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Marian Smoluchowski is considered to be the founder of the physics
of stochastic processes. In his studies of the Brownian motion he showed
how the underlying thermal motion of the optically invisible molecules can
be inferred from the observation of the chaotic motion of suspended col-
loidal particles discernible by the microscope. Smoluchowski was first to
introduce randomness into physical equations. We show how the basic
concepts and equations derived by Smoluchowski can be used to study
the various forms of nucleonic matter excited in collisions of heavy ions,
the liquid-to-gas phase transition in nuclei, multifragmentation phenom-
ena and the possible transition to the quark—gluon plasma, the ultimate
state of hadronic matter. The partonic structure of baryons can be studied
from the energy and angular distributions as well as correlations of emitted
hadrons even if Nature does not allow us to see free quarks and gluons.
The various achievements of Smoluchowski’s work, like the diffusion equa-
tion, fluctuation analysis, critical phenomena close to phase transitions, and
foundations of the coalescence model as applied to contemporary problems
are discussed, and their universality is stressed.

PACS numbers: 25.75.—q, 01.65.4+g, 01.10.Fv

1. Introduction

Marian Smoluchowski (1872-1917) the greatest Polish theoretical physi-
cist ever was first to “see atoms” through the Brownian motion of heavy
colloidal particles visible in optical microscope. He explained at the turn
of centuries 1800/1900 the Brownian motion as the clean example of the
stochastic process [1]. It is amazing that after hundred years many of his
theoretical investigations can be applied successfully to the contemporary
physics of nuclear and subnuclear processes.

The history of the Universe after the “Big Bang” is marked by subsequent
phase transitions. In the laboratory we can study these transitions in a
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reversed order i.e. from the low temperatures of the order of mK up to the
highest ones around 10" K (see Fig. 1). At the lowest temperature we
usually have to deal with the crystal structure in which atoms are bound
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Fig.1. Scheme of the “thermal” history of the Universe.



The Significance of M. Smoluchowski’s Work in Subatomic Physics 2375

to the fixed positions in the lattice. As the temperature increases the solid
phase melts and transition to the liquid one occurs. The atoms or molecules
are moving more freely through a resistive viscous medium although they are
bound within the liquid phase. Further, the liquid to gas phase transition
takes place. Generally, each phase transition occurs at the temperature at
which the thermal energy of the moving molecules is equal to the binding
energy in the appropriate phase i.e. 3/2kT =~ Ep, where k is the Boltzmann
constant, T stands for absolute temperature, and Ep denotes the binding
energy of the considered phase.

The important point is that atoms have internal structure i.e. nuclei
and electrons. If the energy of the thermal motion of the molecules in the
gas phase exceeds the binding energy of electrons in atoms, a new phase of
matter, the so called plasma, will appear. It consists of positively charged
heavy ions and electrons. Total average electric charge of plasma is zero.
Over 90% of matter in the Universe is in the plasma phase. Hot plasma in
the interior of stars consisting of fully stripped nuclei and electrons is the
principal source of energy enabling the birth and endurance of life on the
nearby planets. Electrons are elementary particles but nuclei not. Therefore,
further increase of the temperature will lead to the next phase of matter
which is sometimes called “nugas” i.e. gas of nucleons and electrons. This
last transition is called a liquid to gas phase transition since nuclei in its
ground state have properties of a liquid drop. To effectuate this last phase
transition, temperatures of the order of 10''K are necessary since the average
binding energy of nucleons in nuclei is =~ 8 MeV.

It is quite natural to think about the next phase transition. However,
this requires that nucleons should have internal structure. The first sign that
the proton may not be an elementary particle can be traced back to the late
thirties when its dipole magnetic moment was measured. The experimental
value was found to be almost three times higher than that expected for the
Dirac point particle. This strongly suggested that proton might have internal
structure. Careful studies of this structure by scattering of electrons of the
energy of tens of GeV revealed three point particles called quarks with elec-
trical charges +2/3e, +2/3e, and —1/3e for protons and +2/3e, —1/3e, and
—1/3e for neutrons. Quarks are bounded by strong forces. The strong field
quanta gluons were soon discovered too. The way to the new phase of mat-
ter the so called quark—gluon plasma (QGP) seemed to be open. However,
some unexpected difficulty appeared. Quarks and gluons cannot exist as free
particles. After many unsuccessful attempts to find particles with electrical
charges being the multiplicity of 1/3e, physicists had simply to built this fact
into the theory. This led to the birth of Quantum Chromodynamics, called
shortly QCD. At this point we should quote the famous Einstein’s saying
“Komplizierter ist der Herr Gott, aber boshaft ist Er nicht”. QCD explains
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the fact that all strongly interacting particles — hadrons — are built up from
elementary point particles — quarks and antiquarks — having finite masses.
Three quarks form baryons and pairs of quark—antiquark—mesons. Quarks
interact by exchange of massless gluons. Gluons and quarks are carrying
strong field charges called colours. The colours are strong field sources. All
existing hadrons must have white colours therefore the minimal satisfactory
number of different strong charges—colours is three by some loose analogy
to optics where three colours form a white light. Since gluons as quanta
of colour forces have to operate between three colours they must be mathe-
matically represented by matrices of the order of three. Experiments carried
out in the second half of the twentieth century led to the conclusion that
QGP comprises six types (flavours) of quarks, three colours and eight gluons.
Taking into account that the low energy quark—gluon plasma (QGP) should
contain two types of light quarks contained in nucleons namely u and d we
have for the statistical weight of QGP wqap = 8x2+7/8x2x2x2x3 = 37,
where the first term contains the contribution from gluons, 2 for the spin
polarization, 8 for colours. The second term represents the contribution due
to quarks (in the massless approximation) where 3 factors of 2 represent
respectively particle-antiparticle, spin and flavour degrees (u,d) of freedom
and the factor 3 is for colours. Factor 7/8 comes from Fermi Dirac statistics.
This simple estimation shows us that QGP phase is a very rich structure
with high value of the statistical weight.

Smoluchowski’s physics was confinned to three phases shown in the up-
per part of Fig. 1. However, his methods of analysis of stochastic motion
of Brownian particles are fully applicable to processes connected with rich
structures existing in the subatomic world shown in lower part of Fig. 1.

In order to see this we have to repeat briefly some basic informations on
the motion of the Brown’s particles within the so called random-walk model.

2. Brownian motion as fluctuation

The ratio of the mass of single atoms to the mass of heavy Brown’s
particle is of the order of 107'2. From the simple conservation of linear
momentum we can easily estimate that the recoil of the heavy colloidal
particle resulting from the collision with single atom cannot be observed
in the microscope. In the second half of the 19th century this was the
main argument used by some scientist, for example by Négeli, against the
atomistic interpretation of the Brownian motion.

The great merit of Smoluchowski was his notion that the movement of the
Brown'’s particle is a result of the fluctuation in the number of collisions with
single atoms. From time to time the number of atoms pushing the Brown’s
particle in one direction increases significantly beyond its mean value taken
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over all directions. As a result the heavy particle will move in to one direction
being decelerated by the internal friction force in accordance with the Stokes
law. This last force arises simply from the fact that the particle moving in
one direction collides on the average with more atoms moving in the opposite
direction. A simple one dimensional model of Chandrasekhar [1] allows us
to understand the main features of the stochastic motion and to estimate
the finite value of the probability to observe fluctuations in this motion.
Let us consider the following motion of a particle along the x axis
(see Fig. 2). By tossing a coin we move the particle by the unit distance a
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Fig.2. The random-walk model along the axis =

towards the positive direction if the coin is falling avers up or in the negative
direction if the coin is falling reverse up. This means that the movement of
the coin is statistical one with the equal probability P = 1/2 into the pos-
itive or negative direction. We ask what is the probability W (m, N) that
after IV steps the particle will be found at coordinate m. The probability of
any distinguishable sequence of steps is (1/2)". To get the position m we
need (N + m)/2 steps into the positive direction and (N — m)/2 steps into
the negative one. The sequence of plus and minus steps is arbitrary. From
simple combinatorics we get the total number of different sequences leading
to position m as:

N!
(N +m)/2l[(N —m)/2]!" (1)
For W(m, N) we get:
N! 1\
W{m. N) [(N+m)/2]' (N —m)/2]! <2) (2)
The mean value
%(N + m)av — %N (3)
The mean square deviation is:
<[%(N + m) - %N]2>av = %N (4)

From (3) and (4) we conclude that the mean value of the shift is in
accordance with simple intuition (m),, = 0, but the mean square value
(m?)ay = N. This last relation indicates a very important property that
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the average value of the square of the shift along the z axis is proportional
to the number of steps N. If we assume that the consecutive shifts are
separated by equal time interval A¢ then N = t/At where t is the total time
of observation. In consequence:

(m?)ay = const. Ait t = const. t. (5)
The mean square value of the shift along z axis is proportional to the time
of the observation. On the example of the simple one-dimensional random
motion we can understand why Smoluchowski was happy when he found
for the mean square value of the consecutive shifts of the Brown’s particle
a formula proportional to time. The connection between the simple pro-
portionality to the time of the observation and the nature of the stochastic
process was established. It is interesting to study the values of W for the
more realistic numbers NV and m assuming that NV is representing the num-
ber of all atomic collisions with Brown’s particle whereas m is mimicking the
number of collision pushing the particle in a defined direction (fluctuation).
Assuming 1 pum for the diameter of the Brown’s particle and the normal
condition for gas or liquid it is possible to estimate that the total number of
collisions from all directions is 10'6 s=! for gas and 1020 s~! for liquid phase.
Transforming formula (2) using Stirling formula for the factorial and taking
the following conditions N > 1 and 1 < m < N we get:

W (m, N) = <%N)1/2 exp <—%) . (6)

From the formula (6) we see that using the realistic values for N we can
expect to observe, with finite probabilities, the push in the definite direction
for m = 108 and m = 10'° molecules in the gas or liquid, respectively.

Smoluchowski solved the problem of movement of heavy Brown’s particle
in 3D space under the influence of the following forces:

1. Stochastic force (nondeterministic) due to the superposition of many
atomic collisions (fluctuation).
2. Internal friction force in the viscous medium (Stokes Law).

The famous Smoluchowski formula (found independently by Einstein)
for the mean quadratic way along z axis passed by the Brownian particle

takes the form: T R T
2
= t=——1 7
(%) av Smma = N 3mma ¥ (7)

where k is the Boltzman constant, 1 coefficient of viscosity of the medium,
a the radius of the Brown’s particle, ¢ time of the observation, R is the
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gas constant, N indicates Avogadro number. It is important to note that
from the fluctuation in the stochastic process it is possible to determine the
underlying number of atoms per 1 mol of substance. Using the formula (7),
Perrin and Zermelo have determined the Avogadro number proving that its
value is independent of the kind and mass of Brown’s particle, coefficient of
viscosity of the medium as well as of the temperature of the medium.

3. Fluctuation laboratory

After explaining successfully the movement of the heavy colloidal parti-
cles as generated by the thermal motion of atoms (molecules) Smoluchowski
published several papers in which he applied the theory of random processes
to the assemblage of Brownian particles suspended in liquid free or subject
to external forces. Most of these “gedanken” experiments are possible to per-
form in the laboratory. Many of his theoretical investigations can be applied
to the world of nuclear and subnuclear processes due to their universality.

All the formulas concerning fluctuations Smoluchowski is derived under
the assumption that the considered processes are of the Markowian type i.e.
the movements of the Brownian particles are mutually independent and all
positions of the particles inside the considered volume have equal probability.
These assumptions can be subsequently modified by the introduction of ex-
ternal fields of forces acting on the particles (e.g. electric fields, gravitational
field). We can also consider the problems of coagulation or fragmentation of
particles or other sources of mutual correlation in the movement of particles.

What I would call the Smoluchowski’s laboratory of stochastic motion is
simply a spacious vessel holding gaseous or liquid solution of colloidal par-
ticles performing Brownian motion. Using this “laboratory” Smoluchowski
carried out many cogitated experiments, predicting their results by inge-
nious theoretical considerations. Many of these experiments are directly
transferable to world of the subatomic physics. However, we have to keep in
mind that the formulas derived by Smoluchowski are valid for phenomena
concerning a large number of particles. Special care must be taken in order
to apply these formulas to the systems of low number of particles.

The basic question put forward by Smoluchowski can be stated as follows:
if we have on the average v Brown’s particles in a volume element AV of
the equilibrated colloidal solution, what is the probability W (n) to find n
particles in this volume element AV at an arbitrary moment? It turned out
that the solution takes the form of the Poisson distribution [1]
V" exp(—v)

W(n) = (8)

Next notion introduced by Smoluchowski is the transition probability
W(n,m). It answers the following question: suppose that at certain mo-

n!
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ment we have in the volume element AV n Brownian particles. What is
the probability that after a certain time internal 7 we find m particles in
this element? The transition probability is from the mathematical point
of view called the conditional probability. Smoluchowski called W (n,m)
in German as “Wahrscheinlichkeitsnachwirkung” what can be translated to
English as “probability after effect”. Next question considered by Smolu-
chowski is: what is the probability that a particle located in volume element
AV after time interval 7 leaves AV? Let us repeat that all this questions are
formulated assuming stationary state of the system of Brownian particles,
the movement of particles are independent (uncorrelated) and all positions
in the volume are equally probable.
Finally for W (n,m) Smoluchowski obtained the following formula:

W(n,m)= > wi(@)uw(y), (9)
r+y=m

where
wgn) _ Cg(l _ P)“"P”*z, (0 <z< n) (10)

and
(vP)Y exp(—vP)

1!

wa(y) = ;o (0<y<o0). (11)

where wg") (z) is the probability that x particles remain in AV after time 7, if
at to (first moment of observation) it was there n particles, wy(y) indicates
the probability that after time 7, y particles enter the element AV. P
denotes the probability that a particle being at the beginning in element
AV after time 7 leaves this element. The coefficient C7} denotes the number
of distinct ways of selecting z particles from the initial group of n. The
other symbols are the same as in Section 2. Smoluchowski was interested
in the density fluctuation phenomena mostly for the purpose of studying
the reversibility of processes generated by statistical thermodynamics. He
derived two important formulas for the mean time of life T}, of the fluctuation
state of n particles in the volume element AV and the mean recurrence time
of n particles in AV 6,,:

T

T, = T—Wnn) (12)
and |- W)
O T W) W) (13)
For n > v |
6, ~ 1 exp(v) n! (14)
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We notice from (14) that at very large value of n the recurrence time will
become infinitely long. That means that observing the volume element AV
at finite time intervals 7 we have to wait infinitely long to get the same
configuration n. This was for Smoluchowski an important proof of the irre-
versibility of statistical thermodynamics.

For our purposes more interesting is the probability density W (7, 75)
that the Brownian particle in its chaotic movement after time 7 will change
the position from 7| to 7:

W (7 F)—; ex _M (15)
BT rDryz P iDr )’
where
R T
D=— 16
N, 6man’ (16)

D is called the diffusion coefficient. The other symbols in (15) and (16) were
defined in Section 2. Integrating over the volume element AV we get:

— 7y|? oL
(47rDT 3/2 //exp< 2| ) e, )

where the integration over 77 is stretched over the volume AV and over 7%
is confined to space outside volume AV. Coefficient of diffusion D contains
Avogadro number Nj. Through formulas (10) and (11) N4 is connected to
the density fluctuation. We can then conclude that by observation of density
fluctuation i.e. counting the number of particles in volume AV at constant
time intervals 7 we might also determine the number of invisible atoms in
one mol of substance.

The above presented considerations can be directly transferred to the
subatomic world by investigating the fluctuations of number of particles
emitted in nuclear collisions from one collision to the other (event by event
fluctuations). The size of those fluctuations depends on the type of the
excited gas which is the source of emitted particles e.g. quark—gluon plasma
or hadron gas. Instead of volume element AV in 3D space we are often
considering elements in phase space, elements of solid angle, elements in
momentum space or ratios of various types of emitted particles.

Smoluchowski studied also the Brownian motion in the presence of per-
fectly absorbing wall, perfectly reflecting walls as well as coagulation prob-
lems. This last process occurs when two Brownian particles are sticking
together if their mutual distance |R1 - R2| falls down below the certain ra-
dius R, called coalescence radius. This concept is also being used in nuclear
reactions in which two nucleons or two groups of nucleons with momenta pj
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and p5 find themselves within the coalescence sphere in momentum space
|ge| such that [py1 — P2| < |@c|. They are then emitted as one particle. This
is a full analogy of the coagulation radius of Smoluchowski.

More interesting for the application in physics of subatomic processes
are the non stationary phenomena in which there is a flow of Brownian
particles caused by the gradient of the particle density (diffusion) or by
external electrical or gravitational fields. Those processes are governed by
the so called Smoluchowski’s equation:

ow ) Fm
e div <D gradW — Gran W) , (18)

where F' is the external force acting on the unity of mass, W is the density
of Brownian particles, D denotes the diffusion coefficient, a indicates the
diameter of Brownian particle and 7 the coefficient of viscosity. The first
term in parenthesis describes the stochastic diffusion process, the second
one the motion caused by the external force. The Smoluchowski’s diffusion
equation is a limiting form of the more general Fokker—Planck equation.
The works of Smoluchowski are not terribly often cited in papers concerning
subatomic processes due to the simple fact that before the neutron discovery
(1932) physics of nuclear structure practically did not exist. Nevertheless
many of the fluctuation equations from the physics of Brownian motion and
the Smoluchowski’s equation have found an application to physics of nuclear
collisions.

4. Application of Smoluchowski’s work to subatomic physics

Most of the theoretical experiments of Smoluchowski concerning the col-
loidal solution of particles have found applications in the chemistry of col-
loids. Smoluchowski explained also the blue color of the sky as well as the
critical opalescence. After the discovery of new forms of matter like nucle-
onic matter and more fundamental substructures of quarks and gluons it is
to be expected that many Smoluchowski’s considerations will be applicable
to highly excited nuclear matter up to its critical state as well as in search
for the early state of the universe — the quark—gluon plasma. Those states
are usually created in laboratory by heavy ion collisions.

In Fig. 3 a schematic picture of heavy ion collision in the energy range
from tens to few hundreds MeV per nucleon is shown. We can distinguish
three regions of the reaction: projectile like, target like and the interaction
region. In the interaction region a strongly excited nucleon gas is formed. To
the excited nucleons the random walk model presented in Section 2 can be
applied. As a result of collisions the nucleons can be transferred to projectile
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like fragment PLF or target like fragment TLF or escape to the continuum.
If two nucleons are moving with momenta p7 and po which are subject to the
condition |p7 — pPa| < |ge| where ¢ is the coalescence radius in momentum
space then these two nucleons can be emitted as one particle with momentum
P = pi + pa. This phenomenon is a full analog of coagulation of colloidal
particles described by Smoluchowski [1]. The random walk model has been
applied to the two stage model of heavy ion reaction by Sosin [2]|. In the first
stage of reaction the nucleons become free as the result of the interaction
with mean field or with other nucleons. In the second stage the free nucleons
can be transferred to the projectile, to the target or form a cluster if the
difference of their momenta is contained in the coalescence sphere. Several

D2

T

Fig.3. Schematic picture of the collisions of two heavy ions. P — projectile, T
— target, PLF — projectile like fragment, TLF — target like fragment hatched
part indicates the interaction region, p; and g indicate momenta of the outgoing
nucleons or clusters.

attempts to determine the primary number of particles created in central
heavy ions collisions from event by event fluctuations have been made. These
are experiments which can be directly related to the determination of the
Avogadro number by observations of the fluctuation of number of Brownian
particles in a volume element AV'. It is usually rather difficult to determine
the volume element AV in nuclear collisions so the fluctuation considerations
are shifted to studies of volume independent quantities like ratios of intensity
of various kinds of particles, ratios of particles of different charges etc.
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As an example let us take ratios of charged particles. It should be kept in
mind that the charge unit in QGP phase is 1/3e whereas in the hadron phase
le. Defining the next emitted charge by () = N, — N_, where N indicates
the number or emitted particles positively charged, and N_ the number of
emitted negatively charged particles we have for the total number of charged
particles N = N4 + N_. Let us define R = N;/N_ and F = QQ/N¢,. The
mean square fluctuation of R? is then:

(0R%)ay = (B?)av — (R)3, = 4(0F ay . (19)

Jeon and Koch [3] have shown, that the parameter D defined as (N, ){(0R?)
for hadron gas has the value D), = 4 and for quark-gluon plasma Dqgp = 1.
On the basis of the experimental results for 7+ and 7~ emission in
208pt - 208pPh collision at energy 17.6 GeV per nucleon pair in CM at the
SPS accelerator in CERN the experimental value was found to be Dey, =
3,5. We can then conclude that in very short time 7 < 1072% s the quarks
are coalescing into the hadron resonances which are decaying into meson
pairs. So far the value of parameter D was not calculated for strongly coag-
ulating gas. The existence of hadrons and meson resonances in the decay of
QGP was recently indicated by Broniowski and Florkowski [4]. At this point
we may try to speculate a little bit about the fate of a piece of QGP. It was
expected that due to the large statistical factor of the QGP (see Section 1)
once formed the QGP will expand. This is due to the principle of increase of
the entropy. The transformation back to the hadron phase within the same
volume would contradict the law of constant increase of entropy. In view of
the possibility of formation of the hadron resonances in the process of fast
coagulation of quarks it is possible to explain the transformation of QGP
into hadron phase within the primary volume of colliding nuclei thanks to
the exponential increase of the number of hadronic states. This large num-
ber of excited resonance states provides the phase space density necessary
to keep the entropy increasing within the volume of colliding nuclei what is
suggested by recent results of the HBT type of experiments [5].

Quite recently with the help of the Smoluchowski’s equation Swigtecki
and his colleagues [6] have shown how to calculate the fusion cross section for
very heavy systems created in the interaction of projectiles 4*Ca—2Kr with
208Ph nuclei. This reaction is schematically show in Fig. 4. The fusion cross
section was so far calculated by multiplying the cross section for reaching the
sticking configuration of the colliding nuclei by the probability of survival of
the nucleus left after one neutron evaporation from the compound system.
It turned out that the product mentioned above has to be multiplied by the
third factor which takes into account the diffusion process of nucleons in
the neck region. Due to this effect part of the nucleons will move down the
potential and the second part will be shifted by the diffusion processes up
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Fig.4. Schematic picture of the fusion of two nuclei. Dotted part indicates the
neck region.

the potential barrier. This last group of nucleons will contribute to fusion.
For the potential of a parabolic shape V(z) = —1/2bz?, the process can be
described by the one dimensional Smoluchowski’s equation:

Gaa—vf = (baW) +TW", (20)
where primes denote the differentiation by the z variable, G is the friction
coefficient, W is the probability that particles are at position z. The neck
plays the role of the Brownian particle. The calculated cross section shows
excellent agreement with experiment.

Finally we should mention the possibility of using Smoluchowski’s works
on the fluctuation at the critical point of nuclear matter or critical phe-
nomena at transition point to quark—gluon plasma. Unfortunately the in-
complete experimental data existing up to now on these subjects preclude
at the moment full interpretation of critical phenomena in subatomic phase
transitions.
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