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We present a mean field quantum calculation of the superfluidity in the
inner crust of neutron stars, taking into account the inhomogeneous char-
acter of the system, in which a lattice of neutron-rich nuclei coexists with
a gas of unbound neutrons. We compare the resulting thermal properties
of the star with those obtained neglecting the nuclear impurities.

PACS numbers: 21.60-n, 26.60.+c, 97.60.Jd

1. Introduction

Neutron stars are frequently referred to as unique laboratories for study-
ing the properties of cold dense matter. Indeed, their radial profile presents
densities ranging from zero to several times the value for standard symmetric
nuclear matter (pg = 0.16 neutron fm~3, corresponding to 2.4 x 10'*g cm™3).
In particular, observations of the thermal (not pulsed) emission from the sur-
face of a neutron star can both give information about the state of matter
inside the star and provide constraints on its global structure. The poten-
tial of this approach is closely related to the growing database of observed
neutron star surface temperatures.

Neutron stars can be schematically described as consisting of four re-
gions: the core (p > p. with p. of the order of nuclear matter density,
typically p. ~ 0.6pg), composed of uniform dense neutron matter; the inner
crust (pg < p < pe with pg = 4 x 10" g cm™3, the neutron drip density)
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made of a Coulomb lattice of neutron-rich nuclei permeated by a gas of
unbound degenerate fermions, namely electrons and neutrons dripped out
of the nuclei; the outer crust (ps < p < pg with ps ~ 108 g cm™?), where
the lattice of nuclei is permeated by relativistic degenerate electrons; and,
extending up to the surface of the star, the skin (0 < p < ps), where the
electrons permeating the nuclear lattice are non-degenerate. The thin skin
has a small heat capacity, so that the surface temperature responds almost
instantaneously to temperature variations at the interface ps.

Recent studies have shown that the high-density core is likely to cool very
rapidly by different neutrino emission processes. Therefore, a temperature
inversion is formed between the core and the crust: heat flows from the
crust to the core. Before the crust’s heat reservoir is consumed, the surface
temperature is of the order of 106 K or more, and the thermal emission
can be observed in the X-ray or UV bands. When the cooling wave reaches
the surface, its temperature plummets abruptly to values below 5 x 10° K,
which are likely to be unobservably low. The diffusion time, that is the time
tw between the formation of the neutron star and the drop of its surface
temperature, is expected to depend on the physical conditions in the core
and along the crust. It has been argued that the details of the cooling
mechanism of the core and the fraction of the core undergoing it have little
effect on the diffusion time, so that t,, can be related to the radius and the
mass of the star, thus constraining its structure and thence the underlying
equation of state of dense matter [1]. However, the relationship one obtains
between t,,, R and M depends in a crucial way on the physical properties
of the crust, namely its thickness, thermal conductivity and specific heat.

According to calculations performed with various two-body interactions,
neutron matter is expected to be superfluid at the densities relevant for the
inner crust. This can affect the thermal properties of the crust in an im-
portant way, since the specific heat depends exponentially on the pairing
gap. For a quantitative study, one must take into account the spatial inho-
mogeneity inside any given elementary cell of the Coulomb lattice, where a
finite nucleus coexists with the gas of unbound neutrons. This is done in the
present work, where we shall calculate the pairing gap and the specific heat
of the system, performing detailed mean-field quantum calculations which
take the interplay of bound and unbound orbitals into account. We shall
then estimate the cooling times of neutron stars, comparing our results with
those obtained assuming homogeneous neutron matter, that is, neglecting
the presence of the nucleus at the center of the cell.
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2. Pairing gaps in a Wigner—Seitz cell

One of the most detailed studies of the structure of the inner crust of
neutron stars is the Hartree-Fock calculation of Negele and Vautherin [2],
who determined the numbers of protons and neutrons which are energetically
favored at the different densities. Their studies can be taken as a good
starting point to study the superfluidity in the inner crust. Following the
work of Ref. [2], we have subdivided the inner crust in ten zones, which
correspond to different values of the baryon density p, going from the deepest
zone, Nyone = 1, corresponding to p = 1.3 x 10 g em™> (or 0.09 neutron
fm=3), to Nyone=10, corresponding to 4.7x 10" gem ™2 (or 3 x 10~* neutron
fm—3). Associated to each zone, there is a typical value for the radius Rys of
the Wigner—Seitz cell, namely the elementary cell of the Coulomb lattice; the
value of Rywg decreases going from the surface towards the core. In each cell,
part of the neutrons are bound to the nucleus placed at the center of the cell,
while the remaining neutrons occupy orbitals at positive energies and their
wavefunctions extend throughout the cell. The radial wavefunctions ¢,;;(R)
in a given cell are obtained by solving the Schrodinger equation associated
with a spherically symmetric Saxon-Woods potential V (R), parametrized
in such a way as to reproduce the density profiles calculated in Ref. [2]. We
diagonalize the 'Sy component of a two-body interaction in the (generalized)
BCS approximation, in a basis composed of pairs of neutrons coupled to
zero angular momentum and moving in states with n and n’ number of
nodes, taking into account the interplay of bound and unbound orbitals
[1,4]. In this way one obtains the pairing gap A,,;;. We shall present
results obtained with two interactions: an effective potential, namely, the
Gogny force, and a realistic interaction, namely, the Argonne v14 [5]. The
present study should be considered as a first step towards a more complete
investigation, which should take into account also the induced interaction
arising from polarization effects in the medium (cf. e.g. [6]).

It will be convenient to compare our results with those obtained in uni-
form neutron matter, where, for a given density p or a given Fermi momen-
tum kp(p) = (372p)'/3, the pairing gap A™ (k) depends only on momen-
tum. In Fig. 1 we show the gap Ap = A" (k = kp) calculated in neutron
matter, as a function of kg, for the two interactions we have adopted. To be
noted that here and in the following we do not introduce an effective mass
m*, but we use its bare value. This is in keeping with the fact that the
ratio m*/m in neutron matter is close to one at the densities relevant for
the inner crust of neutron stars.
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Fig.1. Pairing gap at the Fermi energy, Ap, calculated in neutron matter as a
function of Fermi momentum, for the Gogny potential (solid line) and the Argonne
potential (dashed line).

We first show some results obtained for a cell (Nyone = 3) lying deep
inside the inner crust, corresponding to a Fermi energy Fr = 13.5 MeV. The
diagonal elements of the state-dependent pairing gap A,n;; calculated with
the two interactions are shown in Fig. 2 as a function of the single-particle
energies, with and without the nucleus at the center of the Wigner—Seitz
cell. Tt is seen that, in the presence of the nucleus, the pairing gap for levels
close to the Fermi energy is lower by a few hundred keV.
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Fig.2. Left: diagonal matrix elements of the state-dependent pairing gap Annij,

calculated using the Gogny interaction, as a function of the single particle energies

with (solid curve) and without (dashed curve) the nucleus at the center of the

Wigner—Seitz cell. The gaps are averaged over an interval of 5 MeV. Right: the

same, for the Argonne interaction.
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This can be understood qualitatively by a local approximation to the
quantum results, given by the following integral over the cell:

Apj / B RY2,,(R) A [kp (R)] (1)

where A"[kr (R)] denotes the gap calculated in neutron matter (cf. Fig. 1)
at a Fermi momentum equal to the local Fermi momentum at the point R in
the cell: kp(R) = e — V(R). The wavefunction of orbitals nij close to the
Fermi energy are distributed rather uniformly throughout the Wigner—Seitz
cell. Inside the nucleus the local Fermi momentum is higher than outside,
so that the contribution of this region to the integral (1) is suppressed, the
effect being stronger with the Argonne interaction than with the Gogny
interaction. Quantitatively, however, one must take into account important
proximity effects, which are present in the quantum calculations [3,4].

For large cells (N,one > 3), the main effect of the nucleus, compared to
the homogeneous case, is the fact that the neutron Fermi energy is lower
in the presence of the nucleus, because part of the neutrons lie in bound
orbitals. This change in Fermi energy is especially important at very low
densities (large values of Nyone )-

The specific heat of the neutrons in the inner crust, Cy,, is one of the
basic quantities which control the thermal behaviour of a neutron star after
the early neutrino emission, which is expected to lower the temperature of
the crust down to about 7' = 0.1 MeV. The specific heat depends exponen-
tially on the pairing gap, i.e. C, o exp(—A/T) [7]. It is shown in Fig. 3
for the various zones of the inner crust. Its overall behaviour reflects the
bell-shape dependence of the pairing gap in neutron matter as a function of
density, or Fermi momentum, shown in Fig. 1. The gap reaches its maximum
around kp ~ 0.9 fm~!, a density which roughly corresponds to N,one = 3,
where the specific heat is minimum (¢f. Fig. 3). Approaching the surface
of the star (for N,one > 3), the specific heat increases, because the Fermi
energy becomes smaller and the pairing gap decreases (in the present cal-
culation the phase transition to a normal system takes place for N,one = 9,
or p="Tx 10" g cm™3). The effect of the nucleus is particularly strong in
the inner regions, essentially because the radius of the Wigner—Seitz cell is
smaller there, and the nucleus occupies a larger fraction of its volume.

3. Calculation of cooling times

The quantity controlling the diffusion of heat is neither the thermal con-
ductivity nor the total specific heat alone, but it is rather their ratio, the
thermal diffusivity D = k/Cy, which appears in the heat equation. In the
case of the inner crust, the thermal conductivity x is mostly due to electrons
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Fig.3. Left: neutron specific heat for the various zones, calculated at T' = 0.1
using the Gogny interaction, with (solid curves) and without (dashed curves) the
nucleus at the center of the associated Wigner—Seitz cells. Right: the same, for the
Argonne interaction.

and therefore it is not affected by the superfluid properties of the neutrons.
We take for x the values reported in [1|. As for the total specific heat of mat-
ter Cy, the contributions from the Coulomb lattice and the nuclear protons
are negligible when compared to those from the neutrons and the electrons.
We thus have Cy = Cy,;, + Cy,, where the neutron contribution is that
obtained before for the Wigner—Seitz cells, while the contribution of the
relativistic degenerate electrons is calculated with the standard expression.
In the inner regions (Nyone < 6), where Cy,, is strongly suppressed by the
superfluidity (cf. Fig. 3), the total specific heat is dominated by Cly,, which
instead is not affected by the details of neutron superfluidity. This masks
the effects due to the presence of the nuclear lattice, obtained in the pre-
ceding section. For the outer regions, instead, Cy, plays a more important
role and the effect of the nuclear lattice on the thermal diffusivity is appre-
ciable, as can be seen from Fig. 4, where we show D for both non-uniform
(with nuclear lattice) and uniform (without nuclei) inner crust matter at
T = 0.1 MeV. For both interactions, the diffusivity is about two orders of
magnitude smaller in the region pg < p < 7pq than in the denser parts of
the inner crust for both non-uniform (solid line) and uniform (dashed line)
neutron matter. Similar results are obtained for temperatures T' = 80 keV
and T' = 120 keV. Note that the cooling time will depend mostly on the low-
density parts of the inner crust, since there the thermal signal will diffuse
very slowly. From numerical simulations, these parts are found to cool very
quickly to temperatures around 7" ~ 0.1 MeV, due to early neutrino pro-
cesses. This explains why we have considered as physically relevant to our
analysis the temperature range around 7' ~ 0.1 MeV. Our first conclusion is
that the bottleneck for the diffusion of heat from the core to the surface is
represented by the low-density regions of the inner crust.
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Fig.4. Thermal diffusivity for inner crust matter calculated at 7" = 0.1 MeV.
The solid line represents the case of non-uniform neutron matter with nuclear
impurities, while the dashed line is the standard uniform neutron matter. The
symbols represent the zones where the calculation has actually been performed.

We shall now estimate the time for heat diffusion along the inner crust,
following an initial rapid cooling of the core. In order to do this, one should
solve the complete heat equation with the proper temperature and density
profiles of the matter encountered by the cooling wave which propagates
across the crust from the cold core out to the surface. Several sophisticated
computer codes have been developed to that goal, but here we only need
a simple yet reasonable estimate in order to assess whether the effect of
nuclear impurities is actually relevant to the observations of neutron stars
or not. We refer to Ref. [3] for details about the random-walk approach
used, and just quote the main results. The diffusion time across an inner

crust of thickness Repyst 18 tair = v(1/D) degmst, where 7y is a numerical

factor of order one, and (1/D),, represents an average value of 1/D (the
thermal “resistance”) over the whole inner crust, from p. down to pq. This
is the quantity affected by the presence of nuclear impurities, while it does
not depend on the EOS of dense matter, i.e. on the thickness of the crust
or the mass and radius of the neutron star. When multiplied by the proper
value of v and by the square of the inner crust thickness, it yields directly
the diffusion time across the crust itself.

In Table I we give results corresponding to the two pairing interactions
and to a range of physically relevant temperatures. In addition to the val-
ues of (1/D),  for non-uniform and uniform neutron matter, we give their
percentage difference; this will also represent the percentage difference in
diffusion times, dtqig = tqig(n.u.)/tqig(u.) — 1, which is the physical quan-
tity we are interested in. From Table I we can draw some important general
conclusions:
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TABLE 1

The values of (1/D),, for non-uniform (n.u.) and uniform (u.) neutron matter.
The columns dtqir are the percentage differences between the non-uniform and
uniform cases, namely dtgig = taig(n.u.)/taie(u.) — 1.

()

(i)

(iii)

T Gogny Argonne
(keV) n.u. u. Otgifr n.u. u. Otaimr
80 0.145 | 0.096 | +51% 0.154 | 0.062 +148%
90 0.155 | 0.141 +10% 0.192 | 0.096 | +100%
100 0.190 0.192 -1% 0.204 0.140 +46%
110 0.226 0.248 9% 0.206 0.192 +7%
120 0.264 | 0.307 -14% 0.250 | 0.252 -1%

the effects of the nuclear lattice on the diffusion times are altogether
quite significant and therefore cannot be neglected. In particular, with
typical cooling times of the order of 10 years [1], our calculations yield
time differences between non-uniform and uniform cases up to several
years, which are well above observational uncertainties and comparable
in magnitude to the cooling times themselves;

as typical for pairing-related phenomena, the results are quite sensitive
to the matter temperature. The general trend is that the percentage
difference in diffusion time dtgiy between non-uniform and uniform
matter is a decreasing function of temperature. Obviously, a detailed
cooling calculation, that goes beyond our simple estimate, is required
in order to evaluate the actual diffusion times in realistic models;

the direction and magnitude of the effect due to the nuclear lattice
depend on the pairing interaction used. The Gogny interaction yields
values for dtgir that go from positive to negative with temperature
increasing in the range 80 < T < 120 keV. The Argonne potential,
instead, yields values for dtgq;p that are mostly positive in the same
temperature range and are significantly larger than their Gogny coun-
terparts.

Therefore, the need for further studies, that pin down the correct nucleon—
nucleon (renormalized) interaction needed to calculate the pairing properties
of the inner crust of neutron stars, appears evident also from the astrophys-
ical point of view.
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