INTERPLAY BETWEEN K-ISOMERISM AND γ -SOFTNESS IN ¹²⁸Xe*

J.N. ORCE^a, A.M. BRUCE^a, A. EMMANOUILIDIS^a, C. WHELDON^{b,c}
F.R. Xu^c, P.M. WALKER^c, M. CAAMAÑO^c, Zs. PODOLYÁK^c
H. EL-MASRI^c, P.D. STEVENSON^c, A.P. BYRNE^d, G.D. DRACOULIS^d
J.C. HAZEL^d, T. KIBÉDI^d, AND D.M. CULLEN^e

^aSchool of Engineering, University of Brighton, Brighton, BN2 4GJ, UK ^bDepartment of Physics, University of Liverpool, Liverpool L69 7ZE, UK ^cCentre for Nuclear Physics, University of Surrey, Guildford, GU2 7XH, UK ^dDepartment of Nuclear Physics, ANU, Canberra, ACT 0200, Australia ^eDepartment of Physics, University of Manchester, Manchester, M13 9PL, UK

(Received November 4, 2002)

A partial decay scheme for ¹²⁸Xe is presented. The $K^{\pi} = 8^{-}$ state is isomeric with a half-life of 73(5) ns. Theoretical calculations have been performed using the configuration constrained blocking method based on a non-axial Woods–Saxon potential. Large γ -deformation and γ -softness have been predicted for the ground state. The strong shape-driving effect of the $K^{\pi} = 8^{-}$ state results in a much smaller value of γ for this configuration. This may partly explain the isomerism, despite the γ -softness. Measured hindrance factors are discussed in the context of the γ -softness of this nucleus.

PACS numbers: 21.10.Re, 21.60.Cs, 23.20.Lv, 27.60.+j

1. Motivation

The ${}^{128}_{54}$ Xe nucleus is known to be γ -deformed and γ -soft in its ground state [1]. The K-quantum number, well defined only for axially symmetric deformed nuclei, $\gamma \sim 0$, is not expected to be such a good quantum number for γ -deformed nuclei. Nevertheless, a $K^{\pi} = 8^{-}$ isomeric state has been observed in 128 Xe [2], built on the combination of the two quasi-neutron $7/2^{+}$ [404] and $9/2^{-}$ [514] orbitals. This assignment is based on a measurement of the g-factor [3]. The existence of K-isomerism in this nucleus, implying the approximate conservation of K is not well understood, making

^{*} Presented at the XXXVII Zakopane School of Physics "Trends in Nuclear Physics", Zakopane, Poland, September 3–10, 2002.

this a particularly good testing ground. The shape polarization effect of different quasiparticle configurations may strongly affect the nuclear shape [4], and, in turn, the K-mixing.

2. Experimental details

High-spin states were populated using the fusion-evaporation reaction 124 Sn(9 Be,5n) 128 Xe at a beam energy of 58 MeV. The time profile of the 9 Be beam, provided by the 14UD tandem accelerator at the Australian National University, was 2 ns pulses separated by 1.7 μ s. This was incident on a 3 mg/cm² thick 124 Sn target. 128 Xe is produced strongly in this reaction with over 50% of the total cross-section. Time correlated γ -ray events were collected using the CAESAR array which comprises six Compton suppressed germanium detectors and two small volume unsuppressed germanium detectors (LEPS). Fig. 1 shows the partial decay scheme built in the present work.

Fig. 1. Partial decay scheme of 128 Xe deduced from this work. The γ -ray energies are given in keV, and the thickness of the arrows represents the γ -ray intensity.

3. Shape-driving effects

 128 Xe lies in the middle of the so-called 'transitional region', with an $E(4^+)/E(2^+)$ ratio of 2.33. Thus, the γ -degree of freedom will play an important role in any theoretical approach. Indeed, the partial 128 Xe decay scheme shows such a complexity with the lack of pure rotational bands, and only the yrast band shows a rotational behaviour at high angular momenta.

The configuration constrained blocking method is based on a non-axial Woods–Saxon potential, including β_2 and γ -degrees of freedom as dynamical variables [4]. Table I and Fig. 2 show the results for these calculations. Fig. 2(a) shows the PES calculation performed for the ground state (zero rotation, $\hbar\omega=0$). A triaxial shape is predicted with $\beta_2=0.134$ and $\gamma=32.4^{\circ}$. The hexadecapole deformation is almost negligible. In particular, Fig. 2(left) shows that the ground state is very soft in the γ -degree of freedom. In addition, $K^{\pi} = 5^{-}$ and 8^{-} 2-qp states have been predicted at energies within 300 keV of experimentally determined ones.

TABLE I

Calculated shapes and excitation energies E_{cal} (in MeV) for the ground state and different 2-qp configurations in ¹²⁸Xe.

K^{π}	$E_{\rm exp}$	$E_{\rm cal}$	Configuration	β_2	$\mid \gamma^{\circ} \mid$	eta_4
0^+	0.0	0.0	ground state	0.134	32.4°	0.000
5^{-}	2.23	2.27	$9/2^{-}[514] \otimes 1/2^{+}[400]$	0.142	26.0°	-0.002
8-	2.78	2.49	$7/2^+[404] {\otimes} 9/2^-[514]$	0.160	6.1°	-0.008

Evidence for the importance of the K quantum number comes from the measurement of the hindrance factors. The $K^{\pi} = 8^{-}$ state is isomeric with $t_{1/2} = 73(5)$ ns. The E1 274 keV decay to the ground state band has not been observed. However, a lower limit for the hindrance factor of 5.5×10^{8} has been measured for such a branch. On the other hand, the half-life of the $K^{\pi} = 5^{-}$ state has been measured in this work as $t_{1/2} = 4(1)$ ns, and direct decays from the 5⁻ intrinsic state to the gs band ($\Delta K = 5$), 1195 and 491 keV E1 transitions, present hindrance factors of $F_{W} = 3.010^{7}$ and $F_{W} = 6.010^{7}$, respectively. These values are at least one order of magnitude lower than that measured for the 274 keV transition.

A possible reason for the hindrance value of the 8⁻ to gsb transition being greater than for the 5⁻ to gsb transitions is indicated in Table I and Fig. 2 (right). While the 5⁻ state is calculated to have $\gamma = 26^{\circ}$ and therefore a possible admixture of K states, the 8⁻ has $\gamma = 6^{\circ}$ and will have a relatively pure K-value. The low γ -deformation of the isomeric state gives an indication of the approximate conservation of the K-quantum number in the latter configuration. Therefore, the comparison between calculated shapes and measured hindrance factors leads to an interesting relation between the γ deformation of the intrinsic state and the possibility of K-isomerism.

Fig. 2. The left panel shows the PES calculation for the ¹²⁸Xe ground state. The right panel shows the PES for the $K^{\pi} = 8^{-}$ isomeric state. The energy difference between the contours is 200 keV.

4. Conclusions

The existence of K-isomerism in such a γ -deformed and γ -soft nucleus is explained in terms of the shape driving effect of the $K^{\pi} = 8^{-}$ configuration. The comparison with the measured Weisskopf hindrance factors of E1 transitions that link the 5⁻ and 8⁻ intrinsic states to the yrast band support such a hypothesis. Further work is needed in order to study the trend of other possible intrinsic states.

REFERENCES

- [1] R.F. Casten, P. Von Brentano, Phys. Lett. B152, 22 (1985).
- [2] L. Goettig et al., Nucl. Phys. A357, 109 (1981).
- [3] T. Lönnroth et al., Z. Phys. A317, 215 (1984).
- [4] F.R. Xu et al., Phys. Rev. C59, 59 (1999).