BINDING ENERGY FOR NUCLEAR SUPERMULTIPLETS IN LIGHT NUCLEI* **

S. Szpikowski a,b and L. Próchniak b

^aInstitute of Plasma Physics and Laser Microfusion Hery 23, 00-908 Warsaw, Poland ^bInstitute of Physics, Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

(Received January 21, 2003)

A simple three-parameter supersymmetric mass formula has been applied to binding energy calculations of nuclei in the s-d shell grouped into supermultiplets. The earlier suggestion of instability of 26 O has been confirmed and binding energies of other exotic nuclei have been predicted.

PACS numbers: 21.10.Dr, 21.60.Fw

1. Introduction

According to the Interacting Boson Model [1] (IBM) valence nucleons of nuclei are coupled to pairs with L = 0 and L = 2 to form approximate bosons. Besides, there are one or two unpaired nucleons left which, together with bosons, form a boson-fermion system with an assumed supersymmetry. The unitary-unitary supersymmetry group, U(m|n), has been applied, where m(n) is a number of single particle states in the boson (fermion) space.

Details of our model and of adopted notation have been given in [2, 3]. Ref. [3] contains also first results in evaluations of binding energies of eveneven nuclei belonging to a given supermultiplet N, where N is a total number of valence bosons and fermions. For even-even nuclei N = 1/2(A - 16), where A is an atomic number and ¹⁶O is a core.

We will exploit, in what follows, the fundamental property of the supersymmetric model in which even-even as well as even-odd and odd-odd nuclei belong to the same supermultiplet with the same supersymmetric parameters.

^{*} Presented at the XXXVII Zakopane School of Physics "Trends in Nuclear Physics", Zakopane, Poland, September 3-10, 2002.

^{**} This work has been partly supported by the Polish State Committee for Scientific Research (KBN) under contract No. 2P 03B 115 19.

2. The supersymmetric model for binding energies

Following the previous considerations [2,3] we have constructed the binding energy formula

$$E_{\sup} = E'_0 + aN_f + bN_b + \varepsilon T(T+1), \qquad (1)$$

where E'_0 is given from considerations of ground and excited states of the s-d shell nuclei. It reads

$$E'_{0} = E_{0} + \beta J (J+1) + \gamma T_{f} (T_{f}+1), \qquad (2)$$

where $E_0 \equiv E_{\exp}(^{16}0) = -127.62$ MeV, J is the total nuclear spin of the ground state, T_f is the isospin of unpaired nucleons. $(T_f = 0; 1/2; 1)$ and $\beta = 0.08$ MeV, $\gamma = -0.82$ MeV for the supermultiplet N = 5. However, we will adopt the same parameters for N = 3 and 4 which can cause a negligible error 0.1–0.2 MeV.

The new binding energy parameters a, b and c are given in Table I.

TABLE I

The binding energy formula parameters (in MeV).

N	a	b	ε
3	-7.00	-20.94	2.35
4	-7.60	-21.54	2.27
5	-8.20	-22.14	2.41

It is interesting to note very regular changes of the parameters a and b. The parameter ε has been taken from [3]. At last, $N_f(N_b)$ is the number of valence fermions (bosons) and T is the total isospin of a nucleus. For the supersymmetric binding energy the Coulomb energy must be added to compare with experimental data:

$$E_{\rm th} = E_{\rm sup} + E_{\rm C} \,, \tag{3}$$

where we have adopted $E_{\rm C}$ according to [4] (Table II).

TABLE II

The Coulomb energies (in MeV)).
-------------------------------	----

nucleus	80	$_9\mathrm{F}$	$_{10}\mathrm{Ne}$	$_{11}\mathrm{Na}$	$_{12}\mathrm{Mg}$	$_{13}\mathrm{Al}$	$_{14}\mathrm{Si}$	$_{15}\mathrm{P}$	$_{16}\mathrm{S}$
E_{C}	18.29	21.83	25.91	30.24	35.10	40.18	45.77	51.28	57.33

3. Results

The theoretical energies are compared with the experimental data in Table III(a), III(b), III(c) for the supermultiplets N = 3, 4 and 5 respectively. In Table IV we give the predicted binding energies for exotic nuclei from these supermultiplets. In the present calculations, improved and much more complete than in [3], we come once again to the conclusion that ²⁴O is the last stable oxygen isotope. The conclusion is visible from the binding energies of oxygen isotopes (Tables III, IV).

TABLE III(a)

	${}_{8}O_{14}$	$_{10}\mathrm{Ne}_{12}$	$_{12}\mathrm{Mg}_{10}$	${}_{9}\mathrm{F}_{11}$	$_{11}\mathrm{Na}_9$
$-E_{\exp}$	162.03	177.77	168.58	154.40	145.98
$-E_{\rm th}$	162.24	178.12	168.93	153.84	145.43
Δ	0.21	0.35	0.35	-0.56	-0.55
	₈ O ₁₃	$_9\mathrm{F}_{12}$	$_{10}\mathrm{Ne}_{11}$	$_{11}\mathrm{Na}_{10}$	$_{12}\mathrm{Mg}_{9}$
$-E_{\rm exp}$	${}_{8}O_{13}$ 155.18	${}_{9}\mathrm{F}_{12}$ 162.50	${}_{10}\mathrm{Ne}_{11}$ 167.41	$11 Na_{10}$ 163.08	¹² Mg ₉ 149.20
$-E_{\rm exp} \\ -E_{\rm th}$	${}_{8}O_{13}$ 155.18 155.85	${}_{9}F_{12}$ 162.50 164.06	10^{10}Ne_{11} 167.41 167.43	$11^{11} Na_{10}$ 163.08 163.10	12Mg9 149.20 150.79

Comparison of experimental [5] and supersymmetric binding energies (in MeV) for supermultiplets N = 3.

TABLE III(b)

	${}_{8}O_{16}$	$_{10}\mathrm{Ne}_{14}$	$_{12}\mathrm{Mg}_{12}$	$_{14}\mathrm{Si}_{10}$	$_9\mathrm{F}_{13}$	$_{11}\mathrm{Na}_{11}$	
$-E_{\mathrm{exp}}$	168.48	191.84	198.26	172.00	167.73	174.15	
$-E_{\rm th}$	168.38	192.54	196.97	172.68	168.78	174.63	
Δ	-0.10	0.70	-1.29	0.68	1.05	0.48	
	${}_{8}O_{15}$	$_9\mathrm{F}_{14}$	$_{10}\mathrm{Ne}_{13}$	$_{11}\mathrm{Na}_{12}$	$_{12}\mathrm{Mg}_{11}$	${}_{13}\mathrm{Al}_{10}$	
$-E_{\mathrm{exp}}$	164.77	175.27	182.97	186.56	181.72	168.70	
$-E_{\rm th}$	164.64	176.35	183.62	186.50	181.64	169.75	
Α	0.19	1 0 0	0.05	0.00	0.00	1.05	

Comparison of experimental [5] and supersymmetric binding energies (in MeV) for supermultiplets N = 4.

TABLE III(c)

	$_{10}\mathrm{Ne}_{16}$	$_{12}\mathrm{Mg}_{14}$	$_{14}\mathrm{Si}_{12}$	$_9\mathrm{F}_{15}$	$_{11}\mathrm{Na}_{13}$	$_{13}\mathrm{Al}_{11}$
$-E_{\mathrm{exp}}$	201.60	216.68	206.05	179.13	193.52	183.60
$-E_{\rm th}$	201.78	216.69	206.02	179.14	193.71	183.77
Δ	0.18	0.01	-0.03	0.33	0.01	0.17
	$_9\mathrm{F}_{16}$	$_{10}\mathrm{Ne}_{15}$	$_{11}\mathrm{Na}_{14}$	$_{12}\mathrm{Mg}_{13}$	$_{13}\mathrm{Al}_{12}$	${}_{14}\mathrm{Si}_{11}$
$-E_{\mathrm{exp}}$	${}_{9}\mathrm{F}_{16}$ 183.48	10^{10}Ne_{15} 196.02	$11 Na_{14}$ 202.53	$12 Mg_{13}$ 205.59	$1_{13}Al_{12}$ 200.53	14Si ₁₁ 187.00
$-E_{\rm exp} \\ -E_{\rm th}$	${}_{9}F_{16}$ 183.48 182.80	$10^{10} Ne_{15}$ 196.02 195.99	$11 Na_{14}$ 202.53 203.31	$\begin{array}{c} {}_{12}\mathrm{Mg_{13}}\\ 205.59\\ 205.68 \end{array}$	$\begin{array}{r}_{13}\mathrm{Al}_{12}\\200.53\\200.60\end{array}$	${14}\mathrm{Si}_{11}$ 187.00 187.78

Comparison of experimental [5] and supersymmetric binding energies (in MeV) for supermultiplets N = 5.

TABLE IV

The predicted binding energies (in MeV) of exotic nuclei from the supermultiplets N = 3, 4, 5.

	₈ O ₁₇	${}_{8}O_{18}$	$_{13}\mathrm{Al}_8$	$_{13}\mathrm{Al}_9$	$_{14}\mathrm{Si}_{8}$	$_{14}\mathrm{Si}_{9}$	$_{15}\mathrm{P}_{9}$	${}_{15}\mathrm{P}_{10}$	${}_{16}\mathrm{S}_{10}$
$-E_{\rm th}$	165.05	166.02	134.35	149.43	134.76	152.42	149.69	170.86	170.37

The problem of an oxygen stability $(^{26}O \text{ and } ^{28}O)$ had been very often discussed. However, the majority of other theoretical predictions showed the stability of ^{26}O and even ^{28}O . In Table V we give some recent theoretical results for oxygen binding energies.

It is clear from Table V that only in few cases the instability of 26 O was predicted which is also our previous [3] and present result. It is also crucial to note that in the two experimental publications [10,11] the particle instability of 26 O has been concluded from the experimental observations that the lifetime of 26 O must be much shorter than 188 ns in the first work and much shorter than 140 ns in the second one.

TABLE V

	E_{exp} [5]	[6]	[7]	[8]		[9)]	
	1995	1990	1995	1997		19	99	
^{24}O	-168.48	-168.48	-170.46	-165.31	-171.9	-171.8	-172.4	-173.5
$^{26}\mathrm{O}$		-169.66	-172.94	-166.85	-167.9	-170.9	-172.3	-174.0
^{28}O		-168.88	-177.40	-166.01	-164.6	-171.4	-173.8	-175.1
	[3] 1998	$[10] \\ 1996$	present work					
^{24}O	-168.82	-168.669	-168.38					
$^{26}\mathrm{O}$	-166.02	-169.664	-166.02					
$^{28}\mathrm{O}$	-160.38	-168.879						

Comparison of present and other theoretical calculations of ²⁴O, ²⁶O, ²⁸O isotopes.

REFERENCES

- [1] F. Iachello, A. Arima, *Phys. Lett.* **53**, 305 (1974).
- [2] S. Szpikowski, Y.S. Ling, L. Próchniak, Acta Phys. Pol. B 26, 1403 (1995).
- [3] S. Szpikowski, L. Próchniak, W. Berej, Acta Phys. Pol. B 29, 301 (1998).
- [4] P.J. Brussard, P.W.M. Glaudemans, Shell-Model Applications in Nuclear Spectroscopy, North-Holland, Amsterdam 1977.
- [5] G. Audi, A.H. Wapstra, Nucl. Phys. A595, 409 (1995).
- [6] E.K. Warburton, J.A. Becker, B.A. Brown, *Phys. Rev.* C41, 1147 (1990).
- [7] P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
- [8] A.T. Kruppa, P.H. Heenen, H. Flocard, R.J. Liotta, Phys. Rev. Lett. 79, 2217 (1997).
- [9] T. Siiskonen, P.O. Lipas, J. Rikovska, Phys. Rev. C60, 034312 (1999).
- [10] M. Fauerbach et al., Phys. Rev. C53, 647 (1996).
- [11] H. Sakurai et al., Phys. Lett. **B448**, 180 (1999).