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NEW VISTA OF SHELL STRUCTUREIN NEUTRON-RICH EXOTIC NUCLEI�H. GraweGesellshaft für ShwerionenforshungPlankstr. 1, 64291 Darmstadt, Germany(Reeived Otober 29, 2002)The origin of new shell struture observed in neutron-rih light nuleiand impliations for medium-heavy nulei are disussed in terms of themonopole part of the in-medium NN interation. The evolution of theharmoni osillator (HO) losed shells N = 8; 20; 40 via shell gap quenhingtowards Nm � 2N , with N numbering HO quanta, is ompared to reentexperimental data. The loality of the monopole driven shell hange andthe fading of its shell quenhing power beyond N = 50 is disussed.PACS numbers: 21.60.Cs, 21.10.Dr, 27.20.+n, 27.30.+t1. IntrodutionThe hange of shell struture in neutron-rih nulei has been subjet ofnumerous theoretial studies [1�4℄. With the advent of modern in-�ight andISOL based spetrometers experiments, employing fragmentation and �ssionof relativisti heavy-ion beams and spallation reations, provided evidenefor shell quenhing and evolution of new shells [5�10℄. Based on preditionsfor extreme N=Z ratios [1℄ shell quenhing and reordering are explained bythe softening of the nulear potential in neutron-exessive nulei. As a onse-quene high�l orbitals are pushed upward and the spin�orbit (SO) splitting,being proportional to the radial derivative of the potential, is redued. Thisleads to a transition from a SO determined shell gap (N = 50; 82; 126) toshell gaps of the harmoni osillator (HO) type (N = 40; 70; 112) [11℄. Thesenario is haraterised by the sequential shell quenhing and reordering, atransition SO to HO gap, smooth evolution with N=Z and redued SO split-ting. None of these signatures applies to the new shell struture observed inlight and medium-heavy nulei. Therefore, an alternative approah will beoutlined in the Se. 2 and ompared to experimental evidene in Se. 3.� Presented at the XXXVII Zakopane Shool of Physis �Trends in Nulear Physis�,Zakopane, Poland, September 3�10, 2002.(2267)



2268 H. Grawe2. Monopole driven shell strutureThe propagation of single partile energies with inreasing oupation ofa major shell is governed by the monopole part of the residual interation [12℄as de�ned by V mjj0 =XJ (2J + 1)hjj0jV jjj0iJ.XJ (2J + 1) :It has been pointed out that the (� � �)(� � �) part of the in-medium NNinteration provides the shemati explanation for the enhanement of V mfor proton�neutron (��) pairs of a fator of 2 relative to T = 1 pairs andanother approximate fator of 2 for spin�orbit partners in the long-rangelimit [13℄. A loser inspetion of experimental data in the N = 29 [14℄(Fig. 1(a)), N = 51 [15℄ isotones, the Z = 29 [16℄ (Fig. 1(b)) and Z = 51 [17℄isotopes, and of realisti interations derived from e�etive NN potentialsby a G-matrix alulation with ore polarisation orretions and �tted toexperimental data as summarised in Table I [18�21℄ reveals V m to be strongin �� pairs with total spin S = 0 and preferably idential number of nodesin their radial wave funtions. In fat the seleted examples yield theapproximate fator of 2 between S = 0 and S = 1 on�gurations. Based
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Fig. 1. Monopole migration of neutron single partile states in (a) N = 29 isotones(49Ca to 57Ni) in omparison to shell model results (full line) with the FPD6interation [18℄ and (b) in Z = 29 (Cu) isotopes ompared to shell model resultsfor the S3V interation [20℄ (full line) and saled to A = 68 (dashed), respetively.



New Vista of Shell Struture in Neutron-Rih Exoti Nulei 2269TABLE IMonopole strength V m for multiplets (jj') in S = 0 and S = 1 on�gurations andrelative monopole shift � of orbitals (j01; j2') when �lling a full j shell.Multiplet V m �(j01; j02) Interationj; j01;2 (MeV) (MeV) Ref.�f7=2�f5=2 �1:046 4.258 A = 48 [18℄�f7=2�p3=2 �0:513�f7=2�f5=2 �0:930 3.151 A = 48 [19℄�f7=2�p3=2 �0:536�g9=2�f5=2 �1:034 5.310 A = 68 [20℄�g9=2�p3=2 �0:503�g9=2�g7=2 �0:744 4.258 A = 88 [21℄�g9=2�d5=2 �0:370on this riterion, and onsidering S = 0 pairs to be dominant, the followingshell hanging senario emerges when moving from a N = Z doubly maginuleus as e.g. 16O, 40Ca along an isotoni hain to N � Z (see insert inFig. 2):1. Removing protons from a �lled (n; l; j< = l� 1=2) orbit, as e.g. 0p1=2,0d3=2, in a losed shell (CS) will shift the (n; l+1; j> = l+3=2) orbit,as e.g. 0d5=2, 0f7=2, upward as its binding is weakened relative to theneighbouring orbits, thus swapping positions among them.2. On removal of further protons from the next lower lying orbit (n; l; j>=l+1=2), e.g. 0p3=2, 0d5=2, its spin�orbit neutron partner will be releasedin a dramati way to reate a new shell CS' (insert Fig. 2).The e�et an be summarised as a hange of a HO shell losure withmagi number Nm = 8; 20; 40 to Nm � 2 � N = 6; 16(14); 34(32), with Nounting the HO quanta. The ambiguity for N > 1 is due to the presene ofj = 1=2 orbits as e.g. s1=2 or p1=2, whih strongly mix by pair sattering withthe neighbouring higher-spin orbitals (see Ses. 3.1 and 3.2). The senario isharaterised by the following signature, whih substantially deviates fromthe mehanism desribed in Se. 1 :� a HO (ls-losed) shell hanges to a SO (jj-losed) shell;� the hange is rapid with subshell oupation, and highly loalised;� the apparent SO splitting is inreased.The aording shell struture hange is shown in the hart of Fig. 2.
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Fig. 2. Shemati hart of known and expeted new shell struture in N � Znulei. The insert illustrates the senario when moving from N � Z to N � Z.3. Experimental evidene for new shellsThe senario desribed in Se. 2 aounts in a straightforward way forthe reently established new shell e�ets in light and medium-heavy nulei,whih will be reviewed in the following. Besides single partile states, two-nuleon separation energies S2n and S2p and their di�erenes Æ2n resp. Æ2p,exitation energies E2+ of I� = 2+ states and B(E2; 2+ ! 0+) will be usedas signatures for shell struture [22℄.3.1. The N = 8 shell evolution below Z = 8In Fig. 3 the evolution of the N = 8 shell gap is illustrated. Removalof the �p1=2 protons from the doubly magi 16O releases the �d5=2, S = 0partner neutron and hene the I� = 5=2+ and 1=2+ levels swap positionsfrom 17O to 15C (Fig. 3). The neutron shell gap is preserved in 14C asdoumented by the large E2+ (Fig. 4(a)), whih is only marginally smallerthan in 16O. This demonstrates the aforementioned ambiguity of shell sig-nature for nulei separated by a j = 1=2 subshell (see also Se. 3.2). Thedramati derease of E2+ observed for 12Be (Fig. 4a) indiates that the re-moval of the �rst pair of �p3=2 protons auses an upward shift of the �p1=2spin-�ip partner level, thus losing the N = 8 gap while opening a N = 6



New Vista of Shell Struture in Neutron-Rih Exoti Nulei 2271gap. This is impressively orroborated by the 11Be level sheme shown inFig. 3 and the inversion of the I�=1/2+ and 1/2� levels. For 8He an esti-mate for the N = 6 shell gap an be inferred from the measured [23℄ energydi�erene of the I�=3/2�; �p33=2 hole and the I�=1/2�; �p23=2p1=2 partilestates. Using the two-body matrix elements (TBME) from Ref. [24℄ a shellgap �(p1=2) � �(p3=2)= 4.25 MeV is alulated. We mention in passing thatthe N = 6 shell stabilisation makes 9Li a good ore for 11Li halo alulations.
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Fig. 3. Shell hange N = 8 to 6.3.2. The evolution of the N = 20; 28 shells below Z = 20As desribed in part (1) of the senario and orresponding to N = 8 theremoval of �d3=2 protons from 40Ca stabilises the N = 20 shell gap as theS = 0 partner orbital �f7=2 is shifted upward. Consequently, and knownsine long, 36S and 34Si, again separated by a j = 1=2(s1=2) orbit, showdoubly magi features (Fig. 4(b)). It would be an experimental hallenge toprove the present senario in the mirror nulei 34;36Ca, whih should exhibitidential shell signature. The upward shift of the �f7=2 orbital with removalof �d3=2 protons, on the other hand, quenhes the N = 28 gap below 48Ca,as exhibited in enhaned B(E2; 0+ ! 2+) values measured in Coulombexitation and the absene of shell losure features in 44S [6℄.
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Fig. 4. Shell signatures Æ2n=2p, B(E2; 2+ ! 0+) and E2+ for shell hange betweenN = 8 and 20 along (a) Z = 8 (O) isotopes (full line) and N = 8 isotones (dashed)and (b) N = 20 isotones (dashed) and Z = 20 (Ca) isotopes (full line).Following part (2) of the senario further removal of �d5=2 protons inN =20 isotones will shift the �d3=2 orbital into the shell gap, and, aided by 2p2hexitations, drives 32Mg to deformation [5℄. The evolution of theN = 16 (14)shell below the �d3=2 orbital is omplete in the oxygen isotopes, where 22;24Oexhibit large E2+ , small B(E2) and a rise in Æ2n (Fig. 4(a)). In a reent shellmodel study this was reprodued quantitatively, on the expense, however, ofan ad ho orretion of the realisti interation employed [13℄. The loalityof the hange in shell struture disussed in the present senario was provenin a reent experiment showing a derease in E2+ from 22O (3.20 MeV) to20C (1.56 MeV) [25℄. As stated in Se. 3.1 this is due to the �p1=2 removal,whih shifts the �d5=2 level into the N = 16(14) gap.3.3. The evolution of the N = 40; 50 shellsThe HO losed shell N = 40 in 68Ni is weak and isolated and looses itsstrength already at two partiles/holes distane [22, 26℄. Exitation energyE2+ and B(E2; 0+ ! 2+) exhibit shell losure [27℄, while Æ2n does notshow any e�et [22, 26℄. Removing �f7=2 protons from 68Ni prompts the�f5=2 orbit to move into the (small) N = 40 shell gap, so that 66Fe showsfeatures of deformation [28℄. This was proven reently by assigning theNilsson on�guration 5=2+[422℄ to the ground state of 67Fe [29℄. Correlatedto this upward shift of the �f5=2 orbit a N = 34 gap opens above the



New Vista of Shell Struture in Neutron-Rih Exoti Nulei 2273�p3=2; p1=2 levels as also exhibited by the N = 29 single partile states atZ = 20 (Fig. 1(a)). The presene of the p1=2 orbit introdues the N = 34(32)ambiguity. Experimentally a large E2+ is observed in 52Ca [10℄ and shell gapsare established in the yrast spetrum of the 52;54Ti isotopes [30℄.The persistene of the N = 50 shell gap at 78Ni is disussed sine long[1,22℄. As the last measured value is known for Se (Z = 34), removal of thelast �f5=2 protons in the light of monopole driven shell struture is essential,as the �f5=2�g9=2 monopole is known to be strong [16℄ whih is reproduedby realisti interations (Fig. 1(b), Table I). Starting from 84Se for N = 50and 68Ni for Z = 28 the 78Ni shell gaps an be estimated as summarised inTable II. The gaps are determined by V m in the on�gurations �f5=2�g9=2and �f5=2�d5=2 for N = 50 and �f5=2�g9=2 and �f7=2�g9=2 for Z = 28,respetively. Assuming the empirial fator of 2 between S = 0 and S = 1monopoles (Table I), the relative monopole shift of two orbitals j01; j02 asgiven by �(j01; j02) = (V mjj01 � V mjj02) (2j + 1)with (j01; j02)=(�g9=2; �d5=2) and (�f5=2; �f7=2) and j = �f5=2 and �g9=2, re-spetively, an be estimated. The results listed in Table II for various inter-ations yield a substantially redued but still appreiable N = 50 gap, whilethe Z = 28 gap is well preserved. It should be noted, that these estimatesdo not inlude ross-shell interations and mutual enhanement of protonand neutron shell and therefore represent lower limits only. Therefore itis expeted that the I� = 8+ isomerism observed at the beginning of the�g9=2 shell in 70Ni [31℄ and in 78Zn [32℄ is preserved for 76Ni. In a reentexperiment evidene for the latter has been found [33℄. TABLE IIN = 50 and Z = 28 shell gap extrapolation to 78Ni.Z � 28 N = 50 N � 40 Z = 28 Ref.o. shell gap o. shell gap�f5=2 (MeV) �g9=2 (MeV)6 4.13(4) 0 5.91(26) 84Se/68Ni0 2.08 10 4.46 A = 68 [20℄2.60 4.39 A = 100 [20℄2.56 3.58 exp. �t
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