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INTERACTION STRENGTHS FOR THE FOCK-SPACEFORMULATION OF THE NUCLEAR PAIRINGPROBLEM� ��J. Dudeka, K. Mazureka;b and B. Nerlo-PomorskabaInstitut de Re
her
hes Subatomiques, IN2P3-CNRS/Université Louis PasteurF-67037 Strasbourg Cedex 2, Fran
ebInstitute of Physi
s, University of M. Curie-Skªodowskapl. M. Curie-Skªodowskiej 1, 20-031 Lublin, Poland(Re
eived November 5, 2002)A realisti
 nu
lear mean-�eld Hamiltonian with pairing has been di-agonalized using Fo
k spa
e representation that allows for nearly exa
ttreatment of the problem. Cal
ulations were performed for all the even�even nu
lei with Z 2 (20; 100), whose pairing gaps were possible to extra
tout of the experimental masses. The optimal values of the pairing strength
onstants for the protons and neutrons have been found.PACS numbers: 21.30.Fe, 21.60.�n, 71.10.LiIn the large s
ale mi
ros
opi
 
al
ulations of the nu
lear total-energy sur-fa
es the method of Strutinsky plays an important role allowing for fast andfully automati
 
al
ulations related to the equilibrium deformations, shape
oexisten
e, �ssion probabilities and many other me
hanisms and phenom-ena. In the related formalism the 
al
ulation of shell- and pairing-energiesplays a de
isive role, the latter obtained so far with the help of the Bo-golyubov transformation and the asso
iated Bardeen�Cooper�S
hrie�er ap-proximate method. The new method proposed in Ref. [1℄ allows to obtainthe exa
t (in some 
ases nearly exa
t) solutions of the pairing problem us-ing realisti
 Hamiltonians � in parti
ular those with the state-dependentpairing Hamiltonian. The new method is based on the dire
t solution of� Presented at the XXXVII Zakopane S
hool of Physi
s �Trends in Nu
lear Physi
s�,Zakopane, Poland, September 3�10, 2002.�� This work has been partly supported by the Polish State Committee for S
ienti�
Resear
h under Contra
t No. 2P 03B 115 19 and the 
ollaboration between IN2P3and Polish Laboratories nr. 99-95 (2247)



2248 J. Dudek, M. Mazurek, B. Nerlo-Pomorskathe many-body problem in Fo
k spa
e; it employs te
hniques similar tothose used in the nu
lear shell-model, in
luding the Lan
zos diagonalisations
heme. The Hamiltonian in question has the form:Ĥ = Ĥmf +X�;� G�;� 
y�
y~�
~�
� ; (1)where Ĥmf denotes any mean-�eld Hamiltonian e.g. the one with deformedWoods�Saxon potential and matrix G�;� , in general non-diagonal in itsindi
es, de�nes the state-dependent pairing-Hamiltonian. Owing to threeexa
t symmetries obeyed by Hamiltonians of the above general form, 
f.Ref. [1℄ for details, the 
orresponding matrix written down using a Fo
kspa
e basis 
an be blo
k-diagonalized analyti
ally, thus redu
ing the problemof diagonalisation of huge-size matri
es to mu
h smaller ones that 
an betreated easily with the help of the Lan
zos methods.In this arti
le we report on the results of an introdu
tory large-s
ale testthat 
onsists in �tting the 
oupling 
onstants of the simplest (monopole-pairing) version of pairing Hamiltonian in (1), i.e. G�;� = GÆ�;� . We donot aim at any extension of the method of Ref. [1℄ but rather at supplement-ing it in an important manner: by providing the 
onstants of the Hamilto-nian that allow those interested to apply the nearly exa
t method presentedin [1℄ in the realisti
 
al
ulations of the total nu
lear energies. Pairing 
al
u-lations were performed within Fo
k spa
e de�ned by 24 parti
les pla
ed on24 double-degenerate single-parti
le energy levels in the `pairing window'.The �nal pairing-energy results do not depend very mu
h on su
h a limitingassumption sin
e the in
rease/de
rease in the pairing 
onstant 
ompensatessigni�
antly for an in
rease/de
rease of the basis size. The 
orrespondingfull Hamiltonian-matrix has the size of NHam = 32 247 603 683 100, while thesizes of Hamiltonian-blo
ks, after applying the formalism of Ref. [1℄, are:Ns=0 = 2704 156 in the seniority-zero and Ns=2 = 705 432 in seniority-twoblo
ks. In both 
ases we have applied a basis 
ut-o� redu
ing the sizes of thee�e
tively diagonalized matri
es to N 0s=0 = 27 703 and N 0s=2 = 26 263. Wehave veri�ed by 
omparison with the results of the exa
tly soluble methodof Ri
hardson that the basis 
ut-o� that redu
es the matrix sizes by roughlytwo orders of magnitude introdu
es errors of � 2% only.As in the BCS-pairing studies by other authors, the �t of the G-
onstantsis always relative to the energy-window used; however starting from a su�-
iently stable global �t-parameters one 
an often easily res
ale the G-valuesfor a larger energy window. This aspe
t will not be further dis
ussed here.We have diagonalized the Fo
k-spa
e Hamiltonian-matrix 
orrespondingto (1) and we obtained the ground-state energy (seniority-zero) and thelowest-energy seniority-two states. The di�eren
e between the two energies



Intera
tion Strengths for the Fo
k-Spa
e Formulation of the. . . 2249has been interpreted as 
orresponding approximately to twi
e the `pairinggap', the latter obtained from the mass-di�eren
e expression�(3)n (N) = �N2 (B(N) +B(N + 2)� 2B(N + 1)) ; (2)as dis
ussed re
ently in detail in Ref. [2℄. Above, �N = (�1)N , B(N) are(negative) binding energies of nu
lei, for the �xed Z-number. To obtain theproton `pairing gap' one has to repla
e N with Z and �x the neutron numberN . The resulting proton and neutron pairing gaps for even�even nu
lei areillustrated in Fig. 1, top, in fun
tion of the mass number A; the �(3)-valueswith the experimental errors ex
eeding 250 keV were not taken into a

ount.
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Fig. 1. Experimental �(3)p , protons, frame (A), and �(3)n , neutrons, frame (B), to-gether with the average-�t 
urves of the form �=pA (top). The usually quotedaverage behavior 12=pA [4℄ is also illustrated. Frames (C) to (F) represent theresults of the pairing 
onstant-G �tting pro
edure (see the text and Table I). Ex-perimental masses are from Ref. [6℄.The best average �t in terms of the �=pA one-parameter dependen
efor all the nu
lei is �(3)n = 10:85=pA and �(3)p = 10:02=pA (solid linesin Fig. 1, top). The �tted �-values are smaller than those obtained in [3℄



2250 J. Dudek, M. Mazurek, B. Nerlo-Pomorska TABLE IPairing strength 
onstants in terms of the approximating expressions for neutronsand protons for 5 regions 
onsidered.Gp(n) a=A+ bI (
+ d I)=A2=3 (
 0 + d 0I + eI2)=A2=3Region a b 
 d 
0 d0 ealln 24.872 0.147 6.517 �5:921 5.657 10.96 �64:18I 24.230 �0:001 5.887 �1:438 5.657 7.43 �65:63II 27.177 �0:165 6.230 �6:453 5.657 0.67 �21:39III 33.129 �0:214 7.097 �10:298 5.657 19.60 �152:21IV 56.170 �0:849 11.457 �33:690 5.657 36.46 �206:93V 38.548 �0:144 6.315 �6:408 5.657 �0:29 �13:35allp 26.861 0.331 7.100 �2:905 6.529 2.65 �5:51I 24.548 0.018 5.934 4.493 6.529 �9:13 103.58II 45.893 �0:750 7.249 �2:892 6.529 1.74 �3:91III 39.296 �0:481 7.178 �3:700 6.529 4.55 �7:60IV 54.546 �0:608 7.289 �3:327 6.529 1.88 �4:47V 78.763 �0:635 8.333 �4:289 6.529 6.18 �8:67from the liquid drop model formula, the 
orresponding 
urves denoted inFig. 1 with the dashed lines. One 
an also use alternative one-parameterexpressions similar to those in Ref. [5℄; the results of the �t are�n = 23=(pA)3 and �p = 21=(pA)3 ; (3)or �n = 4:66=A1=3 and �p = 4:18=A1=3 ; (4)but the �t pre
ision remains similar to that with the �=pA-type dependen
e.To avoid the undesired type of variation in pairing delta, 
hara
teristis-ti
 of spheri
al (espe
ially doubly magi
) nu
lei, the nu
lei with availableexperimental masses have been arbitrarily divided into 5 regions: (I) withZ 2 (32; 38) and N 2 (32; 44); (II) with Z 2 (40; 46) and N 2 (56; 72); (III)with Z 2 (54; 66) and N 2 (58; 76); (IV) with Z 2 (60; 82) and N 2 (88; 104)and (V) with Z 2 (90; 100) and N 2 (142; 156); there the doubly-magi
 nu-
lei have been eliminated. Within those regions the �-values were extra
tedand, as the next step, the G-
onstants found that reprodu
e the extra
ted� values exa
tly for ea
h of the studied nu
lei at the 
al
ulated in advan
eequilibrium deformations. The mean �eld Hamiltonian used is the same asin Ref. [7℄ (see also referen
es there). The irregular behavior of �(3) in fun
-tion of A suggests that the resulting G values will also vary in a relativelyirregular fashion and as a 
onsequen
e we have tried `a few parameter' �tsin terms of A and I � (N �Z)=(N +Z) and possibly some powers of those
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tion Strengths for the Fo
k-Spa
e Formulation of the. . . 2251variables:Gp(n) = �p(n)As (�0 + �1I + �2I2) where s = 1; 1=2; 1=3; 2=3 : (5)The isospin dependen
e of pairing strength G was tested in various regionsof nu
lei; it was found that the 
oe�
ients in front of I2 may vary as one 
ansee in Table I, from one �t to another, signifying indeed only a se
ondaryrelevan
e of su
h a term. The s=1/2,1/3 values were not better than thevalues s=1,2/3; all four have been introdu
ed for the sake of numeri
al testsrather than to model some theoreti
al result.In Fig. 1, frames (C) and (D), the produ
ts Gp(n) �A are shown in fun
tionof the isospin fa
tor I while the 
orresponding average behavior is shownwith the help of the solid lines. In frames (E) and (F) the quantities Gp(n) �A2=3 are illustrated. The dependen
e in terms of I obtained here is nearly
onstant.Results in Table I give the overall r.m.s. deviations that are rather small.The variations obtained, based on the experimental data 
on
erning a broadrange of nu
lei, show more stru
ture than the simple parametrisations tested
an take 
are of. In parti
ular, strong variations in parameter e from onenu
lear range to another, 
f. 
olumn 8 in the Table, indi
ates that the I2�u
tuations are too rapid to allow dedu
ing any systemati
 trends in this
ontext. In other words, the �ts show no good reason to sear
h for theoptimisation in terms of I2-dependen
e: there seems to be no su
h type ofa 
orrelation in the experimental data.The parametrisations summarized in the Table are `ready to use' in 
on-jun
tion with the Fo
k-spa
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