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SYMMETRIES OF NUCLEAR HAMILTONIANSWITH REDUNDANT VARIABLES�A. Go¹d¹a;b, J. Dudekb and M. Mi±kiewizaaInstitute of Physis, M. Curie-Skªodowska Universitypl. M. Curie-Skªodowskiej 1, 20-031 Lublin, PolandbInstitut de Reherhes Subatomiques, IN2P3-CNRS/Université Louis Pasteur67037 Strasbourg Cedex 2, Frane(Reeived January 31, 2003)The problem of symmetries within the redundant-variable method isrevisited. Using physial onditions similar to those suggested by Bohrand Mottelson an appropriate symmetry subspae of the full spae of theredundant-variable Hamiltonian has been onstruted. Suh a onstrutionis a prerequisite ondition for entering into any realisti alulation sheme.PACS numbers: 21.10.�k, 21.60.�n, 21.60.Fw1. IntrodutionIt is well known that no general method exists whih allows to solve thenulear many-body problem exatly. A lass of approximate methods an beonstruted by dividing the whole set of nulear degrees of freedom into twosub-sets. The �rst one usually desribes the single-partile, and the seondone � the olletive properties of the motion. In priniple one an try toonstrut diretly the `olletive' variables out of those that haraterize thenuleoni degrees of freedom, however, the general solution of this di�ultproblem has never been obtained, f. e.g. [1℄.An alternative approah employs the so-alled redundant variables. Suhan approah has been used by many authors and an extensive presentationof the nulear physis appliations an be found in [2℄ and [1℄. In this asethe on�guration spae of the system is enlarged by introduing, in addi-tion to the 6A single-nuleoni degrees of freedom, a number of `olletive'ones. Thus the ensemble of the variables used in this ase must ontainsome redundant ones sine the number of all the degrees of freedom must� Presented at the XXXVII Zakopane Shool of Physis �Trends in Nulear Physis�,Zakopane, Poland, September 3�10, 2002.(2123)



2124 A. Go¹d¹, J. Dudek, M. Mi±kiewiznot exeed 6A. The presene of redundant variables usually introdues somespurious solutions. To remove them, one needs to bring-in some extra on-straints and this ompliates the mathematial formulation of the problemthat an be treated expliitly only in very simple ases like e.g. that of thetranslational motion. Even for rotational exitations one an formulate thisproedure only approximately. The problem is still opened but despite that,using methods of redundant variables in one of their approximate realiza-tions remains in pratie a soure of numerous suessful model-approahes.Another problem with the redundant variable method is to relate truesymmetries of the system to those that an be desribed in a mathemati-ally orret manner in an enlarged spae. A solution to this problem hasbeen proposed in [2℄, but only for some simple Abelian symmetry groups.Reently, a possible importane of higher, non-Abelian, symmetry groupsin nulei has been pointed to [3℄. Here we brie�y desribe how to handledisrete symmetries within a redundant-variable approah for the ase ofnon-Abelian symmetry groups expeted to play an important role in theadvaned nulear physis appliations.2. Symmetry groups and enlarged on�guration spaesThe spae of all the states appearing in the redundant-variable approahan be represented as a tensor produt of the intrinsi, Kintr, and olletive,Koll, spaes: Kintr
Koll. In the following it will be of advantage to shortenthe notation. We will write Kintr ! K, Koll ! ~K and Kintr
Koll ! K
 ~K.Suppose that the original Hamiltonian, the one ating in the single-nuleon spae, is invariant under transformations of a ertain group G. Theorresponding symmetry group of the redundant-variable Hamiltonian willbe denoted G � ~G; it an be realized by the produt operators T (g; ~h) =T (g) ~T (~h), where T and ~T at in K and ~K, respetively. Needless to say, sym-bols G and ~G represent the same symmetry group in two di�erent physialrealizations; in T (g; ~h) the arguments g and ~h may take all possible valuesindependently of one another.In Ref. [2℄ there is a series of examples showing how one an onstrutrelations between T (g) and ~T (~g) operators to represent the same symme-try of the physial system in the orresponding subspaes. Here, g and ~grepresent the same symmetry operation but belonging to G and ~G, respe-tively. However, all the examples in [2℄ onern the Abelian groups where aorrespondene ondition written in the formg = ~g and T = ~T (1)plays a entral role. Although the above relation an be intuitively un-derstood, stritly speaking it is inorret beause the operators in question



Symmetries of Nulear Hamiltonians with : : : 2125at in di�erent spaes. In the following we show some impliations of theondition (1) but rewritten in a formally orret way.The symmetry group G � ~G may ontain several subgroups. In whatfollows we restrit our onsiderations to operators T that generate suh a`physial' symmetry-subgroup G � G� ~G. The intuitive relation in Eq. (1)an be made more preise by requiring thatG 3 T (g; ~g) = T (g) ~T (~g) = I[in G℄: (2)This ondition an be realized mathematially if the operators ~T (~g) aretaken to be `onjugate', as opposed to `usual', representations (f. Ref. [4℄and also below). In other words: Eq. (2) expresses the fat that representa-tions T (g; ~g) ating in the redundant variable spae K 
 ~K are salar. Theabove relation may be given the following geometrial interpretation: anation of an intrinsi-spae operator in K represents the same as the ationof the orresponding olletive-spae operator in ~K. The symbol `tilde' in~g stresses the fat that the seond argument of T (g; ~g) orresponds to thesame symmetry operation as g but ating in the olletive spae. For onedimensional irreduible representations suh a ondition may lead to uniquerelations among symmetry quantum numbers of the intrinsi and olletivespaes. Some examples of suh relations are shown in Eqs (20)�(21) below,some others in [2℄. However, the multidimensional representations requiresome speial are and will be disussed below.To proeed we will need to speify the ation of the symmetry operatorsT (g) and ~T (~g) in the orresponding vetor spaes more preisely. We willdenote the intrinsi wave funtions by �. The basis of irreduible repre-sentations in the intrinsi spae will be denoted by j�(� ; ; a)i, where �labels the irreduible representations,  is a set of quantum numbers dis-tinguishing among physially di�erent but mathematially equivalent repre-sentations (therefore  stands for all the quantum numbers that distinguishphysial properties not related to the group struture) and a denotes all thequantum numbers required for unique labeling of the vetors that span theirreduible representation spae. Similarly, the orresponding basis in theolletive spae will be denoted by j	(� ; ; a)i.Let us introdue the matries of the irreduible representations, �(� )(g),and their transpose-inverse matries ��(� )(g):��(� )(g) = n[�(� )(g)℄To�1 = [�(� )(g�1)℄T : (3)The matries ��(� )(g) themselves provide irreduible representations of thegroup G alled adjoint or sometimes, what is a better idea from the physisontext point of view, inverse representation. Using this notation it an be



2126 A. Go¹d¹, J. Dudek, M. Mi±kiewizshown that the required ation of the intrinsi symmetry-operator an bewritten asT (g) j�(� ; ; a)i = Xa0 n[�(� )℄�1oaa0 (g) j�(� ; ; a0)i= Xa0 ��(� )a0a (g) j�(� ; ; a0)i ; (4)and the ation of the olletive symmetry-operator ~T (~g) as~T (~g) j	(� ; ; a)i =Xa0 �(� )a0a (~g) j	(� ; ; a0)i: (5)As stated already, ondition (2) expresses the fat that the physially a-eptable irreduible representations of G are salar. One an demonstrate,Ref. [5℄, that the orresponding representations an be obtained by proje-tion using projetion operator:P̂ � = dim(� )ard(G) Xg2G ��(� )(g)�? T (g; ~g) ; (6)where dim(� ) denotes the dimension of the irreduible representation � ,ard(G) denotes the number of group elements in the onsidered point groupand �(� )(g) is the harater of the element g orresponding to the irreduiblerepresentation � . For the ase of a salar representation one obtains thefollowing result:P̂ 0 j�(�1; 1; a1)	(�2; 2; a2)i = Æ�1 �2Æa1 a2dim[�1℄ Xa0 j�(�1; 1; a0)	(�1; 2; a0)i:(7)Let us observe that any non zero state-vetor (7) is independent of anypartiular hoie of quantum numbers a1 and a2, sine no term on the right-hand side of this equation depends on them. We an further simplify thenotation and rewrite Eq. (7) asj� ; 1; 2i = 1pdim[� ℄) Xa j�(� ; 1; a)	(� ; 2; a)i: (8)This is an orthonormal basis in the subspae in whih the required relation(2) is automatially ful�lled; it spans a subspae of K 
 ~K, adapted to thefuture use of property (2). All vetors j	i that are assoiated with j�iwithin the redundant-variable method, in order to ful�ll (2), must belong tothe onstruted subspae and onsequently they an be deomposed using



Symmetries of Nulear Hamiltonians with : : : 2127the basis in Eq. (8); eah of the � and 	 wave-funtions (states) belongs toan irreduible representation � of the symmetry group.Comparing to the phenomenologial onstrution of Ref. [2℄ where thewave funtions take always the form of [�KDIM;K���KDIM;�K ℄ one observesa strutural di�erene: in general none of the terms in the square braketsbelongs to any irreduible representation basis of the symmetry group.Within the subspae of the onsidered diret-produt spae we have againonly non-degenerate spetra owing to the onstrution of the salar irre-duible representations, despite the fat that they were onstruted out ofdouble degenerate intrinsi and olletive energies.3. Energy spetra and symmetry onsiderationsLet us onsider a nulear Hamiltonian that an be written down asH = Hintr +Hrot : (9)Hamiltonians of this form have been widely used in the literature; at thesame time they have the mathematial struture that is already appropriateto present our symmetry onsiderations.Let G be the symmetry group of Hintr (similarly ~G the symmetry groupof Hrot). Let � denote the related s-dimensional irreduible representations,i.e. vetors that span the orresponding irreduible representation spaesan be enumerated with a = 1; 2; : : : s, for both G and ~G. We an alwaysrepresent the solutions to the Shrödinger equations in the two spaes as:Hintr j�(� ; 1; a)i = Eintr(� ; 1) j�(� ; 1; a)i (10)and Hrotj 	(� ; 2; a)i = Erot(� ; 2) j	(� ; 2; a)i: (11)In suh a ase, as demonstrated in quantum mehanis ourses, eah eigen-energy is ommon to all a = 1; 2; : : : s eigen-vetors. In other words,eigen-energies are independent of quantum number a and the orrespondingsolutions are s-fold degenerate. States (8) onstruted out of solutions (10)and (11) are also eigen-states of H and we have:H j�12i = [Eintr(� ; 1) +Eoll(� ; 2)℄ j�12i : (12)Glaning at relation (12) one may think that the orresponding solutionsare multi-fold (here: s�s) degenerate as disussed in the standard quantummehanis ourses in the similar-looking ontext (f. e.g. Ref. [7℄). However,although onstruted out of degenerate eigen-energy sets they annot betreated as degenerate beause in order to beome aeptable as the physial



2128 A. Go¹d¹, J. Dudek, M. Mi±kiewizones they must belong to the salar representations as required by ondition(1), or more formally by (2). One an thus onlude that ondition (1)proposed in [2℄ always leads to a non-degenerate eigen-value problem.To illustrate this problem let us onsider two examples: an Abeliansymmetry group D2, well known from the studies of the tri-axial quantumrotor and a D3 non-Abelian symmetry group. In the following we limitourselves to the ase of even�even nulei.3.1. Abelian groups: example of the D2-symmetryLet us begin with an example of the D2-symmetry. The orrespondinggroup is omposed of 4 elements: three rotations through the angles of �about three mutually perpendiular axes that an be hosen as Ox, Oy andOz and the identity transformation. The rotation operators are denotedC2x, C2y and C2z, where by de�nition Cn� implies a rotation about anaxis � through the angle 2�=n. Group D2 being Abelian, all its irreduiblerepresentations are one-dimensional and, moreover, any group-element formsan equivalene lass of its own. Sine the number of equivalene-lassesequals that of the irreduible representations it follows that D2 has 4 one-dimensional irreduible representations.Let us �rst onsider the solutions to the olletive rotation Hamiltonian.On the one hand it is well known that these solutions an be diretly rep-resented by the Wigner funtions DIMK . On the other hand we would likethese solutions to transform as irreduible representations of the D2-group.Sine the latter are one-dimensional, it follows that under the ation of anyof the group elements they must transform onto themselves, possibly up to aphase. It an be veri�ed using the transformation properties of DIMK under180Æ-rotations that the sought irreduible representation basis vetors areeither [DIM;K +DIM;�K ℄ or [DIM;K �DIM;�K ℄ (as usual we onsider K � 0).Thus it will always be possible to use the orresponding ombinations so thatthe solutions in question an be onsidered as basis vetors of the irreduiblerepresentations � of the symmetry group and we an writeHrot j	(� ; ; a)i = E�rot j	(� ; ; a)i : (13)In the present ase, index a enumerating basis vetors of a given irreduiblerepresentation may take only one value and an be omitted.It is of advantage to be able to label the irreduible representation basisvetors with quantum numbers invariant under the ation of all the groupelements. One may often obtain suh a onvenient labeling by onsidering�rst a subgroup of a group in question and onstruting the basis-statesand the orresponding labeling for the subgroup. Here we hose a subgroup



Symmetries of Nulear Hamiltonians with : : : 2129omposed of C2x and of the identity. The latter has two irreduible one-dimensional representations only. They an be labeled with the help of theeigen-values �x of the C2x operator. Sine (C2x)2 = 1 we have �x = �1.To obtain a seond label let us observe that the operator of the thirdomponent of the angular momentum on the body-�xed Oz axis, Îz, whenating on the Wigner funtions gives K as an eigen-value. Sine for inte-ger K we also have (�1)K = (�1)(�K) it follows that [DIM;K + DIM;�K ℄and [DIM;K � DIM;�K ℄ are eigen-vetors of (�1)Îz and we obviously haveC2z (�1)Îz Cy2z = (�1)Îz . Sine in addition C2x (�1)Îz Cy2x = (�1)Îz andC2y (�1)Îz Cy2y = (�1)Îz we onlude that the expression (�1)K is invari-ant under all the group operations and an serve as another label of theirreduible representation basis vetors. Furthermore, sine C2y an alwaysbe expressed in terms of produts of the other two operations in D2 thereare no other independent quantum numbers possible and onsequently theirreduible representations an be labeled by � � f�x; (�1)Kg.In the ase of the Wigner wave-funtion basis all equivalent representa-tions are labeled with  � fI;Mg. One an then show that in order toonstrut all the possible basis vetors taking into aount I = 0; 1; 2; : : :in the form  = DIMK + �DIM;�K we have to set � = �x � (�1)I and itfollows that one an introdue a D2 spei� notation j	(� ; ; a = 1)i !	(f�x;Kg; fI;Mg) in the form	(f�x;Kg; fI;Mg) = N (I;K) h�DIM;K�? + �x(�1)I �DIM;�K�?i ; (14)where standard normalization fator N (I;K) = p(2I + 1)=[2(1 + ÆK0)℄.Elementary alulations involving only the transformation properties of theDIMK funtions give:C2x 	(f�x;Kg; fI;Mg) = �x 	(f�x;Kg; fI;Mg) ; (15)C2z 	(f�x;Kg; fI;Mg) = (�1)K 	(f�x;Kg; fI;Mg) : (16)Reall that our ultimate goal is to express the general relation (2) byusing the irreduible representation bases onstruted aording to Eq. (8).However, in realisti alulations it may in general neither be possible noronvenient to re-introdue the quantum numbers �x and K in the ase of theintrinsi Hamiltonian and other, `pratial', means will be needed to �nd theadequay between 	(f�x;Kg; fI;Mg) and the intrinsi Hamiltonian eigen-funtions �. For that purpose it will be instrutive to ompare the ations ofthe operators C2x and ~C2x (similarly, C2y and ~C2y and C2z and ~C2z) on thewave funtions in their respetive spaes. The ase of the olletive-variableshas been treated above. Sine one of the three rotation operators of the D2



2130 A. Go¹d¹, J. Dudek, M. Mi±kiewizgroup an be expressed as a produt of the other two it will be su�ient toonsider two of those only. Sine furthermore D2 is an Abelian symmetrygroup the orresponding operators ommute among themselves and with theHamiltonian, and we may always �nd a representation suh thatHintr j�(� 0;  0; a)i = E� 0 0intr j�(� 0;  0; a)i (17)(index a may take only one value and as before will be omitted) and simul-taneously C2x �(� 0;  0) = �x(� 0;  0) �(� 0;  0) ; (18)C2z �(� 0;  0) = �z(� 0;  0) �(� 0;  0) ; (19)where the eigen-values �x(� 0;  0) = �1 and �z(� 0;  0) = �1, sine as weknow (C2x) 2 = 1 and (C2z) 2 = 1.An adequay (at this stage unknown) between parameter � 0 and theirreduible representation index � = f�x; (�1)Kg an be established byrequiring that � 0 = � if �x(� 0;  0) = �x ; (20)�z(� 0;  0) = (�1)K ; (21)[f. Eqs (16) and (16)℄. The above ondition provides missing informationneessary to onstrut the physial wave funtions with the redundant vari-able approah sine from now on the orrespondene between �(� ; 1; a)and �(� ; 2; a) in Eq. (8) and the wave funtions in Eqs (14) and (17),respetively, is one-to-one.The illustrated here D2 ase may serve as an example for other Abeliansymmetry groups.3.2. Non-Abelian groups: example of the D3-symmetryLet us onsider an even�even nuleus and assume that its Hamiltonianis invariant with respet to symmetry group D3. It is a non-Abelian groupontaining one three-fold and three (perpendiular to the latter) two-foldsymmetry axes among its assoiated symmetry elements. It has two non-equivalent one-dimensional irreduible representations and one two-dimen-sional irreduible representation, f. e.g. Ref. [6℄. The one-dimensionalirreduible representations an be treated as in the example above so thatbelow we fous on the two-dimensional irreduible representations.A detailed presentation of a onstrution of the bases of the D3-groupirreduible representations that are of interest in the present ontext goesbeyond the sope of this paper, and here we only sketh the �nal results.



Symmetries of Nulear Hamiltonians with : : : 2131It will be onvenient to introdue two auxiliary expressionsA(+)�;K = � 1; if �+K = 0;�3;�6; : : :0 otherwise (22)and A(�)�;K = � 1; if ��K = 0;�3;�6; : : :0 otherwise (23)where we set � = 0;�1, and de�ne, for the one-dimensional irreduiblerepresentations, the funtions	(� ; ) = N I�;K [A(+)�;K(DIM;+K)? + �x(�1)IA(�)�;K(DIM;�K)?℄ ; (24)where N I�;K �s 2I + 12 (1 + ÆK0) (25)and for the two-dimensional ones	(� ; ; a) = N I�;K [A(+)�;K(DIM;+K)? + a (�1)IA(�)�;K(DIM;�K)?℄; (26)where index a enumerates the basis states and may take, by de�nition, thevalues a = �1 and a = +1. (The meaning of index � will be spei�edbelow.)One an show that the irreduible representations of the D3-group thatare onstruted with the help of the Wigner funtions an be parametrizedusing two integer indies � and �x with � = 0;�1 and �x = �1. Thesesame indies an also be used to label the irreduible representations ofD3. More preisely: it is possible to demonstrate that the two indepen-dent one-dimensional irreduible representations orrespond to � = 0 andare distinguished with �x = +1 or �x = �1 [the orresponding labels are� = fj�j; �xg ! � = f1;+1g or � = f1;�1g, f. Eqs (22)�(24)℄ while forthe two-dimensional irreduible representation we have � = �1 [the orre-sponding single label � = fj�j;�g ! � = f1;�g, f. Eq. (26)℄.Furthermore, one an show that the struture of the basis states in ques-tion depends on K in the following way. In the ase of the one-dimensionalirreduible representations we must have K = 0;�3;�6; : : : (i.e. K remainsa multiple of 3). If K = 0 we have additionally the ondition that I is evenwhen �x = +1 and I is odd when �x = �1. For K 6= 0 all (I � jKj)-valuesare allowed for both �x = +1 and �x = �1.In the ase of two-dimensional irreduible representations we have K =�1;�2; �4;�5; �7;�8; : : : , i.e. all integers not divisible by 3 are allowed[the above rules have been inorporated in the de�nitions in Eqs (22) and(23)℄.



2132 A. Go¹d¹, J. Dudek, M. Mi±kiewizIn the following we fous on the two-dimensional irreduible represen-tations. It remains to onstrut the relations analogous to Eqs (17)�(21)that as before would allow establishing an adequay between the basis ve-tors in the intrinsi and olletive spaes so that Eq. (8) an be applied.For that purpose it will be onvenient to use the basis states in the in-trinsi spae that an be labeled by the total angular momentum I, itsprojetion K on the intrinsi `third' axis and by some additional quan-tum numbers, say, : j; IKi. Then eah of the two vetors that spantwo-dimensional irreduible representation bases an be written as a linearombination of those states involving K = : : : ;�5;�2; 1; 4; : : : for one ofthem and K = : : : ;�4;�1; 2; 5; : : : , for the other, f. the rules establishedabove. Sine in the ase of the D3 symmetry-group Ĉ3z and the intrinsiHamiltonian must ommute we may always �nd the solutions � ommon toboth of them Hintr j�(� 0;  0; a)i = E� 0 0intr j�(� 0;  0; a)i (27)and Ĉ3z �(� 0;  0; a) = e�ia (2�)=3�(� 0;  0; a) ; (28)where in this ase the unique label � 0 = f1;�g aording to the notationintrodued above and where as before a = �1. Quantum number a de-�nes the eigenvalues that an be interpreted as D3 `signature', analogous to`signature' quantum number introdued usually in relation to D2 symmetrygroup of a triaxial nuleus.It is straightforward to show that the olletive wave-funtions of Eq. (26)are eigenfuntions of the Ĉ3z operator to the same eigenvalues as those inEq. (28). Consequently the adequay between the basis vetors in the in-trinsi and olletive spaes needed to apply Eq. (8) an again be establishedby equating the orresponding eigenvalues (f. disussion towards the endof the preeding setion). 4. SummaryA reformulation, Eq. (2), of the ondition proposed in [2℄ allows to �ndthe basis in a subspae of the full redundant-variable spae K
 ~K in whihEq. (2) is automatially ful�lled. For multidimensional representations of thesymmetry group this ondition leads to a oupling, Eqs (8), among the ol-letive and intrinsi basis states involving sums over the additional quantumnumbers required for unique labeling of the basis states of the orrespondingmultidimensional irreduible representations. This spae onsists of only thenon-degenerate eigenstates of the total Hamiltonian.The formulation disussed here, based on the group-theoretial stru-tures, o�ers several mathematial advantages (preision, simpli�ations in



Symmetries of Nulear Hamiltonians with : : : 2133the large sale alulations and algorithms) as well as the physial ones, inpartiular, allowing to work diretly with the onserved quantum numbersand exploiting diretly the new symmetries. A disussion of some partiu-larly intriguing ones an be found in these proeedings, Ref. [8℄.Condition (2) an be generalized to inlude also non salar representa-tions as they may also be given valid physial interpretation. These repre-sentations are required to get a full spetrum of nulear Hamiltonian, butthe related approah needs further investigation.REFERENCES[1℄ P. Ring, P. Shuk, The Nulear Many-Body Problem, Springer-Verlag, NewYork 1980, Se. 11.3.[2℄ A. Bohr, B.R. Mottelson: Nulear Struture, Vol. II, W.A. Benjamin, In.,1975, Se. 4.2.[3℄ J. Dudek, A. Go¹d¹, N. Shunk, M. Mi±kiewiz, Phys. Rev. Lett. 88, 252502(2002).[4℄ M. Hamermesh, Group Theory and its Appliation to Physial Problems, Perg-amon Press, London�Paris 1966, Se. 5.3.[5℄ For mathematial details see Set. 3-18 [in partiular Eq. (3-193)℄ of Ref. [4℄.[6℄ J.F. Cornwell, Group Theory in Physis, Vol. I, Aademi Press, 1994, Ap-pendix D.[7℄ Cl. Cohen-Tanoudji, B. Diu, F Laloë, Méanique quantique, Vol. II, HermannEditors, Paris 2000.[8℄ J. Dudek, A. Gó¹d¹, N. Shunk, Ata Phys. Pol. B, 34 2491 (2003), theseProeedings.


