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We present possible manifestations of octahedral and tetrahedral sym-
metries in nuclei. These symmetries are associated with the 01,3 and T]d3
double point groups. Both of them have very characteristic finger-prints
in terms of the nucleonic level properties — unique in the Fermionic uni-
verse. The tetrahedral symmetry leads to the four-fold degeneracies in the
nucleonic spectra; it does not preserve the parity. The octahedral sym-
metry leads to the four-fold degeneracies in the nucleonic spectra as well
but it does preserve the parity. Microscopic predictions have been obtained
using mean-field theory based on the relativistic equations and confirmed
by using ‘traditional’ Schrédinger equation formalism. Calculations are
performed in multidimensional deformation spaces using newly designed
algorithms. We discuss some experimental fingerprints of the hypothetical
new symmetries and possibilities of their verification through experiments.

PACS numbers: 21.10.-k, 21.60.—n, 21.60.Fw

1. Introduction

The phenomenon of the shape coexistence in nuclei is related to one of
those ‘intuitive’ mechanisms that can be relatively easily imagined in terms
of classical physics and geometry. This is perhaps one of the reasons why a
conceptual progress in this important sub-field of nuclear structure physics
has been relatively slow — although important successes such as finding an
evidence for ‘prolate-spherical-oblate’ shape coexistence or for a coexistence
between the super-deformed and normal-deformed nuclear configurations —
have been achieved. The examples of the shape coexistence just mentioned
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are related directly to fundamental symmetries of the nuclear mean-field:
(pseudo) SUs and the so-called pseudo-spin symmetries (cf. e.g. Ref. [1], [2]).
Studying the symmetries that will be discussed in this paper may shed some
light on yet another microscopic mechanism possibly present in nuclei: the
spontaneous symmetry breaking leading to wunusually high single-nucleon
degeneracies that may appear in deformed nuclei.

The most common, one may think, triaxial-ellipsoid nuclear shapes have
for a long time not received as thorough an attention from the experimental
point of view as they should have — even though in many models, such as
cranking model or mean-field theory based models, the tri-axiality and the
so-called y-deformation play an important role. Only recently an attempt to
observe the quantum wobbling mechanism in nuclei has forced considering
a simultaneous combination of several experimental manifestations of the
non-axial shapes in nuclei. To our knowledge, there has been so far no
experimental effort undertaken, in terms of searches for an evidence of non-
axially symmetric nuclear shapes, with the exception of the ellipsoidal ones.

In terms of the conceptual progress, the so-called C4-symmetry hypoth-
esis is particularly worthwhile mentioning, Ref. [3]. Although no consistent
evidence of its presence in experimental results on super-deformed nuclei ex-
ists so far (and rather numerous arguments against), no systematic search,
neither theoretical nor experimental in terms of normally deformed nuclei
has ever been undertaken, and it remains to be seen which nuclei can pos-
sibly built-up C4-symmetric configurations with the elongation that are not
very different from their ground-state elongation.

Recently, an idea originally proposed in Ref. [4] has been re-analyzed in
terms of the possible presence of the pyramid-like (tetrahedral) shapes in
nuclei, Ref. [5], with a conclusion that extremely strong nuclear shell effects
leading to a tetrahedral symmetry may exist in nature on a sub-atomic
level. In this presentation we would like to address a slightly more general
problem of possible existence in nuclei of both octahedral and tetrahedral
symmetries; these symmetries are mathematically related but cause very
different physical implications.

Octahedral and tetrahedral symmetries are characterized by a relatively
large number of symmetry elements. Compared to classical Do-symmetry
group that is composed of 4 elements (three rotations through an angle of
about three mutually perpendicular axes plus the identity transformation)
and characterizes a family of tri-axially deformed nuclei, a group of sym-
metry of a classical tetrahedron, Ty, contains 24 symmetry elements and
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that of a classical octahedron, Oy, 48 symmetry elements'. As a result of
such a high degree of symmetry, the TdD or OE invariance implies an unusu-
ally high degeneracy of the single particle states — eigen-solutions to the
Schrédinger equation. More precisely, the double tetrahedral, TdD—symmetry
group generates two two-dimensional and one four-dimensional irreducible
representations. This fact manifests itself through double and quadruple
degeneracies of the single-nucleonic levels — an unusual situation given the
fact that so far, for the deformed nuclei, only the double (i.e. Kramers)
degeneracies of the single-nucleonic levels have been considered.

The octahedral double point group, OP, contains an inversion among its
symmetry elements with the consequence that the parity of single-nucleonic
levels is preserved by the solutions to the octahedrally-symmetric Hamil-
tonians. In this case we find six irreducible representations, three of them
characterized by the positive parity of the underlying single-particle states
and three other by the negative parity. Within each of the two parities we
find two two-dimensional and one four-dimensional irreducible representa-
tions and it follows that the corresponding levels can be occupied by up to
two and up to four nucleons, respectively.

2. Symmetries of the nuclear mean-field

In this section we are going to summarize the mathematical concepts
underlying the present study. This summary will be followed by a few il-
lustrations of the discussed principles in the case of the nuclear TdD and OE
symmetries.

2.1. General aspects of discrete symmetries in multi-fermion systems

We consider a deformed mean-field nuclear Hamiltonian; the correspond-
ing operator can always be written down in the form

H =H(7,p,5:d), (1)

where 7, p and § are the position, linear momentum and spin operators,
respectively, and where & <+ {@, , } represents an ensemble of all parameters
that define nuclear shapes; here we are using the multipole deformation
parameters that are particularly well suited for analyzing the point-group
symmetry properties.

! On the level of symmetries of the Schrédinger equation for the nucleons (fermions)
the classical symmetry groups need to be replaced by the so-called double (or spinor)
groups that contain a double set of symmetry elements. In the mentioned groups
this means 8, 48 and 96 symmetry elements for the double D?, T} and O} groups,
respectively.
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Consider a group G with the symmetry operators (group elements)
{@1,@2, @f}@g (2)

Assuming that G is the group of symmetry of Hamiltonian #H implies that
all elements of the group commute with H:

(H, 0] =0 with k=1,2,...f. (3)

Of course, operators Oy may, but do not need to commute among themselves.
Suppose that the group in question has irreducible representations (irreps)

(R1,Ra, ... Ry} (4)

(The reader unfamiliar with the terminology used in group theory does not
need to know at this point more than the fact that the irreps can be char-
acterized by their dimensions.) Suppose that the irreps in question have
dimensions

{di,do, ... d; }, (5)

respectively. Then the eigenvalues ¢, of the problem
HU,=¢, 0, (6)

appear in multiplets: di-fold degenerate, do-fold degenerate, ... etc.

The point groups of interest for us in nuclear physics applications differ
from those usually discussed in crystallography. Since the eigenstates of the
problem in Eq. (6) are spinors it follows that all 360° space-rotations must
not give the identity, Z, but rather —Z (change in phase). The classical
crystallographic point groups ‘adapted’ to provide this feature are called
double or spinor point groups and their names are written with the super-
script D, as seen already above. Among 32 standard point groups usually
considered in quantum mechanics applications (c¢f. Ref. [6] for a detailed
presentation) there are only two that are of interest for the present study:
the tetrahedral and the octahedral double point groups, TdD and OE, respec-
tively. The important physical reason for that interest is that among the
corresponding irreps there are some with dimensions d = 4; all other double
point-groups of possible interest in subatomic physics generate exclusively
the double degeneracies at most.

2.2. Four-fold degeneracies of nucleonic levels and energy gaps

The degeneracies of single-nucleonic levels are related to the symmetries
of the underlying potential. They may imply a presence of strong gaps in the
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single particle spectra and thus play an important role in stabilizing certain
nuclear configurations. Indeed, if a large energy gap appears at the Fermi
level of a given nucleus, in order to excite (i.e. destabilize) the corresponding
configuration for instance through bombarding with external particles, there
will be a large energy necessary as compared to the situations where the gaps
are small. This mechanism is very well known in spherical nuclei in which
the ‘magnetic’ [(27 + 1)-fold| degeneracy of the nucleonic levels gives rise to
the large (‘magic’) gaps and implies indeed a strong increase in stability of
the corresponding nuclei, like e.g. in 28Pb.

What has been until recently unknown is that the single-particle spec-
tra in deformed nuclei may generate gaps as large as those in the spherical
ones (!) and that apparently the T} and/or O} symmetries play an impor-
tant role there. The quantitative predictions related to the strong shell-gaps
presented below, can be qualitatively understood as follows.

The property of saturation of the nuclear forces leads, among others,
to a relatively weak dependence on the proton and neutron numbers of
the depth of the mean nuclear potential. In fact in several nuclear physics
considerations this weak dependence has been neglected altogether assuming
that the potential depth remains constant (this will of course not be the
case in the present study when performing the realistic calculations and the
argument is brought here for the sake of a qualitative consideration only). At
a constant depth of the potential, an enhanced appearance of single-particle
gaps in the spectra is more likely if the increased degeneracy of levels is
allowed. The above statement is based on ‘empirical’ knowledge and has no
rigorous mathematical foundation?.

3. Octahedral and tetrahedral symmetries: shapes

One of the important mathematical aspects of working with the octahe-
dral and tetrahedral symmetries is related to modeling of these symmetries
with the help of spherical harmonics when parameterizing the nuclear sur-
face X:

Amax A

X R(’ﬁ, @5 d) = R() C(d) [1 + Z Z (&S Y)\,/J,('ﬁa ()0)] . (7)
A=2 p=—-X\

2 In fact the single-particle spectra that differ in terms of the level degeneracies, if
obtained with the mean-field potentials of (nearly) constant depths will differ in terms
of the average level spacing: the higher the degeneracies — the larger the average
level spacing. For the realistic nuclear Hamiltonians there is no general theorem that
allows to predict the presence (or absence), of the large gaps in the single particle
spectra although some aspects like e.g. the influence of the spin—orbit interaction
potential on such gaps are, to some extent, predictable.
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Above, & = {an s A =2,3, ... Amax; #=—A, =A+1,... + A}, Ry is the
nuclear radius parameter, and c¢(&), a function whose role is to insure that
the nuclear volume remains constant, independent of the deformation.

3.1. Octahedral deformations

We can demonstrate that there exist special combinations of spherical
harmonics that can be used as a basis for surfaces with octahedral symmetry.
The lowest order of the octahedral deformation, called by convention the first,
is characterized by the fourth rank spherical harmonics. By introducing a
single parameter 0; we must have in this case

5
Qo = +01; Qus = [ 101, (8)

1.e. three hexadecapole deformation parameters must contribute simulta-
neously and with proportions 4/5/14 fixed by the octahedral symmetry
requirement. No deformation with A = 5 is allowed and the next possible

L

1

Fig.1. Comparison of two octahedrally deformed nuclei. Left: octahedral defor-
mation of the first order, 0, = 0.10; right: octahedral deformation of the second
order, o, = 0.04.

are deformations with spherical harmonics of A = 6. Similarly, we introduce
one single parameter, 09, with the help of which the next allowed octahe-
dral deformation, called of the second order, and depending on the 6 rank
spherical harmonics can be defined. We must have:

7
g0 = +02;  g+4 = —\/;02 . (9)
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The third order octahedral deformation is characterized by the 8! rank
spherical harmonics and we can demonstrate that it can be defined with the
help of a single parameter, o3, where:

_ _ _ 28 /65 ]
ago = +03;  Qg44 = Tog %3 @848 =1/ 1gg %3 (10)
Of course, the basis of the octahedrally deformed surfaces is infinite, but
the increasing order of the octahedral deformations implies immediately a
twice as fast increase in the rank of the underlying multipole deformations;
the possibility of having such a situation in real nuclei is unlikely and the
expansion series can be cut off quickly.

3.2. Tetrahedral deformations

In a similar fashion, the tetrahedral deformation basis can be introduced
in terms of the standard spherical harmonics. The first order tetrahedral
deformation, ¢, is characterized by a single octupole deformation with A = 3
and p = 2 and we have

a3 42 = tl . (11)
The second order tetrahedral deformation, ¢9, is characterized by multipo-
larity A = 7 (observe that the multipoles with A = 4,5 and 6 are not allowed
at all by the symmetry studied) and we have

11

ar42 = lo; a6 =~/ 13 t2- (12)
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Fig.2. Comparison of two tetrahedrally deformed nuclei. Left: tetrahedral defor-
mation of the first order, t; = 0.15; right: tetrahedral deformation of the second
order, to = 0.05.
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The third order tetrahedral deformation, t3, is characterized by A = 9 and
by definition we must have:

13
ag+2 =135 Qg6 = 3 t3. (13)

Strictly speaking, the bases of these exotic deformations are of the infi-
nite order. However, for the nuclear physics applications, it is important to
observe that also the rank of the spherical harmonics increases very rapidly
so that the importance of the components with the high multipolarity be-
comes quickly negligible.

4. Octahedral and tetrahedral symmetries: shell structure

In the following we are going to illustrate some characteristic features of
the single particle level spectra and of the shell structures associated with
the octahedral and tetrahedral symmetries.

4.1. Octahedral symmetry: O,?—symmetric single particle spectra

An example of the single particle spectra corresponding to the octahedral
symmetry is shown in Fig. 3.

Let us remark first that the single particle energy curves are not sym-
metric with respect to the change in sign of the octahedral deformation,
similarly as in the case of the very well known hexadecapole deformation.

Secondly, and more importantly, let us observe that the octahedrally-
symmetric Hamiltonian preserves the parity. This follows from the fact
that the corresponding shapes are modeled with the help of the spherical
harmonics of the even rank only, cf. Eqs (8)—(10). It is well known (cf. e.qg.
Ref. [7]) that the O} group has six irreducible representations, two of them
four-dimensional and the remaining four two-dimensional. This implies that
the solutions to the Schrodinger equation split naturally into six families,
cf. Eqgs (4)—(6). From the physics point of view it is important to notice
that within each parity we have a symmetric repartition of the irreps: one
four-dimensional and two two-dimensional ones within each parity, as it can
be seen in Fig. 3.

The very existence of the six independent classes of single-particle wave-
functions is a special feature that has not been observed so far on the sub-
atomic level. Any experimental evidence alluding to such a structure will be
of a great interest, and this, on the very basic level: numerous point-group
symmetries have been exploited to a large extent and for a long time in
solid-state and molecular physics and the theoretical understanding of the
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Fig.3. An example of single particle spectra for protons (top) and neutrons (bot-
tom) valid around !"Yb nucleus in function of the octahedral deformation of the
first order (01). The four-fold degenerate levels are marked with the full lines; the
two-fold degenerate levels with the dashed lines. The curves are labeled with the
Nilsson labels; the numbers in the curly brackets give the percentage of validity of
each label. For further comments see the text.

underlying phenomena has profited in an important way. The mean-field
theories based on the strong interactions have not advanced towards the
‘exotic’ point-group symmetries so far.

Results in Fig. 3 show extremely large (over 3 MeV each) gaps at Z =
70 and N = 114. This in itself is an important observation: the gaps of
this order of magnitude belong to the strongest known in nuclear structure
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physics. Their sizes exceed e.g. the sizes of the shell-gaps responsible for
the stabilization of the superdeformed nuclear configurations. Below we
will demonstrate that these gaps may lead to static octahedral deformations
in nuclei, but our experience with the ‘more traditional’ gaps of this size
suggests that they may have an important influence, among others, on the
collective oscillation properties.

4.2. Tetrahedral symmetry: TdD—symmetm’c single particle spectra

The tetrahedral shell structure has been studied in some detail espe-
cially in order to establish the particularly strong tetrahedral magic gaps,
cf. Ref. [5]. The corresponding tetrahedral shell closures are predicted at:

Z; = 16,20, 32,40, 56, 70,90, 100,112, 126,
for the protons, and
Ny = 16,20, 32, 40, 56, 70, 90, 100, 112, 136,

for the neutrons, showing strong similarities between the proton and neutron
spectra.

Instead of over-viewing the whole series of various mass ranges we will
limit ourselves to presenting one region only. An example of the single
particle spectra corresponding to the tetrahedral symmetry is shown in Fig. 4
for the nuclei in the vicinity of the ?26Th. In this case the energy curves
are symmetric with respect to the change in sign of the deformation, unlike
the octahedral deformation case discussed above. Within the first order
tetrahedral deformation the corresponding tetrahedral gaps visible in the
figure, valid for the actinide mass range, are of the order of 2 MeV.

In principle one could think that optimal conditions to observe the par-
ticularly stable tetrahedral nuclei would correspond to the combining of the
‘doubly magic’ proton and neutron configurations. Such a suggestion would
have been natural in the case of the strongest i.e. spherical shell gaps, but in
the context of the ‘secondary’ shell structures it is insufficient (or incorrect).
The reason is that the tetrahedral minima arise as a result of a competition
with comparably strong (or stronger) shell closures, notably at the spheri-
cal or at the prolate deformed shapes. In such a case, a moderately strong
tetrahedral shell effect may be sufficient to produce a reasonably stable tetra-
hedral minimum when the competing shell effects are weak, non-existent, or
giving rise to the positive shell energies at e.g. spherical shapes: such a sit-
uation often takes place at certain particle numbers that are between the
traditional magic numbers corresponding to the spherical shell closures. In
the next section we are going to illustrate this mechanism in some detail.
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Fig. 4. Examples of the single particle proton (top) and neutron (bottom) spectra in
function of the tetrahedral deformation of the first order, ¢;. For further comments
see text and also Fig. 3. Large gaps at Z = 70 and 90/94 as well as at N = 112
and 136/142 deserve noticing.

5. Octahedral and tetrahedral symmetries: stability

The problem of stability of nuclei with the tetrahedral and/or octahedral
symmetries is directly related to the properties of the total potential energy
surfaces. Calculations employing the Strutinsky Woods—Saxon method can
be considered realistic in the context and offer a priori quick and reliable
estimates. However, one needs to take into account several competing defor-
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mation degrees of freedom? in order to avoid overestimating the heights of
the potential barriers that separate tetrahedral /octahedral minima from the
other structures on the total energy landscapes. To solve this type of a prob-
lem an algorithm has been designed that minimizes the potential energies in
an arbitrary subspace of the multipole expansion space {ay,}. Preliminary
results of this kind of calculations have been published in Ref. [5]. More ex-
tensive calculations are in progress and here we are going to limit ourselves
to a global illustration of the shell effects on the potential energies. They
will include the macroscopic energy contributions calculated by using the
most recent version of the liquid drop model of Ref. [8].

We will illustrate the results of our preliminary calculations addressing
the problem of stability of the deformed nuclei for two discussed symmetries
separately.

5.1. Octahedral symmetry: nuclear potential energies

Our preliminary calculations related to the octahedral symmetry suggest
particularly strong shell effects at Z = 70 and N = 114 with indications to
possibly weaker effect at neighboring particle numbers, ¢f. Sect. 4.1.

Since the existence or nonexistence of the octahedral minima is strongly
related to a competition between at least the quadrupole (including spheric-
ity) and the octahedral deformations we are going to illustrate the related
effects by comparing the simplified energy cross sections that involve these
two deformations. In Fig. 5 we present such energy cross-sections for Z = 70
(Ytterbium) nuclei for several isotopes ranging from N = 100 to N = 118.
First of all it is worth emphasizing that the octahedral deformation suscep-
tibility is not a feature of the ‘two magic gaps only’: there are many isotopes
that manifest the minima of interest here. This follows from the fact that
the shape stability is a result of a competition among several deformation
degrees of freedom and that a minimum in a given deformation area arises
either because of the corresponding shell energies are strongly negative there
or because the shell energies are positive and particularly strong elsewhere.

The top part in Fig. 5 illustrates possible tendencies to produce the
octahedral-deformation minima, while the bottom part of the figure (in con-
junction with the previous one) allows to estimate the relative excitation
energy of the exotic minimum with respect to the ground state. It can be
seen from this comparison that the excitation energies may vary, in func-

3 As it happens the tetrahedral deformation of the first order (that coincides with
the octupole deformation as2) has a tendency to couple with the axially symmetric
octupole deformation azp, but other couplings cannot a priori be excluded. Similarly,
the octahedral deformation of the first order is related to the five hexadecapole degrees
of freedom and in order to obtain the realistic barrier estimates we need to consider
up to a dozen various deformations.



Atomic Nuclei with Tetrahedral and Octahedral Symmetries 2503
Total Energy (WS Dirac)

20 I L S S B B L S B L R R | ]
18F 100 E
16F 10 E
14 1%
12% 118 ' :

Energy [MeV]

E 7=70 1
> 1 0. 1 2

Octahedral Deformation

Total Energy (WS Dirac)

16} ]

IPARAM=-1Z0= 70 NO=110 Zpl=70 Npl=110
October 2002; NPOLYN= 6 HOMFAC=3.20 MeV

N b O
ARERRNRERER R
'

Energy [MeV]
(I»‘HTI';I{)OM-&(DOO'SB'E

Ly 1
IPARAM=-1Z0= 70 NO=114 Zpl=70 Npl=1141SOSPI=0

October 2002; NPOLY N=6 HOMFAC=3.20 MeV/

-4 -3 -2 -1 0

0 1 2 3 4
Deformation a[2,0]

Fig.5. Cross-sections of the total nuclear energies in function of the octahedral
deformation (top) and competing quadrupole deformation (bottom). Observe very
strong effects (the energy scale is compact) of the octahedral deformation in many
nuclei.

tion of the neutron number, from about 3 MeV to about 12 MeV or so, and
consequently it is not only the size of the barrier but also the absolute ex-
citation energy that needs to be taken into account. More precisely, while
the high barriers may be seen as an encouraging factor that stabilizes the
minima under consideration, the high excitation energies can be seen as a
direct measure of difficulties with the population of those states, the larger
the energy the more difficult the population.

The nuclei with neighboring Z-values provide a prioriseveral further can-
didates for the octahedral symmetry studies. At this stage we may conclude
that the octahedral ‘susceptibility’ is not limited to a couple of nuclei only
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as the single-particle diagrams presented earlier may suggest. But to draw
the definite conclusions it will be necessary to complete the more involved,
multidimensional potential energy calculations.

5.2. Tetrahedral symmetry: nuclear potential energies

A global ‘first-test” analysis aiming at a comparison of the susceptibility
towards the occurrence of the tetrahedral shapes among many nuclei has
been performed in analogy to the one presented above for the case of the
octahedral symmetry. Here we select only one nuclear range focusing at
the masses roughly between 230 and 250. The corresponding total potential
energy cross-sections are shown in Fig. 6 for illustration; the form of this
representation follows the one in Fig. 5.
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Fig.6. Cross-sections of the total nuclear energies in function of the octahedral
deformation (top) and competing quadrupole deformation (bottom). For further
comments see text and the preceding section.
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It can be seen from the figure that there are groups of nuclei suscep-
tible to form the tetrahedral-deformed minima, yet the excitation energies
related to those highly symmetric structures may be very high. Indeed, a
comparison between the results related to the energy minima in the top
part of Fig. 6 with the absolute energy minima of the curves in the bottom
part of the figure indicates that the energy differences may vary between
(2.5-3) MeV and about 10 MeV or so. We conclude that an optimal choice
for experimental test will require a compromise between the barrier heights
(possibly large) and the excitation energies (possibly low).

6. Nuclei with tetrahedral symmetry: population, decay and
observation possibilities

We believe that the hypothetical tetrahedral structures should be more
abundant as compared to the octahedral ones and thus we would like to
focus the following discussion on the former rather than on the latter.

In addressing the problem of an experimental discovery of the discussed
nuclear symmetries one may first ask a question as to why none of them
has so far been observed? Obviously one may advance several hypotheses
ranging from the most pessimistic ones (‘since they have not been seen so far,
perhaps they do not exist’) to the most optimistic ones (‘the evidence has
been already collected, the affirmative answers are stocked on the tapes with
the results of already performed experiments — the only problem: nobody
has thought about it’).

Let us try to discuss this very basic question first: why do we believe in
the existence of the new symmetries on the sub-atomic level? The arguments
in favor of the existence of these symmetries are based today exclusively on
the theory grounds. The present day nuclear microscopic theories are ad-
vanced and performant tools ‘tuned’ to describe the experimental results in
numerous sub-fields of our domain. In particular the self-consistent Hartree—
Fock methods have reached a high level of predictive power, especially since
artificial constraining conditions imposed in the early stages of the develop-
ment to simplify the computing — are nowadays removed (cf. e.g. Ref. [9]
and references therein). In the present context it has been verified in a few
cases (a more systematic study is in progress) that the Hartree-Fock itera-
tive procedures started at initial configurations with all symmetries totally
broken may converge to the highly symmetric solutions of the type discussed
in this paper and moreover, in accordance with the Z and N numbers for
which strong shell effects have been predicted. In particular, the numerical
coefficients that define the proportions of various multipoles [Egs (8)—(10) for
the octahedral symmetry and Eqs (11)—-(13) for the tetrahedral symmetry|
predicted by the group theory are reproduced by the self-consistent Hartree—
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Fock solutions down to the computer accuracy. One can hardly consider this
type of the result accidental. We believe that the remaining question is not:
Whether but rather: On what level of probability the configurations under
discussion can be populated and detected?

Preliminary calculations based on the Dirac-Strutinsky calculations give
not only the prediction of the very existence of the tetrahedral (octahedral)
shell-structures but also several indications about the related spectroscopic
properties. According to those calculations the minima on the potential
energy surfaces that correspond to tetrahedral (octahedral) shapes are sur-
rounded by potential barriers whose heights vary between a few hundreds
of keV up to a couple of MeV. The excitation energy associated with these
minima may vary typically between ~ 1 MeV and several MeV (cf. preced-
ing section). It is therefore possible that the minima of interest will lead to
isomeric structures analogous to the ones associated with the prolate—oblate
shape coexistence known e.g. in the Mercury region.

Unlike yrast-trap isomers, whose configurations are related to the par-
ticle-hole excitations with the spins nearly parallel to the symmetry axis,
the configurations associated with tetrahedral (octahedral) excited nuclei
correspond to deformations with no symmetry axes. Therefore the nuclei
in question may always decay through rotational transitions down to the
band-head, ¢f. Fig. 7. The yrast trap configurations leading to isomers may
in principle appear at any spin ranging from 0 to ~ 30 A, possibly higher.

L
>

Isomeric
Structures

8+/-

6+/—

4+/-
2+/-

Tetrahedron
Minimum

Excitation Energy

Quadrupole
Minimum

Fig. 7. Schematic illustration: structure and possibilities of the decay out of a
tetrahedral minimum. Since the lowest-order tetrahedral deformation has the same
geometrical features as the octupole deformation aszs, the concerned nuclei may
generate parity-doublet rotational bands known from the studies of the octupole
shapes. Establishing the structure of the bands (parity doublets?), the nature of the
inter- and intra-band transitions (dipole? quadrupole? octupole?), the properties
of the side-feeding and the decay branching ratios — all that will greatly help
identifying the symmetry through experiments.
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The isomers associated with new symmetries could be expected mostly at
the lowest spins of the order of I ~ (0 to 2) A, at or near the band-heads.

The new symmetries are expected to be a relatively low spin, but possibly
high excitation-energy phenomenon. In reference to Fig. 8 we may conclude
that the main difficulty is likely to be associated with the population rate
of states that lie low in spin, say I ~ (0-14) A, but whose excitation ener-
gies correspond to (1-4) MeV or more. Consequently, reactions with light
projectiles may be the first choice there. According to such a scenario the
target nuclei selected will lie close to the S-stability line so that the final
nuclei ‘to start with’ will most likely also belong to that area.

Excitation Energy [MeV]

Spin

Fig.8. A schematic ‘phase diagram’ illustrating expected positions of the hypo-
thetical low-spin isomers in various nuclei as well as the bands associated with
tetrahedral minima (for some quantitative examples ¢f. preceding sections). One
may expect that in some nuclei the band-heads (isomers?) may lie prohibitively
high in energy, while in some others [(1-3) MeV above the ground state| they may
be much easier to populate. The scales of the energy and of the spin are realistic.

Obviously a possible use of the radioactive beams will be another source
of challenges.

To establish an as simple as possible a scenario of reference, let us be-
gin with a model of an ideal situation, according to which our hypotheti-
cal nuclear configuration is associated with a strong tetrahedral minimum.
Suppose that we can neglect any coupling to vibrations (such as e.g. the
zero-point motion) and/or shape-polarizations that could possibly contam-
inate the purity of the discussed symmetry. At this limit, both the dipole
and the quadrupole electromagnetic transitions are strictly speaking zero
and the first allowed ones correspond to A = 3 (octupole). Within such an
ideal scenario the decay spectra of the tetrahedral nuclei will be composed
of octupole transitions only while preserving other rules characteristic of the
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Fig.9. Schematic illustration: rotational bands associated with the tetrahedral
shapes (right) as well as those associated with the axially-symmetric octupole
(pear) shapes (left) are expected to preserve the simplex quantum number and, in
the extreme limit, to produce the degenerate parity-doublet bands. The tetrahedral
shapes, unlike the pear-shapes, generate vanishing dipole moments. Quadrupole
transitions are marked with dashed-, dipole transitions with full-lines; octupole
transitions are possible in both cases but are not marked (see the text).

conservation of the simplex quantum number? — at variance with the il-
lustration in Fig. 9. In other words: an extreme beauty of the underlying
physical picture consists in the fact that the rotational energy levels satisfy-
ing, at least to a leading order, the usual I(I 4 1)-rule would be connected
through the (AI = 3)-octupole transitions rather than through the usual
quadrupole ones.

In realistic situations, various deviations from the ideal limit are to be
expected. In fact, in Fig. 9 we have chosen to illustrate what we believe is
a more likely situation, namely, the presence of a quadrupole polarization
and/or a ‘residual’ quadrupole deformations ‘contaminating’ the pure sym-
metry. In such a case the quadrupole transitions accompanying the decay of
a tetrahedral nucleus are expected to be weak but most likely dominating
the octupole transitions. In contrast, the pear shape nuclei known today
have their octupole deformations superposed with the quadrupole ones, and
their spectra are characterized by strong quadrupole and dipole transitions
at the same time. (One may conjecture that, given the mass of the compared

* Recall that the simplex transformation, say S,, is by definition equal to the product of
the 180° rotation about the Oy-axis, Ry, and the inversion Z and we have S, = R, .
In an ideal case of the strong, well defined minimum the energies of the inter-band
dipole transitions correspond to half of the related quadrupole intra-band transitions.
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nuclei, the quadrupole transitions in tetrahedral nuclei could be at least one
order of magnitude weaker than those in the normally deformed octupole
ones.)

Another mechanism that is likely to modify the ideal model situation is
a possibility that the parity doublet structures are split by a considerable
fractions of their energy. Such a mechanism is likely to occur when the
tetrahedral minima are not sufficiently deep. As a consequence, instead of
having a particularly simple picture as the one in Fig. 9, the bands appearing
degenerate will be considerably displaced with respect to one another.

The decay of the lowest energy states corresponding to the tetrahedral
minima may be of particular interest. The corresponding energies of exci-
tation with respect to the ground-state varying between numbers slightly
over 1 MeV up to a couple of MeV, the internal pair production may pro-
vide an extra signal. Given the fact that mean radius expectation values,
(r?), are likely to differ considerably between the tetrahedral excited- and
the quadrupole ground-state minima, the E0 transitions connecting those
states are likely to be enhanced.

7. Towards first principles: nuclear quantum mechanics

It turns out that the symmetry-induced properties of the nucleonic levels
and wave functions, as suggested in this paper, are unprecedented in nuclear
structure studies and provide interesting new challenges already at the level
of the nuclear quantum mechanics. First of all, an existence of new quantum
numbers is predicted. One of them may take three values in the case of the
tetrahedral symmetry; the other two, each of which take in turn three values
possible, in the case of the octahedral symmetry, ¢f. Table I. These good
quantum numbers will replace the well known signature quantum number in
the case of the parity-preserving octahedral shapes, and the simplex quantum
number in the case of intrinsic-parity breaking tetrahedral deformation.

In Table I we compare some properties, parameters or observables re-
lated to the specificity of the T (tetrahedral) and O} (octahedral) double
point-group symmetries. In particular, it is easy to see that the numbers
of symmetry elements in the case of TY or OP exceed by important factors
the number of symmetry elements associated with the well known, ‘stan-
dard’, triaxial-symmetry type shapes. There are in, total six, families of
the single-particle levels that can be associated with solutions to the OE—
symmetric Hamiltonian; three of them belong to the positive- and three
to the negative-parity and, moreover, one such a family within each set is
characterized by the four-fold degeneracy. A similar property holds for the
TdD—symmetric Hamiltonians except for the parity that is not conserved in
this case. The last line in the table shows how many values can the discrete
quantum numbers take in relation to the symmetries compared.
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TABLE 1

Challenges on the level of quantum mechanics
(Unprecedented quantum features related to T, and O} nuclear symmetries)

Properties High Symmetries ‘Usual’ Symmetries
(or observables) Tetrahedral Octahedral DY (‘tri-axial’)
No. Sym. Elemts. 48 96 8
Parity NO YES YES
Degeneracies 4,2, 2 4,2,2 4,2,2 2 2
—— N—— ~~~ S~~~
T=+4+ T=— T=+ T=—
Quantum Numbers 3 3+3+2(r=4) 2 (mr=4)

Another important aspect will need to be considered: the tetrahedrally-
or octahedrally-symmetric nuclei, if present in nature, are expected to ex-
hibit the collective rotational properties that are very different from what
we have learned by studying the rigid tri-axial rotors. First of all, let us
remind the reader that the classical moments of inertia associated with a
tetrahedrally-symmetric object are all three equal. As a consequence, the
usual way of treating the collective rotation will give the same result as in
the case of a rotating rigid sphere! (if we accept the rigid-rotation model)
or infinity (in the case of the superfluid-rotation models where we impose
rotation about a symmetry axis). Yet: a tetrahedrally-deformed nucleus
has clearly no symmetry axis, its orientation in space can be very well de-
fined and it is to be expected that the two nuclei which differ in size of the
tetrahedral deformation will also have non-trivially different rotation-energy
spectra.

It then becomes clear that to study such objects we will need to give-
up the traditional rotor Hamiltonian expressions that are quadratic in spin:
the tetrahedral symmetry can be modeled with the help of polynomial ex-
pressions of at least third order. But then we are confronted with another
beautiful problem both from the mathematics and physics points of view
that can be introduced as follows. Consider an even—even nucleus whose
rotational spectra are expressed in terms of integer spins (i.e. ‘boson-type’,
as opposed to ‘fermion-type’ half-integer spins, in the case of odd-A nuclei).
The corresponding rotor Hamiltonian has therefore the ‘usual’ tetrahedral
group Ty as its symmetry group. At the same time the Schrodinger equation
that governs the motion of the nucleons (fermions) in the same nucleus is
invariant under the double point group symmetry TdD. From the mathemat-
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ics point of view these two groups are totally different, they have different
numbers of groups elements as well as of the equivalence classes and thus
of the numbers and types of irreducible representations. In particular: both
classical (as opposed to double) point-groups, T4 and Op, have the same
number of five irreducible representations, two of them one-dimensional, one
two-dimensional, and two three-dimensional. These properties imply an un-
precedented degeneracy patterns in terms of the collective rotational spectra:
these degeneracy patterns, already exotic, do not resemble at all the exotic
degeneracy patterns predicted earlier in the article for the single-nucleonic
spectra. (Some mathematical aspects related to quantum mechanical fea-
tures of highly-symmetric rotating objects are discussed in Ref. [10].)

This brings us to another aspect of the quantum description of the prob-
lem: for the first time we will be forced to consider the three-dimensional
aspect of the quantum rotation from the start! — no simplifications such
as alignments on the ‘principal axis’ (no such axis can be defined) will be
possible.

All these unprecedented quantum mechanisms will (perhaps) not be very
easy to establish in experiment. But if confirmed experimentally, the pres-
ence of these new symmetries on the subatomic level will strongly influence
our present-day understanding of nuclear phenomena.

8. Summary and conclusions

In addition to the general, new quantum mechanics related features sum-
marized in the preceding section, the presented approach involves a new way
of thinking about the nuclear stability: it is, for the first time® based on the
genuine symmetry considerations, and not e.g. on comparing the harmonic
oscillator axis-ratios:

a : b:c=ratios of small integers .

Another aspect of novelty consists in going away from the multipole ex-
pansion, that has been a standard approach during a long time, for instance
when calculating the nuclear potential energy surfaces | e.g. (3, y)-plane rep-
resentation in terms of Y5y and Y99 multipoles, hexadecapole Yjo-deformation
etc.]. In this paper we have shown how to construct the point-symmetry ori-
ented bases instead of the spherical harmonic basis, the latter remaining of
course an ideal tool for studying the SO(3)-symmetry related properties.

5 For a long time, the spherical-symmetry considerations have defined a standard when
studying the symmetries in all domains of physics, in particular in relating the prob-
lems of degeneracy of levels to the problem of increased stability of the related
configurations. Here we return to this very basic quantum mechanical problem in
a non-trivially new physical situation generated by the possible occurrence of the
tetrahedral and octahedral symmetries in nuclei.
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We would like to turn the reader’s attention to the fact that if we include
the possibility of existence of the tetrahedral and/or octahedral symmetries,
an important sub-field of our domain that deals with the Shape Coexistence
Phenomena, will contain from now on an impressive number of configu-
rations to study, many of them possibly in one single nucleus (!) These
are: Prolate, Spherical, Oblate, Triaxial in various forms, Tetrahedral, Oc-
tahedral, ‘Triangular’ (C3), Octupole, Superdeformed, Hyperdeformed, and
possibly more nuclear shapes and related symmetries.

So far in the nuclear structure physics we were contenting ourselves
with the presence of two types of nucleonic level degeneracies: either the
(274 1)-fold degeneracy associated with the nucleonic levels in a spherically-
symmetric potential or the double (spin-up, spin-down) time-reversal degen-
eracy of Kramers in the case of deformed nuclei. Since we were dealing with
these degeneracies for a long time being confronted with them in nearly all
microscopic models developed so far, their presence has evolved to a kind
of a ‘trivial property’. In the problem presented here we deal for the first
time with what we would thus call ‘non-trivial’ degeneracies of the nucleonic
levels.

It remains to be seen, as one of important items on the challenge list,
whether one will be able to talk about analogies when comparing to the
molecular symmetries based on the forces of the infinite range. These are
opposed to the short range strong-interaction nuclear-forces that, under some
specific circumstances related to the nuclear shell structure, may possibly
generate the same symmetries. This problem touches upon the very basic
issues in nuclear structure physics directly related to the concepts of the
mean-field and of spontaneous symmetry breaking.
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