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SELF-CONSISTENT THEORY OF LARGE AMPLITUDE
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We investigate the use of an operatorial basis in a self-consistent theory
of large amplitude collective motion. For the pairing plus quadrupole model
we show that a small set of basis operators is sufficient to approximate the
exact solution of the problem accurately.

PACS numbers: 21.60.—n, 21.60.Jz, 27.70.+q

In nuclear physics the question “what is the correct choice of collective
coordinate in a many-body system” has had quite a few partial answers. In
state of the art constrained HFB calculations one chooses a finite number of
multipole operators as constraints without any regard to self-consistency [1].
The goal of our approach is to determine a collective path self-consistently,
based on knowledge of the Hamiltonian only. We have chosen to use the
pairing+quadrupole Hamiltonian as a test-bed for our method (and practical
approximations). Here this is illustrated for the -soft nucleus *®Fe.

Our formalism, as set out in detail in [2], is based on time-dependent
mean-field theory. The determination of the collective coordinate is by
means of the solution to the local harmonic approach, which consists of
self-consistently solving the force equation and the local RPA equation

Heq = Afgq' 5 Z V?QQ"/‘T’BMISSIfss’ = (FLQ)2 faq s (1)
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where H is the HFB Hamiltonian and f an RPA vector. The matrices B
and V are related to the standard RPA matrices A and B [1], and ¢ (7, s)
are quasi-particle indices. We look for a path consisting of a series of points
where the lowest non-spurious eigenvector of the local RPA equations also
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fulfills the force equation, the first half of Eq. (1). This is done in a double
iterative process where we try to fulfill both Eqs. (1) simultaneously. A
step in the generalised density, Ap, is made in the direction of the local
RPA solution. For each iteration of the local RPA equation we solve the
cranking equation to get get the new generalised density. This is done by a
constrained steepest decent method where the constraints are that the step
length in the collective coordinate is fixed by

AQ = [fold + fnew] Ap (2)

and that Ap does not change the particle number N,.

It has been shown that the RPA equation can be solved to good accu-
racy by assuming that the RPA eigenvectors can be described by a linear
combination of a small number of carefully chosen one-body operators [3],
without breaking self-consistency. Assuming that the RPA eigenvectors can
be approximated as linear combinations of a small set of one-body operators,
F®*) | the approximate RPA vector, f qq'» 18 given by

qu Z cquq, s (3)

where F*) is the expectation value of F(*). To determine the coefficients ¢

the RPA matrices are projected onto the subspace {.7-" } Then the RPA
equation can then be expressed in matrix notation as

F®t BV B FY ¢ = (12)? FOI B FO ¢, (4)

where /{2 is an eigenfrequency of the projected RPA. The rank of the matrix
we need to diagonalise to solve the RPA problem have been reduced from
rank of V' and B, which is equal to the number of 2-quasi-particle degrees
of freedom, to the number of one-body operators chosen.

We apply our method to the pairing + quadrupole Hamiltonian as de-
scribed in [4]. The Hamiltonian can be written as

H= Zekc};ck - > % (PJPT + PTPJ) Z Qo Qani. (5)
k M=-2

T=nN,p —

We rewrite the quadrupole operators as QS} = (Qan £ Q2-1r7) /2 and the
pairing operator as (Py), = (PT :i:PJ) /2. After solving the mean-field

problem within the Hartree-Bogoliubov approximation, the V' and B matrix
of Egs. (1) can be calculated [3]. x and G, are chosen to give realistic
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values of deformation and pair-field and ¢, are calculated using the spherical
modified oscillator. Our model space consists of two major N-shells and we
have followed [4] and multiplied all quadrupole matrix elements with a iso-
spin dependent quenching factor.

The quality of the results achieved by the projection method strongly
depends on the choice of the single particle operator basis [3]. In [3] a set of
state-dependent Hermitian one-body operators of the structure

. F®)(gq'
k) = Z % (aTaT)qq’ + H.c. (6)
qq qq’

was used where Eyy is the 2-quasi-particle energy. The small set of operators
used in [3] gives a good approximation of the 8- and v-vibrations. To do a
large amplitude collective motion calculation it is crucial to also have a good
approximation of the pairing vibrations. To achieve this we have included a
pairing operator active close to the Fermi-surface only. To avoid the problem
of having to chose which states have a non-zero matrix element we simply
divide the standard pairing operator Py by a large power of E,,. If the
suppression factor, Ekq,, is chosen with a large enough k all matrix elements
except the once with E,, closes to zero will become negligible and the result
will not depend on k. The basis set will then be

(), (),

P08 (2) (), (@), (@) e S

where k will be chosen to be 10. With the improved basis all the low lying
vibrational modes are now described with a very high accuracy as can be seen
in Fig. 1. The quality of the projection can also be quantified by calculating
the overlap of the projected and the full RPA vector. The overlap turns
out to be almost 1 which shows that not just the energy but also the wave-
functions are well approximated by the projection method.

We have investigated the large amplitude collective axial motion in *Fe
by using both the full RPA and the projected RPA. The results of the two
methods are almost identical. From Fig. 1 we can see that the quadrupole
moment is approximately proportional to the collective coordinate ) in the
region —2 < @ < 0. At larger and smaller values of @, the deformation
remains almost constant. Instead, the collective coordinates is now depen-
dent on the pairing fields, for large positive () proton pairing and for large
negative () neutron pairing. At ) = 1.1 the proton pair-field collapses to
zero, and our collective path ends. The change from quadrupole to pairing
mode is dominated by an avoided crossing with the lowest pairing-vibration
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Fig. 1. Axial symmetric large amplitude collective motion in 5®Fe. (a) The potential
energy along the collective path. (b) The quadrupole and the hexadecapole mo-
ments. (c) The lowest RPA frequencies. (d) The expectation-values of the pairing
operators. The grey/black curves are the results for the projected /full RPA.

at @ =~ 0.2. After this crossing the quadrupole moment, (@) saturates and
the (P,) starts changing. The potential energy has a local energy maxi-
mum at () =~ —1, which corresponds to a spherical shape, and a shallow
oblate minimum at @ =~ —1.6. The potential around the minimum show
a quadratic behavior which indicates that the harmonic approximation in
RPA is well full-filled for small-amplitude vibration, but obviously fails for
wave functions that have substantial support away from the minimum.

A more extensive exploration of these methods will be presented in future
publications.
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