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1. Introduction

According to the compound nucleus theory [1], residue cross sections are
given by the product of fusion probability and survival probability. The
latter can be calculated by the theory of statistical decays. They depend on
detailed properties of relevant nuclei, especially their masses, or their shell
correction energies which essentially determine fission barriers, but are un-
known and thereby give rise to substantial ambiguities in practice. But the
theory is well established. On the other hand, for the former, i.e., for fusion
probability, there is no reliable theoretical framework available for massive
systems [2] where so-called fusion hindrance is known to exist experimen-
tally [3]. Recently the present authors have proposed a two-step model [4]
in order to describe the whole process from the encounter of incident ions
up to the formation of the spherical compound nucleus. It consists of two-
body collision process up to the contact of the incident ions after overcoming
the Coulomb barrier under friction in action and of shape evolutions to the
spherical configuration, starting from amalgamated configurations made by
the sticking of the incident ions. The latter process is not necessary in usual
heavy-ion fusion reactions, but is indispensable in massive systems, i.e., for
the synthesis of the superheavy elements (SHE), because the contact point
is still outside of a conditional saddle or a ridgeline, as is shown in Fig. 1,
while in usual systems it locates inside the conditional saddle point. Since
the amalgamated system is expected to be excited due to heat-up processes
during two-body collisions, subsequent collective shape motions of the sys-
tem are under a strong dissipation stemming from frequent interactions with
the nucleons at a finite temperature. Thus, both processes are described by
dissipation-fluctuation dynamics, i.e., by Langevin equations [5].

An important thing that remains is how to connect them. Naturally, two
processes are in succession, so results of the first step give initial conditions
of the second step. In this sense, analyses of results of the first step, i.e., of
the contact dynamics in the collisions of the incident ions are necessary for
the purpose of obtaining initial conditions for subsequent shape evolutions
as well as of obtaining a sticking probability Pg;ck. The present connection
method can be called to be “statistical”, neither adiabatic, nor diabatic [6],
because the first step results in distributions of physical quantities, for ex-
ample, in a Gaussian distribution of the radial momentum as will be seen
below. With them as initial values, shape evolutions of the amalgamated
system are solved to give a formation probability of the spherical compound
nucleus Prrm- Thus, the fusion probability Prgion 1S given by a product of
the two factors

Pfusion(Ec.m.) = Pstick(Ec.m.) Pform (Ec.rn.) . (1)
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Fig.1. Coulomb barrier, sticking configuration, and conditional saddle are shown
schematically for massive systems, which illustrates a necessity of two-step treat-

ment for fusion.

For a realization of the above theoretical framework, we employ the sur-
face friction model (SFM) [7] for the first step of two-body collision processes
and the one-body model (OBM) [8] of friction, i.e., the one-body wall-and-
window formula for the second step of shape evolutions.

In the next section, we describe the second step first, and then in Sec-
tion 3 we describe the first step, i.e., so-called SFM and discuss characteristic
features of the results. Of course, SFM could be improved, or re-adjusted
so as to be suitable in barrier energy region, because it is proved to be suc-
cessful in Deep-Inelastic Collisions (DIC), i.e., in much above the Coulomb
barrier. But for the moment, we take precisely the original version. In Sec-
tion 4, the method of connecting the first step to the second step is discussed
briefly. At last, examples of calculations of fusion cross sections are given for
48Ca + actinides target systems in Section 5.
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2. Shape evolution from the contact to the spherical shape

Firstly, we discuss shape evolutions starting from the contact point to-
ward the spherical shape by overcoming the conditional saddle point or to-
ward re-separation under a conservative driving force which is approximated
by an inverted parabola. The Langevin equation, thus, is written as follows:

()= (e 5)(00)e (k) o

where m denotes the inertia mass of the motion, w the curvature of the
potential energy surface at the saddle point, and £ the so-called reduced
friction, 1i.e., the friction v divided by the inertia mass. These parameters
could be calculated by LDM and OBM with Two-Center Parameterization
(TCP) in case of quantitative discussions and comparisons with experiments.
R is an inhomogeneous term represents the random force associated with
the friction «y, so is assumed to be Gaussian and to satisfy the dissipation-
fluctuation theorem

(R(t) = 0,
(RWR()) = 27Tt~ 1), 3)

where () denotes an average over all the possible realizations of the random
force and T specifies the temperature of the heat bath of the nucleons. Since
Eq. (2) is an inhomogeneous linear equation, we can write down a general
solution as a function of initial values gy and pg. (The origin of the coordinate
q is taken to be the top of the barrier, and gy and pg are taken to be negative
and positive, respectively.) Then, a distribution function of the system in
the phase space is calculated for any later time ¢ in the following way with
the solution

W(q,p;t,T;q0,p0) = (0 (¢ — (q(t))) 6 (p — (p(t)))){Ry (4)

where an average of the functional over R, ( ){ry can be performed generally
by the path integral method.

Then, we obtain an expression for a probability for the system to pass
over the saddle point by integrating over the whole p-space and over the half
g-space, i.e., over the other side of the saddle point. The probability is now
given by an error function

dqg 1
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1 [ (a(t) ] |

27| Vao()
(q(t)) = A(t)qo + B(t)po,
o(t)® = (¢°) — (a(t))*, (5)

where A(t) and B(t) are given by the function of t with the parameters of
v and w, precise expressions of which are given in Ref. [9]. The formation
probability is obtained by taking the limit ¢ — oo. Thus, the final probability
is given by the error function with the following argument

{q(t)) 2+ 142

o5 . (6)

B 1 | K
T a?2+1+2VT

where the parameter z denotes 3/2w. And K and B denote the initial kinetic
and potential energies, p% /2m and mqug /2, respectively. Now it is apparent
that in order for the probability to be 1/2 like transmission coefficient in
quantum mechanics, the argument of the error function should be equal to

2
zero, then K'/? = (\/302 + 1+ ac) B = B.g, where Beg can be interpreted

as an effective barrier height required by the dissipative dynamics. The
formula indicates that even in the cases with a small saddle point height
B of LDM, the effective barrier height is much higher, for example, about
10 times of it if we take OBM for the friction. Therefore, this provides us
with a simple dynamical explanation of the fusion hindrance by an analytic
expression, assuming the schematic parabolic potential which is not so far
from the reality. Now, we need to find the initial values gg and pg, which is
obtained in the next section.

3. Contact dynamics of massive systems

As is usual in heavy-ion collisions, we have to take into account the
Coulomb barrier of the entrance channel. A special aspect in massive sys-
tems is that a friction between the incident ions is expected to be active
around or even outside the barrier top. This is conceivable from measured
excitation functions for so-called capture cross section, where limiting or-
bital angular momenta for the process are known to be smaller than grazing
angular momenta [10]. Actually, SEFM shows that the form factor of the
friction stretches outside the barrier top position in massive systems. In
Fig. 2, an example of the potential and the friction form factor is given as
functions of the relative distance, calculated with SFM, exactly with their
original parameter values which were fixed by the analyses of DIC. Since it
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Fig.2. The radial potential for s-wave and the radial form factor of the friction are
shown for 48Ca+?44Pu system, calculated with SFM.

is well known that dissipation is always associated with fluctuation, an as-
sociated fluctuation to the dissipation is to be introduced, so SFM equation
is extended [11] as follows:

dp dVv K,
= = 0
dt dt 1 p+brwi,
dL K, 5
— = -2 (L-=L 0
Py p ( - 0>+ 2 W2,
(wiwj) = 25ij (S(t—t’), 1=7T or ¢, (7)

where p denotes the reduced mass of the entrance channel and Ly does the
incident orbital angular momentum, i.e., the total angular momentum of
the system. The potential V' is the sum of nuclear Vi and the Coulomb V¢
potentials. The limiting angular momentum 5/7 Lg is a so-called rolling
limit according to Bass [12]. If we include a rolling friction acting on
the relative angular velocity of the two ions, it becomes to be the stick-
ing limit. The dissipation-fluctuation theorem is as follows: 67 = K, T'(t)
and 05 = r? K, T(t). And from the expression of temperature above which
has time t as an argument, the equation describes a heat-up process during
the approaching phase. K;(r) with 4 = r, or ¢ are the radial and the tan-
gential friction, respectively, and are given as K;(r) = K? (dVy /dr)? with
the strength parameters, where KZQ =4 and 0.01 for 1 = r and ¢, in unit of
10723 sec/MeV.

As stated in Section 1, our purpose of employing SFM is to know how
the system reaches the contact point go, so we solve Eq. (7) up to that
point to analyze the results which are to be used as initial values for the
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subsequent evolutions. Naturally, we can take gg to be the sum of Ry and
Ry where R;’s denote the half density radii of the projectile and the target
of the entrance channel, respectively. Of course, it could be smaller or
larger than that, or even it could have a distribution in general. The model
is applied to '%Mo+1%Mo system (Z; Zo =1764, Z; = 42 being atomic
numbers of the projectile and targets) where the fusion hindrance starts
to be observed experimentally. Fig. 3 shows calculated sticking probability
PS‘{;E as a function FEj,,. As expected, PS‘{;E increases gradually as Fiap
increases above the Coulomb barrier, which indicates an possible existence of
the extra-push energy of only a few MeV or less. Interesting are distributions
of the radial momentum at the contact point which are shown in Fig. 4 for
four different incident energies. The distributions all appear to be Gaussian,
though the center or the mean value of the momentum decreases as the
energy increases. (Note that the incoming radial momentum has a negative
sign.) At the same time, the width or the variance increases in consistence
with the temperature defined with the internal excitation energy, i.e., with
the loss of the kinetic energy. This means that the initial value pgy in Section 2
is not a single value, but has a distribution.
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Fig.3. Energy dependence of the sticking probability obtained by SFM is shown
for 199Mo—'9Mo system.

Thus, the calculated results are casted approximately into the following
form

S (p07 Ec.rn.) = Pstick (Ec.rn.) g (pOaﬁOa TO) ) (8)

where S denotes a probability for the system to have a radial momentum
po at the contact point for a given incident energy E. ., And the Gaussian
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Fig.4. Calculated radial momentum distributions are shown for 1°Mo-1%"Mo sys-
tem at four different incident energies. Note that incident radial momenta are
negative by definition.

distribution function is defined as usual

_ 1 (po — Po)*
T) = —— _Po = Po) 9
g (po, po, To) T P 2T, , (9)

where the mean value of the radial momentum is denoted by pg and the
temperature of the heated-up amalgamated system is denoted by Ty. The
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Fig.5. Results obtained by SFM are shown for *®Ca+244Pu; (a) the sticking prob-
ability, (b) the radial momentum distribution in unit of 10*! MeV sec/fm and (c)
the orbital angular momentum divided by the dissipation limit. (b) and (c) are an
example with incident energy of 5 MeV above the Coulomb barrier.

energy conservation in average is expressed as follows:
Eem. = Uy — Egnen + €0 + Ko +To/2 — Q, (10)

where @, Uy and Ejgpen are the @-value of the fusion reaction, the LDM
potential energy at the contact point and the shell correction energy of
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the compound nucleus, neglecting that at the contact point. ¢y and Kj
denote the internal excitation energy of the system and the average kinetic
energy left, g = ag TO2 and Ko = ﬁ%/Qu respectively, where a¢ denotes
the level density parameter to be calculated with the formula by Toéke and
Swiatecki [13] for the corresponding nuclear shape.

Next, the model is applied to synthesis of SHE. Fig. 5 shows the results
on *8Ca + ?*Pu system, as an example. The top panel shows probability
for the system to reach the contact point as a function of center-of-mass
incident energy relative to the Coulomb barrier top. It is readily seen that
more than 10 MeV is necessary for the probability to reach 1/2, which could
be a part of the extra-push energy. The middle panel shows a Gaussian
distribution of the radial momentum at the contact point in the same as in
100001900\ system. The center of the distribution, i.e., the average value
is almost equal to zero, which is very different from °°Mo—1%"Mo system and
indicates a complete damping of the incident energy. Its width is consistent
with a temperature of the system. The bottom panel shows radial distance-
dependences of average orbital angular momenta for the cases of incident
angular momenta 10 A& and 30 A, respectively. It is remarkable that they
approach almost the dissipation limit at the contact point, which, together
with the damping of the radial motion shown above, indicates a formation
of sticking configuration with the thermal fluctuation.

4. Connection of the two steps

The connection is a delicate problem about amalgamation dynamics,
but the present treatment provides a promising approach, which could be
called “statistical method”, and is different from diabatic or adiabatic view-
point [6]. According to the results obtained in the previous section, the
formation probability is given by a convolution of the probability F' and the
distribution g

o0
Pform (Ec.m.) = tli{& / deF(taT; QOap())g(pOaﬁmTO) 3 (11)

— 00

where the temperature 7' should be determined by a similar relation to
Eq. (5) around the saddle point, but for *Ca induced reactions, the contact
point and the saddle point are close to each other, so they could be taken
to be the same. Then, the formation probability takes an extremely simple
form

Ky

1 | B 1
Pforrn (Ecm) = §erfc T — m ? (12)




Reaction Mechanisms for Synthesis of Superheavy Elements 2101

Here, we can once more make the same argument as in Section 2. That is,
in order for the formation probability to be equal to 1/2, an average kinetic
energy to be left at the contact point is given as follows:

K(}/?:( x2+1+x)23. (13)

It should be noticed here that the extra-push energy should be discussed not
only by the formation probability, nor only by the sticking probability, but
by the fusion probability which is given by Eq. (1), i.e., by their product.
In massive systems where K is almost equal to zero, we can use an
asymptotic expansion of the error function for the case of B > T and then

s VBT
which appears to be similar to Kramers formula for fission, having an Arrhe-
nius factor and thereby could be called as “inverse Kramers formula” [14].

But it should be noticed that Kramers formula [15] is on the transition rate,
while the present formula is on the transition probability.

12

Pform (Ecm) (14)

5. Examples of fusion cross sections
and comparisons with the experiments

In order to make more realistic calculations, we employ two-dimensional
model for shape evolutions in TCP, where not only the center-of mass dis-
tance but also the mass asymmetry are used as collective coordinates for ¢;’s.
(The other parameters are freezed. The neck parameter ¢ is taken to be 0.8,
and the fragment deformations are to be zero.) Then, multi-dimensional
Langevin equation is written [16] as follows:

dg N -1 '

o (m )ij Pj:

de oUu 10 -1 -1

_ = - = —— , ; — Yii ) iR (1),

0 0~ 20q ™ )ik Pipk =% ()5, P+ 0By (1)
gikgik = Yi; T, (15)

where p;’s denote the conjugate momenta, and summations over repeated in-
dices are implicitly assumed. The inertia tensor m;; is calculated by Werner-
Wheeler approximation [17] for each shape, i.e., as a function of the coor-
dinates, and thereby the inertia term appears in the r.h.s. of the second
equation of Eq. (15). The potential U is the macroscopic LDM one with
TCP. For finite total spins, rotational energies should be added, calculated
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with the rigid moment of inertia [18]. The microscopic shell correction en-
ergy is neglected by considering that the composite system formed is rather
excited already in the approaching phase, i.e., in the first step. The friction
tensor ;5 is calculated by OBM, and the random force {R;} is assumed to
be Gaussion, but is chosen in consistence with the dissipation-fluctuation
theorem which is expressed in the last equation of Eq. (15).

0.0 0.5 1.0 15

R/RO

Fig.6. Examples of Langevin trajectories of shape evolutions in two-dimensional
space of the distance R and the mass-asymmetry «. (Ry denotes a radius of the
spherical compound nucleus.) The system is **Ca+238U with zero initial radial
momentum and the temperature corresponding to 70 MeV of intrinsic excitation.

In order to obtain the formation probability F(t,T,qo,po) at t — oo for
a given initial momentum pg, we have to calculate many trajectories due to
the existence of the stochastic force. Fig. 6 shows examples of trajectories
for ¥8Ca+238U on the LDM energy surface, where the initial momentum py is
taken to be zero at the contact point and the temperature is calculated with
the excitation energy of 70 MeV taken as an example. It is readily seen that
some trajectories go toward the spherical shape, while some others go back to
re-separation. Repeating the same type of calculations with various initial
momentum pg, and putting them into Eq.(11), we obtain the formation
probability Pioym(Fem.) for the two-dimensional model, then consequently
the fusion probability Pgion(Fem.). Fig. 7 shows examples of 48Ca+244Pu
system.

Then, fusion excitation functions are calculated as usual

Ofusion = 7'0\22 (2J =+ 1) Pfﬂsion’ (16)

where X is wave length divided by 27. In Fig. 8, several examples of ex-
citation functions are shown for “®Ca induced reactions, together with the
available experimental cross sections. Firstly, the calculations reproduce the
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Fig.7. Fusion probability calculated by products of sticking probabilities and of
formation probabilities is shown for **Ca+238U system.
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Fig.8. Calculated fusion excitation functions for four systems of ®Ca + actinide
targets are shown, together with the available experimental data; GSI [19] and
Dubna [20].

characteristic feature of saturation of the cross section in higher energies
which is typically seen in 23U target case. Secondly, they reproduce the
measured excitation functions [19,20] for three systems systematically with-
out any adjustable parameters. Experiments on 2°2Cf target are strongly
desired in order to verify the present prediction also given in the figure.
Combined with the statistical theory of decay for calculations of Py, we
can calculate residue cross sections. Preliminary results are compared with
Dubna experiments [21] and have turned out to be promising. A systematic
study [22] is now being made for predictions for residue cross sections for
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SHE’s, where precise values of the shell correction energy are crucial. Un-
fortunately, several theoretical predictions [23] available from the structure
studies are different from each others, which gives rise to a rather large dis-
persion of the predicted cross sections. More precise predictions of the shell
correction energy are eagerly waited for.
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