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The problem of symmetries within the redundant-variable method is
revisited. Using physical conditions similar to those suggested by Bohr
and Mottelson an appropriate symmetry subspace of the full space of the
redundant-variable Hamiltonian has been constructed. Such a construction
is a prerequisite condition for entering into any realistic calculation scheme.

PACS numbers: 21.10.-k, 21.60.—n, 21.60.Fw

1. Introduction

It is well known that no general method exists which allows to solve the
nuclear many-body problem exactly. A class of approximate methods can be
constructed by dividing the whole set of nuclear degrees of freedom into two
sub-sets. The first one usually describes the single-particle, and the second
one — the collective properties of the motion. In principle one can try to
construct directly the ‘collective’ variables out of those that characterize the
nucleonic degrees of freedom, however, the general solution of this difficult
problem has never been obtained, cf. e.g. [1].

An alternative approach employs the so-called redundant variables. Such
an approach has been used by many authors and an extensive presentation
of the nuclear physics applications can be found in [2] and [1]. In this case
the configuration space of the system is enlarged by introducing, in addi-
tion to the 6A single-nucleonic degrees of freedom, a number of ‘collective’
ones. Thus the ensemble of the variables used in this case must contain
some redundant ones since the number of all the degrees of freedom must
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not exceed 6A. The presence of redundant variables usually introduces some
spurious solutions. To remove them, one needs to bring-in some extra con-
straints and this complicates the mathematical formulation of the problem
that can be treated explicitly only in very simple cases like e.g. that of the
translational motion. Even for rotational excitations one can formulate this
procedure only approximately. The problem is still opened but despite that,
using methods of redundant variables in one of their approximate realiza-
tions remains in practice a source of numerous successful model-approaches.

Another problem with the redundant variable method is to relate true
symmetries of the system to those that can be described in a mathemati-
cally correct manner in an enlarged space. A solution to this problem has
been proposed in [2], but only for some simple Abelian symmetry groups.
Recently, a possible importance of higher, non-Abelian, symmetry groups
in nuclei has been pointed to [3]. Here we briefly describe how to handle
discrete symmetries within a redundant-variable approach for the case of
non-Abelian symmetry groups expected to play an important role in the
advanced nuclear physics applications.

2. Symmetry groups and enlarged configuration spaces

The space of all the states appearing in the redundant-variable approach
can be represented as a tensor product of the intrinsic, Cintr, and collective,
Keoll, spaces: Kintr @ Keont- In the following it will be of advantage to shorten
the notation. We will write Kintr — K, Keon — K and Kingr @ Keon — KR K.

Suppose that the original Hamiltonian, the one acting in the single-
nucleon space, is invariant under transformations of a certain group G. The
corresponding symmetry group of the redundant-variable Hamiltonian will
be denoted G x Gj it can be realized by the product operators 7 (g, h) =
T(g) T'(h), where T and T act in K and K, respectively. Needless to say, sym-
bols G and G represent the same symmetry group in two different physical
realizations; in 7 (g, h) the arguments g and h may take all possible values
1ndependently of one another.

In Ref. [2] there is a series of examples showing how one can construct
relations between T'(g) and T'(§) operators to represent the same symme-
try of the physical system in the corresponding subspaces. Here, g and g
represent the same symmetry operation but belonging to G and G, respec-
tively. However, all the examples in [2] concern the Abelian groups where a
correspondence condition written in the form

g=§ and T =T (1)

plays a central role. Although the above relation can be intuitively un-
derstood, strictly speaking it is incorrect because the operators in question
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act in different spaces. In the following we show some implications of the
condition (1) but rewritten in a formally correct way.

The symmetry group G X G may contain several subgroups. In what
follows we restrict our considerations to operators 7 that generate such a
‘physical’ symmetry-subgroup G C G x G. The intuitive relation in Eq. (1)
can be made more precise by requiring that

G3T(9.9)=T(9) T (§) =Ijn g- (2)

This condition can be realized mathematically if the operators T (§) are
taken to be ‘conjugate’, as opposed to ‘usual’, representations (cf. Ref. [4]
and also below). In other words: Eq. (2) expresses the fact that representa-
tions T (g, §) acting in the redundant variable space K ® K are scalar. The
above relation may be given the following geometrical interpretation: an
action of an intrinsic-space operator in K represents the same as the action
of the corresponding collective-space operator in . The symbol ‘tilde’ in
g stresses the fact that the second argument of T (g, g) corresponds to the
same symmetry operation as g but acting in the collective space. For one
dimensional irreducible representations such a condition may lead to unique
relations among symmetry quantum numbers of the intrinsic and collective
spaces. Some examples of such relations are shown in Eqgs (20)-(21) below,
some others in [2]. However, the multidimensional representations require
some special care and will be discussed below.

To proceed we will need to specify the action of the symmetry operators
T(g) and T'(¢) in the corresponding vector spaces more precisely. We will
denote the intrinsic wave functions by @. The basis of irreducible repre-
sentations in the intrinsic space will be denoted by |®(I';vy;a)), where I’
labels the irreducible representations, v is a set of quantum numbers dis-
tinguishing among physically different but mathematically equivalent repre-
sentations (therefore v stands for all the quantum numbers that distinguish
physical properties not related to the group structure) and a denotes all the
quantum numbers required for unique labeling of the vectors that span the
irreducible representation space. Similarly, the corresponding basis in the
collective space will be denoted by | ¥ (I';vy;a)).

Let us introduce the matrices of the irreducible representations, A (g),
and their transpose-inverse matrices A (g):

A () = {[aV (@)} = [P (g )T 3)

The matrices A7) (g) themselves provide irreducible representations of the
group G called adjoint or sometimes, what is a better idea from the physics
context point of view, inverse representation. Using this notation it can be
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shown that the required action of the intrinsic symmetry-operator can be
written as

T(9) |o(Timia)) = S {1AT}  (g)|0(T55a)

aa’

= > a0)(g) |9(Tiya)). (4)

and the action of the collective symmetry-operator T(g) as
T(g) |¥(T;7;a ZA (I;7;a")). (5)

As stated already, condition (2) expresses the fact that the physically ac-
ceptable irreducible representations of G are scalar. One can demonstrate,
Ref. [5], that the corresponding representations can be obtained by projec-
tion using projection operator:

dim(T")

Pr=——=
r card(G)

> @] T(9,9), (6)

9eG

where dim(I") denotes the dimension of the irreducible representation I,
card(G) denotes the number of group elements in the considered point group
and x(7)(g) is the character of the element g corresponding to the irreducible
representation I'. For the case of a scalar representation one obtains the
following result:

- )
Py |®(I'1;v1501) U (15725 a2)) = 13111121 ;,1@ Z|¢ (I'y;y150") U (L5993 a")).
al
(7)

Let us observe that any non zero state-vector (7) is independent of any
particular choice of quantum numbers a; and a9, since no term on the right-
hand side of this equation depends on them. We can further simplify the
notation and rewrite Eq. (7) as

1
Iy = — S(;71;0) V(v a)). 8
T3 713 772) dim[FD%:l (I's7150) U(I 725 0)) (8)

This is an orthonormal basis in the subspace in which the required relation
(2) is automatically fulfilled; it spans a subspace of K ® K, adapted to the
future use of property (2). All vectors |¥) that are associated with |®)
within the redundant-variable method, in order to fulfill (2), must belong to
the constructed subspace and consequently they can be decomposed using



Symmetries of Nuclear Hamiltonians with . .. 2127

the basis in Eq. (8); each of the ¢ and ¥ wave-functions (states) belongs to
an irreducible representation I' of the symmetry group.

Comparing to the phenomenological construction of Ref. [2] where the
wave functions take always the form of [@x D1, &= ®_x DI, ;] one observes
a structural difference: in general none of the terms in the square brackets
belongs to any irreducible representation basis of the symmetry group.

Within the subspace of the considered direct-product space we have again
only non-degenerate spectra owing to the construction of the scalar irre-
ducible representations, despite the fact that they were constructed out of
double degenerate intrinsic and collective energies.

3. Energy spectra and symmetry considerations

Let us consider a nuclear Hamiltonian that can be written down as
H = Hintr + Hrot . (9)

Hamiltonians of this form have been widely used in the literature; at the
same time they have the mathematical structure that is already appropriate
to present our symmetry considerations. ~

Let G be the symmetry group of Hiy, (similarly G the symmetry group
of Hyot). Let I' denote the related s-dimensional irreducible representations,
i.e. vectors that span the corresponding irreducible representation spaces
can be enumerated with ¢ = 1,2,... s, for both G and G. We can always
represent the solutions to the Schrédinger equations in the two spaces as:

Hinge |8(I57150)) = Einge(D571) |8(1571;a)) (10)

and
Hiot] (I';y2;0)) = Erot(I592) | ¥ (57925 a)). (11)

In such a case, as demonstrated in quantum mechanics courses, each eigen-
energy is common to all ¢ = 1,2, ... s eigen-vectors. In other words,
eigen-energies are independent of quantum number a and the corresponding
solutions are s-fold degenerate. States (8) constructed out of solutions (10)
and (11) are also eigen-states of H and we have:

H [I'y172) = [Bintr(I571) + Eeon(I572)] [T y172) - (12)

Glancing at relation (12) one may think that the corresponding solutions
are multi-fold (here: s x s) degenerate as discussed in the standard quantum
mechanics courses in the similar-looking context (cf. e.g. Ref. [7]). However,
although constructed out of degenerate eigen-energy sets they cannot be
treated as degenerate because in order to become acceptable as the physical
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ones they must belong to the scalar representations as required by condition
(1), or more formally by (2). One can thus conclude that condition (1)
proposed in [2] always leads to a non-degenerate eigen-value problem.

To illustrate this problem let us consider two examples: an Abelian
symmetry group Do, well known from the studies of the tri-axial quantum
rotor and a D3 non-Abelian symmetry group. In the following we limit
ourselves to the case of even—even nuclei.

3.1. Abelian groups: example of the Dy-symmetry

Let us begin with an example of the Dy-symmetry. The corresponding
group is composed of 4 elements: three rotations through the angles of 7
about three mutually perpendicular axes that can be chosen as O, O, and
O, and the identity transformation. The rotation operators are denoted
Cz, Cyy and Cy,, where by definition Cj, implies a rotation about an
axis « through the angle 2w /n. Group Ds being Abelian, all its irreducible
representations are one-dimensional and, moreover, any group-element forms
an equivalence class of its own. Since the number of equivalence-classes
equals that of the irreducible representations it follows that Do has 4 one-
dimensional irreducible representations.

Let us first consider the solutions to the collective rotation Hamiltonian.
On the one hand it is well known that these solutions can be directly rep-
resented by the Wigner functions D]IV[K. On the other hand we would like
these solutions to transform as irreducible representations of the Do-group.
Since the latter are one-dimensional, it follows that under the action of any
of the group elements they must transform onto themselves, possibly up to a
phase. It can be verified using the transformation properties of D& 5 under
180°-rotations that the sought irreducible representation basis vectors are
either [D{, . + D1, ] or [DL, ;- — DI, ] (as usual we consider K > 0).
Thus it will always be possible to use the éorresponding combinations so that
the solutions in question can be considered as basis vectors of the irreducible
representations I' of the symmetry group and we can write

Hyot |9(T;y;0)) = EL] | 0(I5750)) - (13)

In the present case, index a enumerating basis vectors of a given irreducible
representation may take only one value and can be omitted.

It is of advantage to be able to label the irreducible representation basis
vectors with quantum numbers invariant under the action of all the group
elements. One may often obtain such a convenient labeling by considering
first a subgroup of a group in question and constructing the basis-states
and the corresponding labeling for the subgroup. Here we chose a subgroup
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composed of Cy, and of the identity. The latter has two irreducible one-
dimensional representations only. They can be labeled with the help of the
eigen-values i, of the Cy, operator. Since (Cg;)? = 1 we have p, = £1.

To obtain a second label let us observe that the operator of the third
component of the angular momentum on the body-fixed O, axis, I,, when
acting on the Wigner functions gives K as an eigen-value. Since for inte-
ger K we also have (—1)% = (=1)0%) it follows that [D]IV[,K + D]IV[,_K]
and [D]I\/[, K= D]IV[,_ x| are eigen-vectors of (—1)’* and we obviously have
Co. (=1)= €I, = (=1)"=. Since in addition Cy, (1) €I = (=1)* and
Cyy (—1)' C;'y = (=1)!s we conclude that the expression (—1)¥ is invari-
ant under all the group operations and can serve as another label of the
irreducible representation basis vectors. Furthermore, since Cs, can always
be expressed in terms of products of the other two operations in D9 there
are no other independent quantum numbers possible and consequently the
irreducible representations can be labeled by I' = {pg, (—1)%}.

In the case of the Wigner wave-function basis all equivalent representa-
tions are labeled with v = {I, M}. One can then show that in order to
construct all the possible basis vectors taking into account I = 0,1,2, ...
in the form ¢ = DI . + ﬂD]I\/IﬁK we have to set f = puz * (—1)! and it
follows that one can introduce a Dg specific notation |¥(I';y;a = 1)) —
U({pz, K};{I, M}) in the form

P (e, K} AT, MY) = N (LK) [(Dhr )+ ia(=1)" (Dhe i) ] (19)

where standard normalization factor N'(I,K) = /(21 +1)/[2(1 + dko)]-
Elementary calculations involving only the transformation properties of the
D]IW i functions give:

Cox V({ppa; K} {1, M}) = po O({pa, K};{I,M}), (15)
Cor U({pe, K}:{I,M}) = (-1)F 0 ({pe, K};{I, M}). (16)

Recall that our ultimate goal is to express the general relation (2) by
using the irreducible representation bases constructed according to Eq. (8).
However, in realistic calculations it may in general neither be possible nor
convenient to re-introduce the quantum numbers u, and K in the case of the
intrinsic Hamiltonian and other, ‘practical’, means will be needed to find the
adequacy between ¥ ({yuy, K};{I, M}) and the intrinsic Hamiltonian eigen-
functions @. For that purpose it will be instructive to compare the actions of
the operators C, and Cy, (similarly, C, and Cy, and Cy, and Cs;) on the
wave functions in their respective spaces. The case of the collective-variables
has been treated above. Since one of the three rotation operators of the Do
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group can be expressed as a product of the other two it will be sufficient to
consider two of those only. Since furthermore Dy is an Abelian symmetry
group the corresponding operators commute among themselves and with the
Hamiltonian, and we may always find a representation such that

Hine |9(T''5v"50)) = B | 9(T 57 0)) (17)

(index a may take only one value and as before will be omitted) and simul-
taneously

Cor O(I''svy") = vu(I'sy") ®(I'"57), (18)
Cor ®(I''sy") = v (I'"5y") ®(I''5v"), (19)

where the eigen-values v, (I'';v') = +1 and v,(I"'';y') = %1, since as we
know (C;)2 =1 and (Cy,) 2 = 1.

An adequacy (at this stage unknown) between parameter I’ and the
irreducible representation index I' = {us, (—1)%} can be established by
requiring that I'' = I if

ve(I''sy") = pa s (20)
vo(I'';y") = (-DF, (21)

[cf. Egs (16) and (16)]. The above condition provides missing information
necessary to construct the physical wave functions with the redundant vari-
able approach since from now on the correspondence between &(I';vy;a)
and 9(I';y2;a) in Eq. (8) and the wave functions in Egs (14) and (17),
respectively, is one-to-one.

The illustrated here Do case may serve as an example for other Abelian
symmetry groups.

3.2. Non-Abelian groups: example of the Ds-symmetry

Let us consider an even—even nucleus and assume that its Hamiltonian
is invariant with respect to symmetry group Ds. It is a non-Abelian group
containing one three-fold and three (perpendicular to the latter) two-fold
symmetry axes among its associated symmetry elements. It has two non-
equivalent one-dimensional irreducible representations and one two-dimen-
sional irreducible representation, c¢f. e.g. Ref. [6]. The one-dimensional
irreducible representations can be treated as in the example above so that
below we focus on the two-dimensional irreducible representations.

A detailed presentation of a construction of the bases of the Ds-group
irreducible representations that are of interest in the present context goes
beyond the scope of this paper, and here we only sketch the final results.
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It will be convenient to introduce two auxiliary expressions

+) [ 1,if p+K=0,+3,%6, ...
AN’K _{ 0 otherwise (22)

and
AP):{l,ﬂu—K:Qi&i&

0 otherwise (23)

where we set 4 = 0,41, and define, for the one-dimensional irreducible
representations, the functions

U(I37) = N (A (DL )" + ue(-D)TAC (DY )], (24)

where
[ 2T +1
I = R —
N%K =\ 20+ ox0) (25)

and for the two-dimensional ones

V(T3 @) = Nj i [AR (Dhy ) +a (=) AR (DY 1)) (26)
where index a enumerates the basis states and may take, by definition, the
values a = —1 and a = +1. (The meaning of index I' will be specified
below.)

One can show that the irreducible representations of the D3-group that
are constructed with the help of the Wigner functions can be parametrized
using two integer indices p and p, with 4 = 0,£1 and p, = £1. These
same indices can also be used to label the irreducible representations of
D3. More precisely: it is possible to demonstrate that the two indepen-
dent one-dimensional irreducible representations correspond to p = 0 and
are distinguished with p, = +1 or pu, = —1 [the corresponding labels are
I' ={|p|,pz} = I' ={1,41} or I = {1,—1}, ¢f. Egs (22)-(24)| while for
the two-dimensional irreducible representation we have y = %1 [the corre-
sponding single label I' = {|u|,—} — I' = {1, -}, ¢f. Eq. (26)].

Furthermore, one can show that the structure of the basis states in ques-
tion depends on K in the following way. In the case of the one-dimensional
irreducible representations we must have K = 0, £3,+6, ... (i.e. K remains
a multiple of 3). If K = 0 we have additionally the condition that I is even
when p; = +1 and I is odd when p,; = —1. For K # 0 all (I > |K|)-values
are allowed for both pu; = +1 and p, = —1.

In the case of two-dimensional irreducible representations we have K =
41,42, £4,45, £7,4£8, ..., i.e. all integers not divisible by 3 are allowed
[the above rules have been incorporated in the definitions in Egs (22) and

(23)].



2132 A. Go7p7, J. DUDEK, M. MISKIEWICZ

In the following we focus on the two-dimensional irreducible represen-
tations. It remains to construct the relations analogous to Eqs (17)—(21)
that as before would allow establishing an adequacy between the basis vec-
tors in the intrinsic and collective spaces so that Eq. (8) can be applied.
For that purpose it will be convenient to use the basis states in the in-
trinsic space that can be labeled by the total angular momentum I, its
projection K on the intrinsic ‘third’ axis and by some additional quan-
tum numbers, say, v: |y; IK). Then each of the two vectors that span
two-dimensional irreducible representation bases can be written as a linear
combination of those states involving K = ..., —5,—-2,1,4,... for one of
them and K = ..., —4,—-1,2,5,..., for the other, ¢f. the rules established
above. Since in the case of the D3 symmetry-group Cs, and the intrinsic
Hamiltonian must commute we may always find the solutions ¢ common to
both of them

Hinee | (57" 0)) = By |2(1' 375 ) (27)

intr

and A _
Cs, ®(I'';y' a) =e DBy a), (28)

where in this case the unique label I'’ = {1, —} according to the notation
introduced above and where as before ¢ = £1. Quantum number a de-
fines the eigenvalues that can be interpreted as D3 ‘signature’, analogous to
‘signature’ quantum number introduced usually in relation to Dg symmetry
group of a triaxial nucleus.

It is straightforward to show that the collective wave-functions of Eq. (26)
are eigenfunctions of the (s, operator to the same eigenvalues as those in
Eq. (28). Consequently the adequacy between the basis vectors in the in-
trinsic and collective spaces needed to apply Eq. (8) can again be established
by equating the corresponding eigenvalues (c¢f. discussion towards the end
of the preceding section).

4. Summary

A reformulation, Eq. (2), of the condition proposed in [2] allows to find
the basis in a subspace of the full redundant-variable space K ® K in which
Eq. (2) is automatically fulfilled. For multidimensional representations of the
symmetry group this condition leads to a coupling, Egs (8), among the col-
lective and intrinsic basis states involving sums over the additional quantum
numbers required for unique labeling of the basis states of the corresponding
multidimensional irreducible representations. This space consists of only the
non-degenerate eigenstates of the total Hamiltonian.

The formulation discussed here, based on the group-theoretical struc-
tures, offers several mathematical advantages (precision, simplifications in
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the large scale calculations and algorithms) as well as the physical ones, in
particular, allowing to work directly with the conserved quantum numbers
and exploiting directly the new symmetries. A discussion of some particu-
larly intriguing ones can be found in these proceedings, Ref. [8].

Condition (2) can be generalized to include also non scalar representa-

tions as they may also be given valid physical interpretation. These repre-
sentations are required to get a full spectrum of nuclear Hamiltonian, but
the related approach needs further investigation.
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