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s, M. Curie-Skªodowska Universitypl. M. Curie-Skªodowskiej 1, 20-031 Lublin, PolandbInstitut de Re
her
hes Subatomiques, IN2P3-CNRS/Université Louis Pasteur67037 Strasbourg Cedex 2, Fran
e(Re
eived January 31, 2003)The problem of symmetries within the redundant-variable method isrevisited. Using physi
al 
onditions similar to those suggested by Bohrand Mottelson an appropriate symmetry subspa
e of the full spa
e of theredundant-variable Hamiltonian has been 
onstru
ted. Su
h a 
onstru
tionis a prerequisite 
ondition for entering into any realisti
 
al
ulation s
heme.PACS numbers: 21.10.�k, 21.60.�n, 21.60.Fw1. Introdu
tionIt is well known that no general method exists whi
h allows to solve thenu
lear many-body problem exa
tly. A 
lass of approximate methods 
an be
onstru
ted by dividing the whole set of nu
lear degrees of freedom into twosub-sets. The �rst one usually des
ribes the single-parti
le, and the se
ondone � the 
olle
tive properties of the motion. In prin
iple one 
an try to
onstru
t dire
tly the `
olle
tive' variables out of those that 
hara
terize thenu
leoni
 degrees of freedom, however, the general solution of this di�
ultproblem has never been obtained, 
f. e.g. [1℄.An alternative approa
h employs the so-
alled redundant variables. Su
han approa
h has been used by many authors and an extensive presentationof the nu
lear physi
s appli
ations 
an be found in [2℄ and [1℄. In this 
asethe 
on�guration spa
e of the system is enlarged by introdu
ing, in addi-tion to the 6A single-nu
leoni
 degrees of freedom, a number of `
olle
tive'ones. Thus the ensemble of the variables used in this 
ase must 
ontainsome redundant ones sin
e the number of all the degrees of freedom must� Presented at the XXXVII Zakopane S
hool of Physi
s �Trends in Nu
lear Physi
s�,Zakopane, Poland, September 3�10, 2002.(2123)
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znot ex
eed 6A. The presen
e of redundant variables usually introdu
es somespurious solutions. To remove them, one needs to bring-in some extra 
on-straints and this 
ompli
ates the mathemati
al formulation of the problemthat 
an be treated expli
itly only in very simple 
ases like e.g. that of thetranslational motion. Even for rotational ex
itations one 
an formulate thispro
edure only approximately. The problem is still opened but despite that,using methods of redundant variables in one of their approximate realiza-tions remains in pra
ti
e a sour
e of numerous su

essful model-approa
hes.Another problem with the redundant variable method is to relate truesymmetries of the system to those that 
an be des
ribed in a mathemati-
ally 
orre
t manner in an enlarged spa
e. A solution to this problem hasbeen proposed in [2℄, but only for some simple Abelian symmetry groups.Re
ently, a possible importan
e of higher, non-Abelian, symmetry groupsin nu
lei has been pointed to [3℄. Here we brie�y des
ribe how to handledis
rete symmetries within a redundant-variable approa
h for the 
ase ofnon-Abelian symmetry groups expe
ted to play an important role in theadvan
ed nu
lear physi
s appli
ations.2. Symmetry groups and enlarged 
on�guration spa
esThe spa
e of all the states appearing in the redundant-variable approa
h
an be represented as a tensor produ
t of the intrinsi
, Kintr, and 
olle
tive,K
oll, spa
es: Kintr
K
oll. In the following it will be of advantage to shortenthe notation. We will write Kintr ! K, K
oll ! ~K and Kintr
K
oll ! K
 ~K.Suppose that the original Hamiltonian, the one a
ting in the single-nu
leon spa
e, is invariant under transformations of a 
ertain group G. The
orresponding symmetry group of the redundant-variable Hamiltonian willbe denoted G � ~G; it 
an be realized by the produ
t operators T (g; ~h) =T (g) ~T (~h), where T and ~T a
t in K and ~K, respe
tively. Needless to say, sym-bols G and ~G represent the same symmetry group in two di�erent physi
alrealizations; in T (g; ~h) the arguments g and ~h may take all possible valuesindependently of one another.In Ref. [2℄ there is a series of examples showing how one 
an 
onstru
trelations between T (g) and ~T (~g) operators to represent the same symme-try of the physi
al system in the 
orresponding subspa
es. Here, g and ~grepresent the same symmetry operation but belonging to G and ~G, respe
-tively. However, all the examples in [2℄ 
on
ern the Abelian groups where a
orresponden
e 
ondition written in the formg = ~g and T = ~T (1)plays a 
entral role. Although the above relation 
an be intuitively un-derstood, stri
tly speaking it is in
orre
t be
ause the operators in question
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t in di�erent spa
es. In the following we show some impli
ations of the
ondition (1) but rewritten in a formally 
orre
t way.The symmetry group G � ~G may 
ontain several subgroups. In whatfollows we restri
t our 
onsiderations to operators T that generate su
h a`physi
al' symmetry-subgroup G � G� ~G. The intuitive relation in Eq. (1)
an be made more pre
ise by requiring thatG 3 T (g; ~g) = T (g) ~T (~g) = I[in G℄: (2)This 
ondition 
an be realized mathemati
ally if the operators ~T (~g) aretaken to be `
onjugate', as opposed to `usual', representations (
f. Ref. [4℄and also below). In other words: Eq. (2) expresses the fa
t that representa-tions T (g; ~g) a
ting in the redundant variable spa
e K 
 ~K are s
alar. Theabove relation may be given the following geometri
al interpretation: ana
tion of an intrinsi
-spa
e operator in K represents the same as the a
tionof the 
orresponding 
olle
tive-spa
e operator in ~K. The symbol `tilde' in~g stresses the fa
t that the se
ond argument of T (g; ~g) 
orresponds to thesame symmetry operation as g but a
ting in the 
olle
tive spa
e. For onedimensional irredu
ible representations su
h a 
ondition may lead to uniquerelations among symmetry quantum numbers of the intrinsi
 and 
olle
tivespa
es. Some examples of su
h relations are shown in Eqs (20)�(21) below,some others in [2℄. However, the multidimensional representations requiresome spe
ial 
are and will be dis
ussed below.To pro
eed we will need to spe
ify the a
tion of the symmetry operatorsT (g) and ~T (~g) in the 
orresponding ve
tor spa
es more pre
isely. We willdenote the intrinsi
 wave fun
tions by �. The basis of irredu
ible repre-sentations in the intrinsi
 spa
e will be denoted by j�(� ; 
; a)i, where �labels the irredu
ible representations, 
 is a set of quantum numbers dis-tinguishing among physi
ally di�erent but mathemati
ally equivalent repre-sentations (therefore 
 stands for all the quantum numbers that distinguishphysi
al properties not related to the group stru
ture) and a denotes all thequantum numbers required for unique labeling of the ve
tors that span theirredu
ible representation spa
e. Similarly, the 
orresponding basis in the
olle
tive spa
e will be denoted by j	(� ; 
; a)i.Let us introdu
e the matri
es of the irredu
ible representations, �(� )(g),and their transpose-inverse matri
es ��(� )(g):��(� )(g) = n[�(� )(g)℄To�1 = [�(� )(g�1)℄T : (3)The matri
es ��(� )(g) themselves provide irredu
ible representations of thegroup G 
alled adjoint or sometimes, what is a better idea from the physi
s
ontext point of view, inverse representation. Using this notation it 
an be
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zshown that the required a
tion of the intrinsi
 symmetry-operator 
an bewritten asT (g) j�(� ; 
; a)i = Xa0 n[�(� )℄�1oaa0 (g) j�(� ; 
; a0)i= Xa0 ��(� )a0a (g) j�(� ; 
; a0)i ; (4)and the a
tion of the 
olle
tive symmetry-operator ~T (~g) as~T (~g) j	(� ; 
; a)i =Xa0 �(� )a0a (~g) j	(� ; 
; a0)i: (5)As stated already, 
ondition (2) expresses the fa
t that the physi
ally a
-
eptable irredu
ible representations of G are s
alar. One 
an demonstrate,Ref. [5℄, that the 
orresponding representations 
an be obtained by proje
-tion using proje
tion operator:P̂ � = dim(� )
ard(G) Xg2G ��(� )(g)�? T (g; ~g) ; (6)where dim(� ) denotes the dimension of the irredu
ible representation � ,
ard(G) denotes the number of group elements in the 
onsidered point groupand �(� )(g) is the 
hara
ter of the element g 
orresponding to the irredu
iblerepresentation � . For the 
ase of a s
alar representation one obtains thefollowing result:P̂ 0 j�(�1; 
1; a1)	(�2; 
2; a2)i = Æ�1 �2Æa1 a2dim[�1℄ Xa0 j�(�1; 
1; a0)	(�1; 
2; a0)i:(7)Let us observe that any non zero state-ve
tor (7) is independent of anyparti
ular 
hoi
e of quantum numbers a1 and a2, sin
e no term on the right-hand side of this equation depends on them. We 
an further simplify thenotation and rewrite Eq. (7) asj� ; 
1; 
2i = 1pdim[� ℄) Xa j�(� ; 
1; a)	(� ; 
2; a)i: (8)This is an orthonormal basis in the subspa
e in whi
h the required relation(2) is automati
ally ful�lled; it spans a subspa
e of K 
 ~K, adapted to thefuture use of property (2). All ve
tors j	i that are asso
iated with j�iwithin the redundant-variable method, in order to ful�ll (2), must belong tothe 
onstru
ted subspa
e and 
onsequently they 
an be de
omposed using
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h of the � and 	 wave-fun
tions (states) belongs toan irredu
ible representation � of the symmetry group.Comparing to the phenomenologi
al 
onstru
tion of Ref. [2℄ where thewave fun
tions take always the form of [�KDIM;K���KDIM;�K ℄ one observesa stru
tural di�eren
e: in general none of the terms in the square bra
ketsbelongs to any irredu
ible representation basis of the symmetry group.Within the subspa
e of the 
onsidered dire
t-produ
t spa
e we have againonly non-degenerate spe
tra owing to the 
onstru
tion of the s
alar irre-du
ible representations, despite the fa
t that they were 
onstru
ted out ofdouble degenerate intrinsi
 and 
olle
tive energies.3. Energy spe
tra and symmetry 
onsiderationsLet us 
onsider a nu
lear Hamiltonian that 
an be written down asH = Hintr +Hrot : (9)Hamiltonians of this form have been widely used in the literature; at thesame time they have the mathemati
al stru
ture that is already appropriateto present our symmetry 
onsiderations.Let G be the symmetry group of Hintr (similarly ~G the symmetry groupof Hrot). Let � denote the related s-dimensional irredu
ible representations,i.e. ve
tors that span the 
orresponding irredu
ible representation spa
es
an be enumerated with a = 1; 2; : : : s, for both G and ~G. We 
an alwaysrepresent the solutions to the S
hrödinger equations in the two spa
es as:Hintr j�(� ; 
1; a)i = Eintr(� ; 
1) j�(� ; 
1; a)i (10)and Hrotj 	(� ; 
2; a)i = Erot(� ; 
2) j	(� ; 
2; a)i: (11)In su
h a 
ase, as demonstrated in quantum me
hani
s 
ourses, ea
h eigen-energy is 
ommon to all a = 1; 2; : : : s eigen-ve
tors. In other words,eigen-energies are independent of quantum number a and the 
orrespondingsolutions are s-fold degenerate. States (8) 
onstru
ted out of solutions (10)and (11) are also eigen-states of H and we have:H j�
1
2i = [Eintr(� ; 
1) +E
oll(� ; 
2)℄ j�
1
2i : (12)Glan
ing at relation (12) one may think that the 
orresponding solutionsare multi-fold (here: s�s) degenerate as dis
ussed in the standard quantumme
hani
s 
ourses in the similar-looking 
ontext (
f. e.g. Ref. [7℄). However,although 
onstru
ted out of degenerate eigen-energy sets they 
annot betreated as degenerate be
ause in order to be
ome a

eptable as the physi
al
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zones they must belong to the s
alar representations as required by 
ondition(1), or more formally by (2). One 
an thus 
on
lude that 
ondition (1)proposed in [2℄ always leads to a non-degenerate eigen-value problem.To illustrate this problem let us 
onsider two examples: an Abeliansymmetry group D2, well known from the studies of the tri-axial quantumrotor and a D3 non-Abelian symmetry group. In the following we limitourselves to the 
ase of even�even nu
lei.3.1. Abelian groups: example of the D2-symmetryLet us begin with an example of the D2-symmetry. The 
orrespondinggroup is 
omposed of 4 elements: three rotations through the angles of �about three mutually perpendi
ular axes that 
an be 
hosen as Ox, Oy andOz and the identity transformation. The rotation operators are denotedC2x, C2y and C2z, where by de�nition Cn� implies a rotation about anaxis � through the angle 2�=n. Group D2 being Abelian, all its irredu
iblerepresentations are one-dimensional and, moreover, any group-element formsan equivalen
e 
lass of its own. Sin
e the number of equivalen
e-
lassesequals that of the irredu
ible representations it follows that D2 has 4 one-dimensional irredu
ible representations.Let us �rst 
onsider the solutions to the 
olle
tive rotation Hamiltonian.On the one hand it is well known that these solutions 
an be dire
tly rep-resented by the Wigner fun
tions DIMK . On the other hand we would likethese solutions to transform as irredu
ible representations of the D2-group.Sin
e the latter are one-dimensional, it follows that under the a
tion of anyof the group elements they must transform onto themselves, possibly up to aphase. It 
an be veri�ed using the transformation properties of DIMK under180Æ-rotations that the sought irredu
ible representation basis ve
tors areeither [DIM;K +DIM;�K ℄ or [DIM;K �DIM;�K ℄ (as usual we 
onsider K � 0).Thus it will always be possible to use the 
orresponding 
ombinations so thatthe solutions in question 
an be 
onsidered as basis ve
tors of the irredu
iblerepresentations � of the symmetry group and we 
an writeHrot j	(� ; 
; a)i = E�
rot j	(� ; 
; a)i : (13)In the present 
ase, index a enumerating basis ve
tors of a given irredu
iblerepresentation may take only one value and 
an be omitted.It is of advantage to be able to label the irredu
ible representation basisve
tors with quantum numbers invariant under the a
tion of all the groupelements. One may often obtain su
h a 
onvenient labeling by 
onsidering�rst a subgroup of a group in question and 
onstru
ting the basis-statesand the 
orresponding labeling for the subgroup. Here we 
hose a subgroup
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omposed of C2x and of the identity. The latter has two irredu
ible one-dimensional representations only. They 
an be labeled with the help of theeigen-values �x of the C2x operator. Sin
e (C2x)2 = 1 we have �x = �1.To obtain a se
ond label let us observe that the operator of the third
omponent of the angular momentum on the body-�xed Oz axis, Îz, whena
ting on the Wigner fun
tions gives K as an eigen-value. Sin
e for inte-ger K we also have (�1)K = (�1)(�K) it follows that [DIM;K + DIM;�K ℄and [DIM;K � DIM;�K ℄ are eigen-ve
tors of (�1)Îz and we obviously haveC2z (�1)Îz Cy2z = (�1)Îz . Sin
e in addition C2x (�1)Îz Cy2x = (�1)Îz andC2y (�1)Îz Cy2y = (�1)Îz we 
on
lude that the expression (�1)K is invari-ant under all the group operations and 
an serve as another label of theirredu
ible representation basis ve
tors. Furthermore, sin
e C2y 
an alwaysbe expressed in terms of produ
ts of the other two operations in D2 thereare no other independent quantum numbers possible and 
onsequently theirredu
ible representations 
an be labeled by � � f�x; (�1)Kg.In the 
ase of the Wigner wave-fun
tion basis all equivalent representa-tions are labeled with 
 � fI;Mg. One 
an then show that in order to
onstru
t all the possible basis ve
tors taking into a

ount I = 0; 1; 2; : : :in the form  = DIMK + �DIM;�K we have to set � = �x � (�1)I and itfollows that one 
an introdu
e a D2 spe
i�
 notation j	(� ; 
; a = 1)i !	(f�x;Kg; fI;Mg) in the form	(f�x;Kg; fI;Mg) = N (I;K) h�DIM;K�? + �x(�1)I �DIM;�K�?i ; (14)where standard normalization fa
tor N (I;K) = p(2I + 1)=[2(1 + ÆK0)℄.Elementary 
al
ulations involving only the transformation properties of theDIMK fun
tions give:C2x 	(f�x;Kg; fI;Mg) = �x 	(f�x;Kg; fI;Mg) ; (15)C2z 	(f�x;Kg; fI;Mg) = (�1)K 	(f�x;Kg; fI;Mg) : (16)Re
all that our ultimate goal is to express the general relation (2) byusing the irredu
ible representation bases 
onstru
ted a

ording to Eq. (8).However, in realisti
 
al
ulations it may in general neither be possible nor
onvenient to re-introdu
e the quantum numbers �x and K in the 
ase of theintrinsi
 Hamiltonian and other, `pra
ti
al', means will be needed to �nd theadequa
y between 	(f�x;Kg; fI;Mg) and the intrinsi
 Hamiltonian eigen-fun
tions �. For that purpose it will be instru
tive to 
ompare the a
tions ofthe operators C2x and ~C2x (similarly, C2y and ~C2y and C2z and ~C2z) on thewave fun
tions in their respe
tive spa
es. The 
ase of the 
olle
tive-variableshas been treated above. Sin
e one of the three rotation operators of the D2
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zgroup 
an be expressed as a produ
t of the other two it will be su�
ient to
onsider two of those only. Sin
e furthermore D2 is an Abelian symmetrygroup the 
orresponding operators 
ommute among themselves and with theHamiltonian, and we may always �nd a representation su
h thatHintr j�(� 0; 
 0; a)i = E� 0
 0intr j�(� 0; 
 0; a)i (17)(index a may take only one value and as before will be omitted) and simul-taneously C2x �(� 0; 
 0) = �x(� 0; 
 0) �(� 0; 
 0) ; (18)C2z �(� 0; 
 0) = �z(� 0; 
 0) �(� 0; 
 0) ; (19)where the eigen-values �x(� 0; 
 0) = �1 and �z(� 0; 
 0) = �1, sin
e as weknow (C2x) 2 = 1 and (C2z) 2 = 1.An adequa
y (at this stage unknown) between parameter � 0 and theirredu
ible representation index � = f�x; (�1)Kg 
an be established byrequiring that � 0 = � if �x(� 0; 
 0) = �x ; (20)�z(� 0; 
 0) = (�1)K ; (21)[
f. Eqs (16) and (16)℄. The above 
ondition provides missing informationne
essary to 
onstru
t the physi
al wave fun
tions with the redundant vari-able approa
h sin
e from now on the 
orresponden
e between �(� ; 
1; a)and �(� ; 
2; a) in Eq. (8) and the wave fun
tions in Eqs (14) and (17),respe
tively, is one-to-one.The illustrated here D2 
ase may serve as an example for other Abeliansymmetry groups.3.2. Non-Abelian groups: example of the D3-symmetryLet us 
onsider an even�even nu
leus and assume that its Hamiltonianis invariant with respe
t to symmetry group D3. It is a non-Abelian group
ontaining one three-fold and three (perpendi
ular to the latter) two-foldsymmetry axes among its asso
iated symmetry elements. It has two non-equivalent one-dimensional irredu
ible representations and one two-dimen-sional irredu
ible representation, 
f. e.g. Ref. [6℄. The one-dimensionalirredu
ible representations 
an be treated as in the example above so thatbelow we fo
us on the two-dimensional irredu
ible representations.A detailed presentation of a 
onstru
tion of the bases of the D3-groupirredu
ible representations that are of interest in the present 
ontext goesbeyond the s
ope of this paper, and here we only sket
h the �nal results.
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onvenient to introdu
e two auxiliary expressionsA(+)�;K = � 1; if �+K = 0;�3;�6; : : :0 otherwise (22)and A(�)�;K = � 1; if ��K = 0;�3;�6; : : :0 otherwise (23)where we set � = 0;�1, and de�ne, for the one-dimensional irredu
iblerepresentations, the fun
tions	(� ; 
) = N I�;K [A(+)�;K(DIM;+K)? + �x(�1)IA(�)�;K(DIM;�K)?℄ ; (24)where N I�;K �s 2I + 12 (1 + ÆK0) (25)and for the two-dimensional ones	(� ; 
; a) = N I�;K [A(+)�;K(DIM;+K)? + a (�1)IA(�)�;K(DIM;�K)?℄; (26)where index a enumerates the basis states and may take, by de�nition, thevalues a = �1 and a = +1. (The meaning of index � will be spe
i�edbelow.)One 
an show that the irredu
ible representations of the D3-group thatare 
onstru
ted with the help of the Wigner fun
tions 
an be parametrizedusing two integer indi
es � and �x with � = 0;�1 and �x = �1. Thesesame indi
es 
an also be used to label the irredu
ible representations ofD3. More pre
isely: it is possible to demonstrate that the two indepen-dent one-dimensional irredu
ible representations 
orrespond to � = 0 andare distinguished with �x = +1 or �x = �1 [the 
orresponding labels are� = fj�j; �xg ! � = f1;+1g or � = f1;�1g, 
f. Eqs (22)�(24)℄ while forthe two-dimensional irredu
ible representation we have � = �1 [the 
orre-sponding single label � = fj�j;�g ! � = f1;�g, 
f. Eq. (26)℄.Furthermore, one 
an show that the stru
ture of the basis states in ques-tion depends on K in the following way. In the 
ase of the one-dimensionalirredu
ible representations we must have K = 0;�3;�6; : : : (i.e. K remainsa multiple of 3). If K = 0 we have additionally the 
ondition that I is evenwhen �x = +1 and I is odd when �x = �1. For K 6= 0 all (I � jKj)-valuesare allowed for both �x = +1 and �x = �1.In the 
ase of two-dimensional irredu
ible representations we have K =�1;�2; �4;�5; �7;�8; : : : , i.e. all integers not divisible by 3 are allowed[the above rules have been in
orporated in the de�nitions in Eqs (22) and(23)℄.
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zIn the following we fo
us on the two-dimensional irredu
ible represen-tations. It remains to 
onstru
t the relations analogous to Eqs (17)�(21)that as before would allow establishing an adequa
y between the basis ve
-tors in the intrinsi
 and 
olle
tive spa
es so that Eq. (8) 
an be applied.For that purpose it will be 
onvenient to use the basis states in the in-trinsi
 spa
e that 
an be labeled by the total angular momentum I, itsproje
tion K on the intrinsi
 `third' axis and by some additional quan-tum numbers, say, 
: j
; IKi. Then ea
h of the two ve
tors that spantwo-dimensional irredu
ible representation bases 
an be written as a linear
ombination of those states involving K = : : : ;�5;�2; 1; 4; : : : for one ofthem and K = : : : ;�4;�1; 2; 5; : : : , for the other, 
f. the rules establishedabove. Sin
e in the 
ase of the D3 symmetry-group Ĉ3z and the intrinsi
Hamiltonian must 
ommute we may always �nd the solutions � 
ommon toboth of them Hintr j�(� 0; 
 0; a)i = E� 0
 0intr j�(� 0; 
 0; a)i (27)and Ĉ3z �(� 0; 
 0; a) = e�ia (2�)=3�(� 0; 
 0; a) ; (28)where in this 
ase the unique label � 0 = f1;�g a

ording to the notationintrodu
ed above and where as before a = �1. Quantum number a de-�nes the eigenvalues that 
an be interpreted as D3 `signature', analogous to`signature' quantum number introdu
ed usually in relation to D2 symmetrygroup of a triaxial nu
leus.It is straightforward to show that the 
olle
tive wave-fun
tions of Eq. (26)are eigenfun
tions of the Ĉ3z operator to the same eigenvalues as those inEq. (28). Consequently the adequa
y between the basis ve
tors in the in-trinsi
 and 
olle
tive spa
es needed to apply Eq. (8) 
an again be establishedby equating the 
orresponding eigenvalues (
f. dis
ussion towards the endof the pre
eding se
tion). 4. SummaryA reformulation, Eq. (2), of the 
ondition proposed in [2℄ allows to �ndthe basis in a subspa
e of the full redundant-variable spa
e K
 ~K in whi
hEq. (2) is automati
ally ful�lled. For multidimensional representations of thesymmetry group this 
ondition leads to a 
oupling, Eqs (8), among the 
ol-le
tive and intrinsi
 basis states involving sums over the additional quantumnumbers required for unique labeling of the basis states of the 
orrespondingmultidimensional irredu
ible representations. This spa
e 
onsists of only thenon-degenerate eigenstates of the total Hamiltonian.The formulation dis
ussed here, based on the group-theoreti
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