given by

& _ & _ fOUn pn(g)dg (8)
Iy Ny fOUf psle)de’

where N,, and Ny are the numbers of states (channels) of the neutron and
fission transition states in the intervals U,, = E —V,, and Uy = E -V},
respectively. Expressing the level density p(e) in terms of the exponential
of the entropy S(¢), and using the standard approximation to evaluate the
integrals by an expansion of the integrand about the upper limit, we find
the result

r, S

T = 5rexP(Sa = 5p), (9)
where S, and the derivative S}, (the inverse of temperature) are evaluated
at Uy, and Sy and S} are evaluated at Uy. We used formulae for the en-
tropies that include corrections for shell and pairing effects, as well as for
the dependence of the level densities on nuclear shape (Appendix C).

The probability for the compound nucleus to emit a neutron rather than
fission is now given by I', /Iy, where I'y = I', + I'y. After this emission, the
nucleus must neither fission nor emit a second neutron. For this to be the
case the first neutron must have carried off sufficient energy to bring the
system below the thresholds for neutron emission and fission. (We neglect
sub-barrier fission on the one hand and, on the other, gamma emission at ex-
citation energies above the fission barrier.) In the case of the eight reactions
in question the threshold for emitting a second neutron is always higher than
the threshold for fission. We denote the latter by VfA*I, equal to the mass of
the fission transition state of the residual nucleus (A — 1) plus the mass of a
neutron minus the sum of the ground state masses of target and projectile.
The energy available to overcome this fission threshold is £ — K, where K
is the kinetic energy of the originally emitted neutron. If E < VfA_l, there

is no restriction on the possible values of K. But if £ > VfA*1 then, in order
to prevent fission, we must have K > K, where

Ki=E-V{/ . (10)
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Using a Maxwellian distribution of the neutron’s kinetic energies, propor-
tional to Kexp(—K/T), where T is the temperature of the neutron tran-
sition state, we find for the probability that K > K; the expression (1 +
K)exp(—K1/T). Hence the final expression for the probability for the com-
pound nucleus to survive fission and emit just one neutron is

I
P(E) = 77: if BE<VM', (lla)
I . _

P(E) = Ft(1+K1)eXp(—K1/T), if E>VfA L (11b)

7. Theoretical excitation functions

The product of the above expressions for o4(E) and P(E) gives the
theoretical excitation function for the reaction in question in the absence of
any hindrance. An example is shown in Fig. 8. The dashed line indicates the
average of the excitation function, and the point with the nominal 0.5 MeV
horizontal error bar indicates the position of the average of the experimental
excitation function deduced from Fig. 19 in Ref. [1].

200
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175 180 185 190 195 200
Center of mass energy E (MeV)

Fig.8. The excitation function for the reaction °Ti + 2°8Pb as calculated using
Egs. (7) and (11) in the text. The average (a little higher than the maximum) is
indicated by the dashed line. The point with a nominal 0.5 MeV error bar locates
the maximum of the experimental excitation function. The predicted theoretical
excitation function would be obtained with fair approximation by multiplication by
the theoretical hindrance factor at the mazimum, because the energy dependence
of the Smoluchowski factor (entering through the temperature T') is rather slight
in the range of energies of interest.
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The qualitative appearance of such excitation functions is readily ac-
counted for. When F < VfA_1 the cross section is dominated by the steeply
increasing function o4(E). (In the cases under consideration, the energy E
is well below the mean barrier position V in Eq. (7), in the ‘sub-barrier’
regime of the explosively growing tail of o4(FE).) This increase continues
up to E = VfAfl, after which it is very soon reversed by the even more
steeply decreasing function P(FE), whose characteristic fall-off range is equal
to the temperature T;, of the neutron transition state, a mere 0.4 to 0.6 MeV.
The result is a sharply peaked excitation function with a maximum a little
(about 0.5 MeV) above VfA*1 and a narrow width. The decrease of P is
so abrupt — almost razor sharp — that, at the maximum, the actual cross
section has not had a chance to decrease much below its former trend. This
is illustrated in Table I, where the values of I, /I and P hardly differ, and
in two cases are actually equal. (That this latter result is not an error is ex-
plained by the fact that the values listed in Table I are not true maxima, but
the highest values found in a scan in steps of 1 MeV.) Note the interesting
insight that emerges from the above mentioned interpretation, namely that
the bombarding energy associated with the sudden downturn in the cross
section, when added to the masses of the fragments at infinity, leads to an
almost direct determination of the saddle point mass of the nucleus (A —1).
Conversely, if the mass of the saddle point is known, or can be estimated,
we arrive at the following “Optimum energy rule”:

“The optimum center-of-mass bombarding energy in a one-neutron-out
heavy ion reaction is approrimately equal to the mass of the fission saddle
point of the residual nucleus plus the mass of a neutron minus the masses of
target and projectile plus about 0.5 MeV: FEcy =~ Mgp + M, — Mr — Mp
+ 0.5 MeV”.

Here is how it works in the case of the reaction °Ti + 208Ph —2%8Rf.
Using mass excesses instead of masses, we have: measured mass excess of
ground state of 2°"Rf = 96.01 MeV; fission barrier in 25"Rf (assumed the same
as in 258Rf) = 6.39 MeV (Appendix C); mass excess of saddle point of 25"Rf
= 102.40 MeV; mass excess of neutron 8.07 MeV; sum of mass excesses of
target and projectile = —73.20 MeV. It follows that the expected downturn
in the excitation function should be close to £ = 102.40 + 8.07 4+ 73.20 + 0.5
= 184.17 MeV. This agrees with the theoretical curve in Fig. 8, and is a little
lower than the measured maximum at about 184.8 MeV. (A small difference
with this sign could be due to gamma emission competing successfully with
fission just above the nominal threshold, so that the effective threshold for
fission would be a little higher than VfA_l.)

An alternative way of making the above estimate is to rely on the “to-
pographic theorem” (described in Appendix C of Ref. [23]) and to assume
that the effect of shell structure on the saddle point energy is negligible, so



2064 W.J. SWIATECKI, K. STWEK-WILCZYNSKA, J. WILCZYNSKI

18

16 9

" \k\;’\
12 <+

0 T T T T T T T T T

100 102 104 106 108 110 112 114 116 118 120

Atomic number Z

Fig.9. The calculated average values (E*) of the excitation functions are plotted
against Z for the eight reactions under study. After a slight decrease from about
15 MeV to 12 MeV between Z = 102 and Z = 112, the calculations show a leveling
off at Z = 118. The two available measurements are shown with nominal error
bars of +0.5 MeV.
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Fig.10. A comparison of the calculated and measured RMS widths of excitation
functions. The former show a systematic decrease between Z = 102 and Z = 112,
followed by a slight rise at Z = 118. A correction for energy dispersion in the
target has not been included in the theoretical widths.
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that the use of a macroscopic estimate of the saddle point mass is adequate.
We now have the following numbers: macroscopic mass excess of spherical
BTRf = 101.15 MeV (from Ref. [24]); macroscopic fission barrier = 0.76 MeV
(this follows from the liquid drop approximation: barrier = (98/135)E,(1 —
x)3, where formulae for the surface energy Fy and the fissility = are given
in Appendix B); hence mass excess of saddle point of 2*"Rf = 101.91 MeV,
and the maximum of the excitation function should be about 183.68 MeV,
i.e., 0.49 MeV below the previous estimate.

Fig. 9 shows the calculated average positions of the excitation functions,
and Fig. 10 their RMS widths for the eight reactions under discussion. The
two experimental points refer to *°Ti + 2%%Pb and 58Fe + 208Pb, the only
cases out of the eight for which the excitation functions had been approxi-
mately established.

8. Summary and conclusion

We have outlined a theory of fusion cross sections for very heavy systems
in terms of the product of three factors: a sticking cross section, a Smolu-
chowski factor (1/2)erfcy/B and a survival probability. The first and third
correspond more or less to standard treatments that, on a logarithmic scale,
reproduce very well fusion cross sections for not too heavy systems. The
middle one is based on the Smoluchowski diffusion equation in an inverted
parabolic potential. This potential was estimated using a macroscopic de-
formation energy in an asymmetric fission valley. For a given reaction there
is in this scheme one adjustable parameter, s, the point of injection into
the above valley. We found that the values of s that reproduce the order
of magnitude of the experimental cross sections are in the range expected
on physical grounds. This range is determined by the nuclear surface dif-
fuseness, and spans approximately situations intermediate between the con-
tact of the half-density surfaces and the contact of the semi-classical, i.e.
Thomas—Fermi, edges of the density distributions. Pressing the fit of the-
ory to data beyond a qualitative correspondence, there is an indication for a
need to make the value of s at injection a decreasing function of Z. This is in
line with the expectation of an unshielding of the saddle point configuration
caused by the lowering of the Coulomb barrier relative to the saddle-point
energy. It remains to be seen whether this is the correct interpretation of
the overall trend of the measured cross sections. A closer look at the energy
dependence of the theoretical cross sections leads to a useful insight regard-
ing the optimum bombarding energies for fusion (the ‘optimum energy rule’)
and the expected RMS widths of the excitation functions. Note that these
results depend only on the first and third factors in Eq. (1). They provide
what appears to be quite precise determinations of two out of the three cru-
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cial quantities needed in planning heavy element production experiments,
and are not subject to the uncertainties associated with the diffusion factor.
The latter is needed only to establish the absolute magnitudes of the cross
sections, which is the third important characteristic of a reaction.

There are, indeed, reasons for being cautious about the significance of
our estimates of the absolute magnitudes of the cross sections, deduced as
they are from a very idealized theory, adjusted to data by an assumption
concerning the separation s at injection. A large number of approximations
were introduced in formulating the model, too numerous for a detailed dis-
cussion here. To single out an important one: our macroscopic deformation
energies neglect shell effects, except as these are reflected in the ground
states of the target, projectile and the compound nucleus. We may take
some comfort in the observation that, for the reactions in question, the ob-
served cross sections are fairly smooth functions of Z (except for a glitch
between 270110 and 272110). The fact that a smooth macroscopic treatment
is able to reproduce them (including the glitch!) is some indication that at
least the wariations in the neglected shell effects in going from *¥Ca to "°Zn
projectiles are not very significant. On the other hand, the shell effect asso-
ciated with 298Pb is expected to be important, and is likely to have affected
significantly the values of s deduced from the data.

Looking towards the future, an obvious extension of the present work
is the application to other reactions, in the first place those using a bis-
muth target. Inclusion of reactions where more than one neutron is emitted
will be another test of the self-consistency of the model and of its range of
applicability.

We would like to thank W.D. Myers for many unpublished results ob-
tained with the Thomas—Fermi model and used in this paper, and R. Smo-
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No. PAA/DOE-98-34, and by the D.O.E. under contract No. DE-ACO03-
76SF00098 (LBNL). One of us (J.W.) acknowledges support by the Polish
State Committee for Scientific Research (KBN), Grant No. 2P03B05419.

Appendix A

Introducing a dimensionless time by 7 = t/tg, where tc = G/b, Eq. (4)
in the text becomes

ow
? = —(.’L'W)I —+ OW”, (Al)
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where @ = T/b. It may then be verified by direct substitution that the
solution of Eq. (A.1), with the initial condition that W is a d-function at
T = xg, t =0, is given by

T — z9expT)?
W(z,7) = V%exp(—%) , (A.2)

where ¥ = O(exp 27 — 1).

Integrating Eq. (A.2) from z = —oo to x = 0 and taking the limit
T — 00, gives Eq. (5) in the text. We note in passing that if at ¢ = 0 we
postulate as the initial condition a Gaussian distribution with variance o,
i.e.,

T — 1)?
W(xo,0) = V%exp(—%) , (A.3)

the solution of Eq. (A.1) is still of the form of Eq. (A2), but with the variance
XY now given by
Y =oexp2r +6O(exp2r — 1). (A.4)

The expression for the resulting hindrance factor is still of the form of Eq. (5),
but with 7" replaced by T' =T + bo.

Appendix B

The following formulae provide approximations to the macroscopic defor-
mation energy AFE of a nucleus idealized as a uniformly charged liquid drop.
The shape of the drop, originally spherical with radius R, is parameterized
by two spheres connected smoothly by a portion of a spheroid or hyperboloid
[30]. Three variables specify a given shape: elongation, asymmetry and neck
size.

Let ¢ denote the deformation energy in units of the surface energy FEj
of the spherical shape. Let o stand for the surface-separation variable s in
units of R. (This o should not be confused with the ¢ in Appendix A.)
Recall that s is the excess of the overall length L of the shape in question
over the sum of the diameters of target and projectile. Thus
S AFE

Ea § Es‘

SZL—Q(RT—FRP), o= (B.l)
For each value of s, the energy is considered to have been minimized with
respect to the neck variable at fixed asymmetry. The resulting deforma-
tion energy is consequently a function of the single variable s. In a range
of parameters to be specified later, a quadratic approximation to &(o) is
adequate:

¢ a+bo+co?. (B.2)
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The coefficients a, b, ¢ are functions of the asymmetry variable A and of the
fissility # defined as follows:

Rt — Rp
=_—- - B.3
Rt + Rp (B3)
o Electrostatic energy of sphere ‘ (BA)
2F;
Using the notations D = A? and t = 1 — z, we have
a = ag+ Bat + 12, (B.5)
b = ap+ Bt (B.6)
c = a.+ B, (B.7)
where
a, = —0.00557 — 0.01929exp(—D/0.02283) , (B.8)
Ba = 0.048 4+ 0.12151exp(—D/0.04053) , (B.9)
v = —0.073 +0.94D (B.10)
ap = —0.00858 — 0.05303exp(—D/0.03205) , (B.11)
By = 0.019 + 0.25663exp(—D/0.07331) , (B.12)
a. = —0.0256 4+ 0.1944D , (B.13)
Be = 0.0214 + 0.6158D . (B.14)

The above formulae have been tested for adequate accuracy in the range
0.85 <z <1.05, —0.25 < A< 0.25 and —0.1 < o < 0.44.

In order to convert the dimensionless quantities into MeV, the following
equations should be used:

By = 17.9439(1 — 1.78261%) A*/*MeV , (B.15)

B Z2/A
~ 50.883(1 — 1.782612)’

(B.16)

where I = (N — Z)/A.
To convert dimensionless lengths into fm use R = 1.155A4/3 fm.

Appendix C
We used the following expression for S, (U, ), based on Refs. [25, 26]:

Sn(Un) = 2/an{U;; + SH[L — exp(=U;; /k)]} , (C.1)
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where U = U, — 12MeV /y/A — 1 (for the odd mass numbers A — 1), k =
A1/3/0.47 MeV, and SH is the shell effect, in MeV, in the ground state of
nucleus (A — 1), as given in Refs. [24,27], U, is the excitation energy given
by E —V, , and the level density parameter a,, was taken as

an = 0.076(A — 1) 4 0.180(A — 1)*/ F(a,) + 0.157(A — 1)V/3G (o) MeV .

(C.2)
The last two terms allow approximately for the dependence of the level
density on the deformation of the nucleus, as specified by the parameter «,
defined by @ = (Rmax — R)/R, where Rpax is the semi-major axis of the
(axially symmetric) nucleus (of radius R before deformation). The functions
F and G were chosen to be given by

F(a) = 1+ (0.6416a — 0.14210%)2, (C.3)
G(a) = 14 (0.6542c — 0.04830%)?. (C.4)

They reproduce closely, for a < 1, the relative surface area and integrated
curvature for the symmetric saddle point shapes in Table 7.1 of Ref.[30],
and may be expected to give at least an approximate representation of the
corrections for the asymmetric shapes with which we are concerned.

For the entropy S¢(Uy) we used the expression

SpU}) =2, Ja;U% | (C.5)

where

U = Uy —24MeV/ VA (for even—even compound nuclei), (C.6)
Uy = E—V}. (C.7)

The level density parameter ay was taken according to Eq. (C.2), using the
appropriate mass number and deformation for the transition state for fission.

Originally two sets of values of V; and VfA*1 were studied. The first
assumed that shell effects at the saddle point were negligible (see the “Topo-
graphic theorem” in [23]), and the macroscopic Thomas—Fermi barrier calcu-
lations of [28] were used to determine V. The second took account of possi-
ble deviations from this idealized limit, for which there is, in fact, empirical
evidence in Fig. 4 in Ref. [28]. The Hartree-Fock calculations of Ref. [29]
also suggest related deviations between the fission barriers calculated mi-
croscopically and those using the macroscopic Thomas—Fermi saddle point
energies and a shell-corrected ground state. Thus, for the eight compound
nuclei in question, the comparison of calculated fission barriers (in MeV)
looks like this: Hartree-Fock/Thomas-Fermi/Difference = 7.23/5.44/1.79;
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6.87/5.22/1.65;  6.30/5.08/1.22; 5.70/4.89/0.81;  4.88/4.34/0.54,;
5.56/4.53/1.03;  4.05/4.28/—0.23;  5.45/5.57/—0.12. If the differences
were ascribed entirely to shell effects at the saddle, the values of Vy would
be correspondingly affected. In the end we adopted a prescription in which
the values of V; were taken to be a weighted average of the Hartree-Fock
and Thomas—Fermi numbers, with a weight of 0.7 for the former and 0.3 for
the latter. This weighting ensures that the hindrance factor for the *¥Ca
reaction is about 0.5, in agreement with the expectation based on Fig. 4.
For reactions with progressively heavier projectiles, the differences between
the two ways of estimating V; become insignificant.
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