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We present an attempt to describe collective quadrupole excitations
in medium heavy transitional nuclei starting from HF-BCS approach with
Skyrme SIII forces. The collective dynamics is treated through the Bohr
Hamiltonian with mass parameters and moments of inertia calculated mi-
croscopically in the cranking approximation. Theoretical energy levels and
B(E?2) transition probabilities for 192Zr, 1%Mo, 1°Ru, 11°Pd, 1?*Xe and
126 B4 nuclei are compared with experiment.

PACS numbers: 21.10.Re, 21.60.Jz, 23.20.Lv, 27.60.4]

1. Introduction

It is known that medium heavy nuclei in the region A = 100-130, both
neutron rich and neutron deficient ones, are interesting examples of tran-
sitional, 7y soft nuclei where the concept of a triaxial deformation is im-
portant. Moreover recent experimental techniques such as in beam spec-
troscopy allows us to analyze in much detail the structure of low lying levels,
cf. e.g. |1,2]. Several theoretical approaches have been applied in studies of
collective excitations in the discussed nuclear region. Some of them employ
the Bohr Hamiltonian however their prescriptions for obtaining a poten-
tial energy and inertial functions are different from ours. The energy and
the inertial functions are parametrized in a certain way (General Collective
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(Frankfurt) Model [3]) or are derived from a schematic interaction (as in
Kumar—Baranger dynamic deformation model [4]) or from phenomenologi-
cal one particle Nilsson potential [5,6]. Another alternative is the Interacting
Boson Model [2] with all parameters fitted to experimental data.

In this paper we aim at providing a full dynamical description of the
quadrupole modes in the discussed nuclei. We also use the Bohr Hamiltonian
but we obtain the functions which enter the Hamiltonian from the effective
nucleon—nucleon Skyrme interaction. On the other hand, the possibility of
a coupling of the vibrational and rotational degrees of freedom differs our
approach significantly from calculations applying the generator coordinator
method (GCM) to the similar microscopic forces in Ref. [7-9].

The Bohr Hamiltonian is determined by seven functions: the potential
energy, three moments of inertia and three mass parameters. The method
used to obtain these functions from self consistent calculations is based on
the Adiabatic Time Dependent Hartree Fock (Bogolyubov) approach [10-
14]. However going this route we make use of one further approximation:
we neglect so called Thouless—Valatin terms coming from the time-odd part
of the density matrix. As a consequence we get the Inglis—Belayev formula
for the moments of inertia and so called M(Q) expression for the mass
parameters [14,15]:

h? _ _
By = ?<M(1)1M(3)M(1)1>kj, (1)
(1l Qi) (v|Qj| 1)
M(n),kj = (ep, T ey)nj (U’MUV + UV’UM)Q ) (2)

where Q; are the components of the mass quadrupole operator.

2. Details of the calculations

The results presented below have been obtained using the Skyrme SIII
interaction and a seniority force in the p—p channel. Pairing strengths G, , =
Gnp/(11+{N, Z}) have been fitted separately for neutron rich and neutron
deficient nuclei and are given below.

TABLE 1
Pairing strength parameters.

gn [MeV] g, [MeV]

1027, 104)\[o 110Ry 1104 17.1 16.5
124X e, 126Ba 18.0 17.5
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Numerical calculations have been performed using the code described
in [16], ie employing the harmonic oscillator eigenfunctions in the cylindrical
coordinates. However the only symmetries imposed on the self consistent
solutions are parity and signature thus allowing for triaxial shapes.

The collective 3, 7 variables are defined as Bcosy = qo\/7/5/A(r?),

Bsiny = qa+/37/5/A({r?), where g and g are expectation values of the Qg9
and Qo9 components of the quadrupole mass tensor.

The potential energy, the mass parameters and the moments of iner-
tia have been calculated on a regular mesh with a step equal to 0.05 (6°)
along the § () direction. The mesh contains 144 points and covers the
(0,0.65) x (0°,60°) sextant of the 3,7 plane. To get a HF+BCS solution
with a given deformation we use linear constraints on the components of the
quadrupole mass tensor. Given the potential energy and mass parameters as
the functions of the 3, v variables the eigenproblem of the Bohr Hamiltonian
is solved using the method presented in [5].

3. Results
3.1. Energy levels

The figures below (Figs. 1, 2, 3) show a comparison between experimen-
tal [17] and calculated energy levels for the considered nuclei. The levels are
grouped into g.s., quasi v and quasi 8 bands (most of the nuclei are really ~y
soft, thus justifying the presence of the “quasi” prefix). The general conclu-
sion is that the theoretical spectra are stretched significantly as compared
with experiment, however we should remember that our calculations do not
contain any free parameter. Such stretching can be explained by too small
values of the inertial functions entering the Bohr Hamiltonian, this point
will be discussed briefly in the last section.
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Fig. 1. Experimental [17] and theoretical energy levels for 1°2Zr and Mo nuclei.
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Fig. 2. Experimental [17] and theoretical energy levels for *'°Ru and ''°Pd nuclei.
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Fig. 3. Experimental [17] and theoretical energy levels for 24Xe and '26Ba nuclei.

3.2. E2 transition probabilities

The electromagnetic E2 transitions give us important information on the
nuclear wavefunctions. In this subsection we present a sample of the results,
namely B(E2) probabilities for 2] — g.s. transitions in the considered nuclei
and transitions between low lying states in the ''Pd isotope. Here we also
do not fit any parameters. Figure 4 shows quite a good agreement with
experiment, better than what was obtained for the energies.
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Fig.4. Left panel: B(FE2) probabilities for 2] — g.s.; right panel: B(E?2) transition
probabilities in '9Pd nucleus. Experimental data taken from [17].

4. Conclusions

Results of Section 3 show that in the presented approach general fea-
tures of quadrupole collective excitations of the considered nuclei can be
understood assuming only the well established microscopic nucleon—nucleon
interaction. However the problem of too small mass parameters (too large
energies) remains. Two different sources of corrections yielding an increase
of the mass parameters have been discussed recently. The first source, char-
acteristic for self consistent calculations, are the Thouless—Valatin terms
mentioned in the Introduction. Preliminary, rough estimates (cf. [13,15,18])
give the 10%-15% increase of the mass parameters, which leads to decrease
of the collective energies of a significant amount. The second source, pro-
posed in [5,19], is the renormalization of the pairing gaps due to the coupling
with the pairing degrees of freedom. The work on more extensive studies of
these problems is in progress.

Present work is supported in part by the Polish State Committee for
Scientific Research (KBN) grant No 2 P03B04119 and by the Convention
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