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ATOMIC NUCLEI WITH TETRAHEDRALAND OCTAHEDRAL SYMMETRIES�J. Dudeka, A. Gó¹d¹a;b and N. ShunkaaInstitut de Reherhes Subatomiques, IN2P3-CNRS/Université Louis Pasteur67037 Strasbourg Cedex 2, FranebInstitute of Physis, M. Curie-Skªodowska Universitypl. M. Curie-Skªodowskiej 1, 20-031 Lublin, Poland(Reeived February 5, 2003)We present possible manifestations of otahedral and tetrahedral sym-metries in nulei. These symmetries are assoiated with the ODh and TDddouble point groups. Both of them have very harateristi �nger-printsin terms of the nuleoni level properties � unique in the Fermioni uni-verse. The tetrahedral symmetry leads to the four-fold degeneraies in thenuleoni spetra; it does not preserve the parity. The otahedral sym-metry leads to the four-fold degeneraies in the nuleoni spetra as wellbut it does preserve the parity. Mirosopi preditions have been obtainedusing mean-�eld theory based on the relativisti equations and on�rmedby using `traditional' Shrödinger equation formalism. Calulations areperformed in multidimensional deformation spaes using newly designedalgorithms. We disuss some experimental �ngerprints of the hypothetialnew symmetries and possibilities of their veri�ation through experiments.PACS numbers: 21.10.�k, 21.60.�n, 21.60.Fw1. IntrodutionThe phenomenon of the shape oexistene in nulei is related to one ofthose `intuitive' mehanisms that an be relatively easily imagined in termsof lassial physis and geometry. This is perhaps one of the reasons why aoneptual progress in this important sub-�eld of nulear struture physishas been relatively slow � although important suesses suh as �nding anevidene for `prolate-spherial-oblate' shape oexistene or for a oexistenebetween the super-deformed and normal-deformed nulear on�gurations �have been ahieved. The examples of the shape oexistene just mentioned� Presented at the XXXVII Zakopane Shool of Physis �Trends in Nulear Physis�,Zakopane, Poland, September 3�10, 2002.(2491)



2492 J. Dudek, A. Gó¹d¹, N. Shunkare related diretly to fundamental symmetries of the nulear mean-�eld:(pseudo) SU3 and the so-alled pseudo-spin symmetries (f. e.g. Ref. [1℄, [2℄).Studying the symmetries that will be disussed in this paper may shed somelight on yet another mirosopi mehanism possibly present in nulei: thespontaneous symmetry breaking leading to unusually high single-nuleondegeneraies that may appear in deformed nulei.The most ommon, one may think, triaxial-ellipsoid nulear shapes havefor a long time not reeived as thorough an attention from the experimentalpoint of view as they should have � even though in many models, suh asranking model or mean-�eld theory based models, the tri-axiality and theso-alled -deformation play an important role. Only reently an attempt toobserve the quantum wobbling mehanism in nulei has fored onsideringa simultaneous ombination of several experimental manifestations of thenon-axial shapes in nulei. To our knowledge, there has been so far noexperimental e�ort undertaken, in terms of searhes for an evidene of non-axially symmetri nulear shapes, with the exeption of the ellipsoidal ones.In terms of the oneptual progress, the so-alled C4-symmetry hypoth-esis is partiularly worthwhile mentioning, Ref. [3℄. Although no onsistentevidene of its presene in experimental results on super-deformed nulei ex-ists so far (and rather numerous arguments against), no systemati searh,neither theoretial nor experimental in terms of normally deformed nuleihas ever been undertaken, and it remains to be seen whih nulei an pos-sibly built-up C4-symmetri on�gurations with the elongation that are notvery di�erent from their ground-state elongation.Reently, an idea originally proposed in Ref. [4℄ has been re-analyzed interms of the possible presene of the pyramid-like (tetrahedral) shapes innulei, Ref. [5℄, with a onlusion that extremely strong nulear shell e�etsleading to a tetrahedral symmetry may exist in nature on a sub-atomilevel. In this presentation we would like to address a slightly more generalproblem of possible existene in nulei of both otahedral and tetrahedralsymmetries; these symmetries are mathematially related but ause verydi�erent physial impliations.Otahedral and tetrahedral symmetries are haraterized by a relativelylarge number of symmetry elements. Compared to lassial D2-symmetrygroup that is omposed of 4 elements (three rotations through an angle of �about three mutually perpendiular axes plus the identity transformation)and haraterizes a family of tri-axially deformed nulei, a group of sym-metry of a lassial tetrahedron, Td, ontains 24 symmetry elements and



Atomi Nulei with Tetrahedral and Otahedral Symmetries 2493that of a lassial otahedron, Oh, 48 symmetry elements1. As a result ofsuh a high degree of symmetry, the TDd or ODh invariane implies an unusu-ally high degeneray of the single partile states � eigen-solutions to theShrödinger equation. More preisely, the double tetrahedral, TDd -symmetrygroup generates two two-dimensional and one four-dimensional irreduiblerepresentations. This fat manifests itself through double and quadrupledegeneraies of the single-nuleoni levels � an unusual situation given thefat that so far, for the deformed nulei, only the double (i.e. Kramers)degeneraies of the single-nuleoni levels have been onsidered.The otahedral double point group, ODh , ontains an inversion among itssymmetry elements with the onsequene that the parity of single-nuleonilevels is preserved by the solutions to the otahedrally-symmetri Hamil-tonians. In this ase we �nd six irreduible representations, three of themharaterized by the positive parity of the underlying single-partile statesand three other by the negative parity. Within eah of the two parities we�nd two two-dimensional and one four-dimensional irreduible representa-tions and it follows that the orresponding levels an be oupied by up totwo and up to four nuleons, respetively.2. Symmetries of the nulear mean-�eldIn this setion we are going to summarize the mathematial oneptsunderlying the present study. This summary will be followed by a few il-lustrations of the disussed priniples in the ase of the nulear TDd and ODhsymmetries.2.1. General aspets of disrete symmetries in multi-fermion systemsWe onsider a deformed mean-�eld nulear Hamiltonian; the orrespond-ing operator an always be written down in the formĤ = Ĥ(~r; ~p; ~s; �̂) ; (1)where ~r, ~p and ~s are the position, linear momentum and spin operators,respetively, and where �̂$ f��;�g represents an ensemble of all parametersthat de�ne nulear shapes; here we are using the multipole deformationparameters that are partiularly well suited for analyzing the point-groupsymmetry properties.1 On the level of symmetries of the Shrödinger equation for the nuleons (fermions)the lassial symmetry groups need to be replaed by the so-alled double (or spinor)groups that ontain a double set of symmetry elements. In the mentioned groupsthis means 8, 48 and 96 symmetry elements for the double DD2 , TDd and ODh groups,respetively.



2494 J. Dudek, A. Gó¹d¹, N. ShunkConsider a group G with the symmetry operators (group elements)fÔ1; Ô2; : : : Ôfg , G: (2)Assuming that G is the group of symmetry of Hamiltonian Ĥ implies thatall elements of the group ommute with Ĥ:[Ĥ; Ôk℄ = 0 with k = 1; 2; : : : f : (3)Of ourse, operators Ôk may, but do not need to ommute among themselves.Suppose that the group in question has irreduible representations (irreps)fR1;R2; : : :Rrg : (4)(The reader unfamiliar with the terminology used in group theory does notneed to know at this point more than the fat that the irreps an be har-aterized by their dimensions.) Suppose that the irreps in question havedimensions f d1; d2; : : : dr g ; (5)respetively. Then the eigenvalues "� of the problemĤ	� = "� 	� (6)appear in multiplets: d1-fold degenerate, d2-fold degenerate, : : : et.The point groups of interest for us in nulear physis appliations di�erfrom those usually disussed in rystallography. Sine the eigenstates of theproblem in Eq. (6) are spinors it follows that all 360Æ spae-rotations mustnot give the identity, I, but rather �I (hange in phase). The lassialrystallographi point groups `adapted' to provide this feature are alleddouble or spinor point groups and their names are written with the super-sript D, as seen already above. Among 32 standard point groups usuallyonsidered in quantum mehanis appliations (f. Ref. [6℄ for a detailedpresentation) there are only two that are of interest for the present study:the tetrahedral and the otahedral double point groups, TDd and ODh , respe-tively. The important physial reason for that interest is that among theorresponding irreps there are some with dimensions d = 4; all other doublepoint-groups of possible interest in subatomi physis generate exlusivelythe double degeneraies at most.2.2. Four-fold degeneraies of nuleoni levels and energy gapsThe degeneraies of single-nuleoni levels are related to the symmetriesof the underlying potential. They may imply a presene of strong gaps in the



Atomi Nulei with Tetrahedral and Otahedral Symmetries 2495single partile spetra and thus play an important role in stabilizing ertainnulear on�gurations. Indeed, if a large energy gap appears at the Fermilevel of a given nuleus, in order to exite (i.e. destabilize) the orrespondingon�guration for instane through bombarding with external partiles, therewill be a large energy neessary as ompared to the situations where the gapsare small. This mehanism is very well known in spherial nulei in whihthe `magneti' [(2j +1)-fold℄ degeneray of the nuleoni levels gives rise tothe large (`magi') gaps and implies indeed a strong inrease in stability ofthe orresponding nulei, like e.g. in 208Pb.What has been until reently unknown is that the single-partile spe-tra in deformed nulei may generate gaps as large as those in the spherialones (!) and that apparently the TDd and/or ODh symmetries play an impor-tant role there. The quantitative preditions related to the strong shell-gapspresented below, an be qualitatively understood as follows.The property of saturation of the nulear fores leads, among others,to a relatively weak dependene on the proton and neutron numbers ofthe depth of the mean nulear potential. In fat in several nulear physisonsiderations this weak dependene has been negleted altogether assumingthat the potential depth remains onstant (this will of ourse not be thease in the present study when performing the realisti alulations and theargument is brought here for the sake of a qualitative onsideration only). Ata onstant depth of the potential, an enhaned appearane of single-partilegaps in the spetra is more likely if the inreased degeneray of levels isallowed. The above statement is based on `empirial' knowledge and has norigorous mathematial foundation2.3. Otahedral and tetrahedral symmetries: shapesOne of the important mathematial aspets of working with the otahe-dral and tetrahedral symmetries is related to modeling of these symmetrieswith the help of spherial harmonis when parameterizing the nulear sur-fae � : � : R(#; '; �̂) = R0 (�̂) h1 + �maxX�=2 �X�=����;� Y�;�(#; ')i : (7)2 In fat the single-partile spetra that di�er in terms of the level degeneraies, ifobtained with the mean-�eld potentials of (nearly) onstant depths will di�er in termsof the average level spaing: the higher the degeneraies � the larger the averagelevel spaing. For the realisti nulear Hamiltonians there is no general theorem thatallows to predit the presene (or absene), of the large gaps in the single partilespetra although some aspets like e.g. the in�uene of the spin�orbit interationpotential on suh gaps are, to some extent, preditable.



2496 J. Dudek, A. Gó¹d¹, N. ShunkAbove, �̂ � f��;�; � = 2; 3; : : : �max; � = ��; ��+ 1; : : : + �g, R0 is thenulear radius parameter� and (�̂), a funtion whose role is to insure thatthe nulear volume remains onstant, independent of the deformation.3.1. Otahedral deformationsWe an demonstrate that there exist speial ombinations of spherialharmonis that an be used as a basis for surfaes with otahedral symmetry.The lowest order of the otahedral deformation, alled by onvention the �rst,is haraterized by the fourth rank spherial harmonis. By introduing asingle parameter o1 we must have in this ase�40 � +o1; �4;�4 � +r 514 o1 ; (8)i.e. three hexadeapole deformation parameters must ontribute simulta-neously and with proportions p5=14 �xed by the otahedral symmetryrequirement. No deformation with � = 5 is allowed and the next possible

Fig. 1. Comparison of two otahedrally deformed nulei. Left: otahedral defor-mation of the �rst order, o1 = 0:10; right: otahedral deformation of the seondorder, o2 = 0:04.are deformations with spherial harmonis of � = 6. Similarly, we introdueone single parameter, o2, with the help of whih the next allowed otahe-dral deformation, alled of the seond order, and depending on the 6th rankspherial harmonis an be de�ned. We must have:�60 � +o2; �6;�4 � �r72 o2 : (9)



Atomi Nulei with Tetrahedral and Otahedral Symmetries 2497The third order otahedral deformation is haraterized by the 8th rankspherial harmonis and we an demonstrate that it an be de�ned with thehelp of a single parameter, o3, where:�80 � +o3; �8;�4 �r 28198 o3; �8;�8 �r 65198 o3 : (10)Of ourse, the basis of the otahedrally deformed surfaes is in�nite, butthe inreasing order of the otahedral deformations implies immediately atwie as fast inrease in the rank of the underlying multipole deformations;the possibility of having suh a situation in real nulei is unlikely and theexpansion series an be ut o� quikly.3.2. Tetrahedral deformationsIn a similar fashion, the tetrahedral deformation basis an be introduedin terms of the standard spherial harmonis. The �rst order tetrahedraldeformation, t1, is haraterized by a single otupole deformation with � = 3and � = 2 and we have �3;�2 � t1 : (11)The seond order tetrahedral deformation, t2, is haraterized by multipo-larity � = 7 (observe that the multipoles with � = 4; 5 and 6 are not allowedat all by the symmetry studied) and we have�7;�2 � t2 ; �7;�6 � �r1113 t2 : (12)

Fig. 2. Comparison of two tetrahedrally deformed nulei. Left: tetrahedral defor-mation of the �rst order, t1 = 0:15; right: tetrahedral deformation of the seondorder, t2 = 0:05.



2498 J. Dudek, A. Gó¹d¹, N. ShunkThe third order tetrahedral deformation, t3, is haraterized by � = 9 andby de�nition we must have:�9;�2 � t3; �9;�6 � +r133 t3 : (13)Stritly speaking, the bases of these exoti deformations are of the in�-nite order. However, for the nulear physis appliations, it is important toobserve that also the rank of the spherial harmonis inreases very rapidlyso that the importane of the omponents with the high multipolarity be-omes quikly negligible.4. Otahedral and tetrahedral symmetries: shell strutureIn the following we are going to illustrate some harateristi features ofthe single partile level spetra and of the shell strutures assoiated withthe otahedral and tetrahedral symmetries.4.1. Otahedral symmetry: ODh -symmetri single partile spetraAn example of the single partile spetra orresponding to the otahedralsymmetry is shown in Fig. 3.Let us remark �rst that the single partile energy urves are not sym-metri with respet to the hange in sign of the otahedral deformation,similarly as in the ase of the very well known hexadeapole deformation.Seondly, and more importantly, let us observe that the otahedrally-symmetri Hamiltonian preserves the parity. This follows from the fatthat the orresponding shapes are modeled with the help of the spherialharmonis of the even rank only, f. Eqs (8)�(10). It is well known (f. e.g.Ref. [7℄) that the ODh group has six irreduible representations, two of themfour-dimensional and the remaining four two-dimensional. This implies thatthe solutions to the Shrödinger equation split naturally into six families,f. Eqs (4)�(6). From the physis point of view it is important to notiethat within eah parity we have a symmetri repartition of the irreps: onefour-dimensional and two two-dimensional ones within eah parity, as it anbe seen in Fig. 3.The very existene of the six independent lasses of single-partile wave-funtions is a speial feature that has not been observed so far on the sub-atomi level. Any experimental evidene alluding to suh a struture will beof a great interest, and this, on the very basi level: numerous point-groupsymmetries have been exploited to a large extent and for a long time insolid-state and moleular physis and the theoretial understanding of the
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160Yb  90 70Fig. 3. An example of single partile spetra for protons (top) and neutrons (bot-tom) valid around 170Yb nuleus in funtion of the otahedral deformation of the�rst order (o1). The four-fold degenerate levels are marked with the full lines; thetwo-fold degenerate levels with the dashed lines. The urves are labeled with theNilsson labels; the numbers in the urly brakets give the perentage of validity ofeah label. For further omments see the text.underlying phenomena has pro�ted in an important way. The mean-�eldtheories based on the strong interations have not advaned towards the`exoti' point-group symmetries so far.Results in Fig. 3 show extremely large (over 3 MeV eah) gaps at Z =70 and N = 114. This in itself is an important observation: the gaps ofthis order of magnitude belong to the strongest known in nulear struture



2500 J. Dudek, A. Gó¹d¹, N. Shunkphysis. Their sizes exeed e.g. the sizes of the shell-gaps responsible forthe stabilization of the superdeformed nulear on�gurations. Below wewill demonstrate that these gaps may lead to stati otahedral deformationsin nulei, but our experiene with the `more traditional' gaps of this sizesuggests that they may have an important in�uene, among others, on theolletive osillation properties.4.2. Tetrahedral symmetry: TDd -symmetri single partile spetraThe tetrahedral shell struture has been studied in some detail espe-ially in order to establish the partiularly strong tetrahedral magi gaps,f. Ref. [5℄. The orresponding tetrahedral shell losures are predited at:Zt = 16; 20; 32; 40; 56; 70; 90; 100; 112; 126;for the protons, andNt = 16; 20; 32; 40; 56; 70; 90; 100; 112; 136;for the neutrons, showing strong similarities between the proton and neutronspetra.Instead of over-viewing the whole series of various mass ranges we willlimit ourselves to presenting one region only. An example of the singlepartile spetra orresponding to the tetrahedral symmetry is shown in Fig. 4for the nulei in the viinity of the 226Th. In this ase the energy urvesare symmetri with respet to the hange in sign of the deformation, unlikethe otahedral deformation ase disussed above. Within the �rst ordertetrahedral deformation the orresponding tetrahedral gaps visible in the�gure, valid for the atinide mass range, are of the order of 2 MeV.In priniple one ould think that optimal onditions to observe the par-tiularly stable tetrahedral nulei would orrespond to the ombining of the`doubly magi' proton and neutron on�gurations. Suh a suggestion wouldhave been natural in the ase of the strongest i.e. spherial shell gaps, but inthe ontext of the `seondary' shell strutures it is insu�ient (or inorret).The reason is that the tetrahedral minima arise as a result of a ompetitionwith omparably strong (or stronger) shell losures, notably at the spheri-al or at the prolate deformed shapes. In suh a ase, a moderately strongtetrahedral shell e�et may be su�ient to produe a reasonably stable tetra-hedral minimum when the ompeting shell e�ets are weak, non-existent, orgiving rise to the positive shell energies at e.g. spherial shapes: suh a sit-uation often takes plae at ertain partile numbers that are between thetraditional magi numbers orresponding to the spherial shell losures. Inthe next setion we are going to illustrate this mehanism in some detail.
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{04}[5,0,5] 11/2
{05}[4,3,1] 1/2

{05}[6,1,5] 11/2

{10}[3,1,2] 3/2
{04}[5,0,3] 7/2
{03}[4,1,3] 7/2
{04}[4,1,3] 7/2
{04}[3,0,1] 1/2
{05}[4,0,0] 1/2
{06}[5,4,1] 1/2

{11}[5,0,5] 11/2
{07}[4,2,2] 5/2
{07}[4,1,3] 7/2
{05}[6,1,5] 9/2
{06}[5,0,5] 9/2
{06}[4,2,0] 1/2
{04}[4,1,1] 3/2
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{08}[5,0,1] 1/2
{09}[6,0,6] 13/2
{19}[6,0,6] 13/2
{08}[6,3,1] 1/2
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{05}[6,5,1] 3/2
{13}[6,2,4] 7/2

{05}[4,1,1] 3/2

{03}[5,0,3] 5/2
{03}[5,0,3] 5/2

{06}[6,0,6] 13/2
{02}[3,0,1] 3/2
{02}[4,1,3] 5/2

{03}[5,4,1] 1/2
{04}[5,1,2] 5/2

{05}[7,2,5] 11/2
{04}[5,3,0] 1/2
{04}[4,1,3] 5/2

{04}[7,1,6] 13/2
{06}[6,2,4] 9/2
{03}[5,0,1] 3/2
{03}[5,0,1] 3/2
{08}[5,1,4] 9/2
{05}[5,3,2] 5/2
{04}[5,0,5] 9/2
{06}[5,2,3] 7/2

{10}[6,0,6] 13/2
{06}[6,5,1] 1/2
{04}[5,3,2] 5/2
{03}[5,2,1] 3/2
{02}[5,2,1] 3/2

{04}[6,0,6] 11/2

226Th 136 90Fig. 4. Examples of the single partile proton (top) and neutron (bottom) spetra infuntion of the tetrahedral deformation of the �rst order, t1. For further ommentssee text and also Fig. 3. Large gaps at Z = 70 and 90/94 as well as at N = 112and 136/142 deserve notiing.5. Otahedral and tetrahedral symmetries: stabilityThe problem of stability of nulei with the tetrahedral and/or otahedralsymmetries is diretly related to the properties of the total potential energysurfaes. Calulations employing the Strutinsky Woods�Saxon method anbe onsidered realisti in the ontext and o�er a priori quik and reliableestimates. However, one needs to take into aount several ompeting defor-



2502 J. Dudek, A. Gó¹d¹, N. Shunkmation degrees of freedom3 in order to avoid overestimating the heights ofthe potential barriers that separate tetrahedral/otahedral minima from theother strutures on the total energy landsapes. To solve this type of a prob-lem an algorithm has been designed that minimizes the potential energies inan arbitrary subspae of the multipole expansion spae f���g. Preliminaryresults of this kind of alulations have been published in Ref. [5℄. More ex-tensive alulations are in progress and here we are going to limit ourselvesto a global illustration of the shell e�ets on the potential energies. Theywill inlude the marosopi energy ontributions alulated by using themost reent version of the liquid drop model of Ref. [8℄.We will illustrate the results of our preliminary alulations addressingthe problem of stability of the deformed nulei for two disussed symmetriesseparately. 5.1. Otahedral symmetry: nulear potential energiesOur preliminary alulations related to the otahedral symmetry suggestpartiularly strong shell e�ets at Z = 70 and N = 114 with indiations topossibly weaker e�et at neighboring partile numbers, f. Set. 4.1.Sine the existene or nonexistene of the otahedral minima is stronglyrelated to a ompetition between at least the quadrupole (inluding spheri-ity) and the otahedral deformations we are going to illustrate the relatede�ets by omparing the simpli�ed energy ross setions that involve thesetwo deformations. In Fig. 5 we present suh energy ross-setions for Z = 70(Ytterbium) nulei for several isotopes ranging from N = 100 to N = 118.First of all it is worth emphasizing that the otahedral deformation susep-tibility is not a feature of the `two magi gaps only': there are many isotopesthat manifest the minima of interest here. This follows from the fat thatthe shape stability is a result of a ompetition among several deformationdegrees of freedom and that a minimum in a given deformation area ariseseither beause of the orresponding shell energies are strongly negative thereor beause the shell energies are positive and partiularly strong elsewhere.The top part in Fig. 5 illustrates possible tendenies to produe theotahedral-deformation minima, while the bottom part of the �gure (in on-juntion with the previous one) allows to estimate the relative exitationenergy of the exoti minimum with respet to the ground state. It an beseen from this omparison that the exitation energies may vary, in fun-3 As it happens the tetrahedral deformation of the �rst order (that oinides withthe otupole deformation �32) has a tendeny to ouple with the axially symmetriotupole deformation �30, but other ouplings annot a priori be exluded. Similarly,the otahedral deformation of the �rst order is related to the �ve hexadeapole degreesof freedom and in order to obtain the realisti barrier estimates we need to onsiderup to a dozen various deformations.
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Z=70Fig. 5. Cross-setions of the total nulear energies in funtion of the otahedraldeformation (top) and ompeting quadrupole deformation (bottom). Observe verystrong e�ets (the energy sale is ompat) of the otahedral deformation in manynulei.tion of the neutron number, from about 3 MeV to about 12 MeV or so, andonsequently it is not only the size of the barrier but also the absolute ex-itation energy that needs to be taken into aount. More preisely, whilethe high barriers may be seen as an enouraging fator that stabilizes theminima under onsideration, the high exitation energies an be seen as adiret measure of di�ulties with the population of those states, the largerthe energy the more di�ult the population.The nulei with neighboring Z-values provide a priori several further an-didates for the otahedral symmetry studies. At this stage we may onludethat the otahedral `suseptibility' is not limited to a ouple of nulei only



2504 J. Dudek, A. Gó¹d¹, N. Shunkas the single-partile diagrams presented earlier may suggest. But to drawthe de�nite onlusions it will be neessary to omplete the more involved,multidimensional potential energy alulations.5.2. Tetrahedral symmetry: nulear potential energiesA global `�rst-test' analysis aiming at a omparison of the suseptibilitytowards the ourrene of the tetrahedral shapes among many nulei hasbeen performed in analogy to the one presented above for the ase of theotahedral symmetry. Here we selet only one nulear range fousing atthe masses roughly between 230 and 250. The orresponding total potentialenergy ross-setions are shown in Fig. 6 for illustration; the form of thisrepresentation follows the one in Fig. 5.
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Atomi Nulei with Tetrahedral and Otahedral Symmetries 2505It an be seen from the �gure that there are groups of nulei susep-tible to form the tetrahedral-deformed minima, yet the exitation energiesrelated to those highly symmetri strutures may be very high. Indeed, aomparison between the results related to the energy minima in the toppart of Fig. 6 with the absolute energy minima of the urves in the bottompart of the �gure indiates that the energy di�erenes may vary between(2.5�3) MeV and about 10 MeV or so. We onlude that an optimal hoiefor experimental test will require a ompromise between the barrier heights(possibly large) and the exitation energies (possibly low).6. Nulei with tetrahedral symmetry: population, deay andobservation possibilitiesWe believe that the hypothetial tetrahedral strutures should be moreabundant as ompared to the otahedral ones and thus we would like tofous the following disussion on the former rather than on the latter.In addressing the problem of an experimental disovery of the disussednulear symmetries one may �rst ask a question as to why none of themhas so far been observed? Obviously one may advane several hypothesesranging from the most pessimisti ones (`sine they have not been seen so far,perhaps they do not exist') to the most optimisti ones (`the evidene hasbeen already olleted, the a�rmative answers are stoked on the tapes withthe results of already performed experiments � the only problem: nobodyhas thought about it').Let us try to disuss this very basi question �rst: why do we believe inthe existene of the new symmetries on the sub-atomi level? The argumentsin favor of the existene of these symmetries are based today exlusively onthe theory grounds. The present day nulear mirosopi theories are ad-vaned and performant tools `tuned' to desribe the experimental results innumerous sub-�elds of our domain. In partiular the self-onsistent Hartree�Fok methods have reahed a high level of preditive power, espeially sinearti�ial onstraining onditions imposed in the early stages of the develop-ment to simplify the omputing � are nowadays removed (f. e.g. Ref. [9℄and referenes therein). In the present ontext it has been veri�ed in a fewases (a more systemati study is in progress) that the Hartree�Fok itera-tive proedures started at initial on�gurations with all symmetries totallybroken may onverge to the highly symmetri solutions of the type disussedin this paper and moreover, in aordane with the Z and N numbers forwhih strong shell e�ets have been predited. In partiular, the numerialoe�ients that de�ne the proportions of various multipoles [Eqs (8)�(10) forthe otahedral symmetry and Eqs (11)�(13) for the tetrahedral symmetry℄predited by the group theory are reprodued by the self-onsistent Hartree�



2506 J. Dudek, A. Gó¹d¹, N. ShunkFok solutions down to the omputer auray. One an hardly onsider thistype of the result aidental. We believe that the remaining question is not:Whether but rather: On what level of probability the on�gurations underdisussion an be populated and deteted?Preliminary alulations based on the Dira�Strutinsky alulations givenot only the predition of the very existene of the tetrahedral (otahedral)shell-strutures but also several indiations about the related spetrosopiproperties. Aording to those alulations the minima on the potentialenergy surfaes that orrespond to tetrahedral (otahedral) shapes are sur-rounded by potential barriers whose heights vary between a few hundredsof keV up to a ouple of MeV. The exitation energy assoiated with theseminima may vary typially between � 1 MeV and several MeV (f. preed-ing setion). It is therefore possible that the minima of interest will lead toisomeri strutures analogous to the ones assoiated with the prolate�oblateshape oexistene known e.g. in the Merury region.Unlike yrast-trap isomers, whose on�gurations are related to the par-tile�hole exitations with the spins nearly parallel to the symmetry axis,the on�gurations assoiated with tetrahedral (otahedral) exited nuleiorrespond to deformations with no symmetry axes. Therefore the nuleiin question may always deay through rotational transitions down to theband-head, f. Fig. 7. The yrast trap on�gurations leading to isomers mayin priniple appear at any spin ranging from 0 to � 30 ~, possibly higher.
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Atomi Nulei with Tetrahedral and Otahedral Symmetries 2507The isomers assoiated with new symmetries ould be expeted mostly atthe lowest spins of the order of I � (0 to 2) ~, at or near the band-heads.The new symmetries are expeted to be a relatively low spin, but possiblyhigh exitation-energy phenomenon. In referene to Fig. 8 we may onludethat the main di�ulty is likely to be assoiated with the population rateof states that lie low in spin, say I � (0�14) ~, but whose exitation ener-gies orrespond to (1�4) MeV or more. Consequently, reations with lightprojetiles may be the �rst hoie there. Aording to suh a senario thetarget nulei seleted will lie lose to the �-stability line so that the �nalnulei `to start with' will most likely also belong to that area.
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Atomi Nulei with Tetrahedral and Otahedral Symmetries 2509nulei, the quadrupole transitions in tetrahedral nulei ould be at least oneorder of magnitude weaker than those in the normally deformed otupoleones.)Another mehanism that is likely to modify the ideal model situation isa possibility that the parity doublet strutures are split by a onsiderablefrations of their energy. Suh a mehanism is likely to our when thetetrahedral minima are not su�iently deep. As a onsequene, instead ofhaving a partiularly simple piture as the one in Fig. 9, the bands appearingdegenerate will be onsiderably displaed with respet to one another.The deay of the lowest energy states orresponding to the tetrahedralminima may be of partiular interest. The orresponding energies of exi-tation with respet to the ground-state varying between numbers slightlyover 1 MeV up to a ouple of MeV, the internal pair prodution may pro-vide an extra signal. Given the fat that mean radius expetation values,hr2i, are likely to di�er onsiderably between the tetrahedral exited- andthe quadrupole ground-state minima, the E0 transitions onneting thosestates are likely to be enhaned.7. Towards �rst priniples: nulear quantum mehanisIt turns out that the symmetry-indued properties of the nuleoni levelsand wave funtions, as suggested in this paper, are unpreedented in nulearstruture studies and provide interesting new hallenges already at the levelof the nulear quantum mehanis. First of all, an existene of new quantumnumbers is predited. One of them may take three values in the ase of thetetrahedral symmetry; the other two, eah of whih take in turn three valuespossible, in the ase of the otahedral symmetry, f. Table I. These goodquantum numbers will replae the well known signature quantum number inthe ase of the parity-preserving otahedral shapes, and the simplex quantumnumber in the ase of intrinsi-parity breaking tetrahedral deformation.In Table I we ompare some properties, parameters or observables re-lated to the spei�ity of the TDd (tetrahedral) and ODh (otahedral) doublepoint-group symmetries. In partiular, it is easy to see that the numbersof symmetry elements in the ase of TDd or ODh exeed by important fatorsthe number of symmetry elements assoiated with the well known, `stan-dard', triaxial-symmetry type shapes. There are in, total six, families ofthe single-partile levels that an be assoiated with solutions to the ODh -symmetri Hamiltonian; three of them belong to the positive- and threeto the negative-parity and, moreover, one suh a family within eah set isharaterized by the four-fold degeneray. A similar property holds for theTDd -symmetri Hamiltonians exept for the parity that is not onserved inthis ase. The last line in the table shows how many values an the disretequantum numbers take in relation to the symmetries ompared.



2510 J. Dudek, A. Gó¹d¹, N. Shunk TABLE IChallenges on the level of quantum mehanis(Unpreedented quantum features related to TDd and ODh nulear symmetries)Properties High Symmetries `Usual' Symmetries(or observables) Tetrahedral Otahedral DD2 (`tri-axial')No. Sym. Elemts. 48 96 8Parity NO YES YESDegeneraies 4, 2, 2 4; 2; 2| {z }� = + 4; 2; 2| {z }� = � 2|{z}� = + 2|{z}� = �Quantum Numbers 3 3 + 3 + 2 (� = �) 2 (� = �)Another important aspet will need to be onsidered: the tetrahedrally-or otahedrally-symmetri nulei, if present in nature, are expeted to ex-hibit the olletive rotational properties that are very di�erent from whatwe have learned by studying the rigid tri-axial rotors. First of all, let usremind the reader that the lassial moments of inertia assoiated with atetrahedrally-symmetri objet are all three equal. As a onsequene, theusual way of treating the olletive rotation will give the same result as inthe ase of a rotating rigid sphere! (if we aept the rigid-rotation model)or in�nity (in the ase of the super�uid-rotation models where we imposerotation about a symmetry axis). Yet: a tetrahedrally-deformed nuleushas learly no symmetry axis, its orientation in spae an be very well de-�ned and it is to be expeted that the two nulei whih di�er in size of thetetrahedral deformation will also have non-trivially di�erent rotation-energyspetra.It then beomes lear that to study suh objets we will need to give-up the traditional rotor Hamiltonian expressions that are quadrati in spin:the tetrahedral symmetry an be modeled with the help of polynomial ex-pressions of at least third order. But then we are onfronted with anotherbeautiful problem both from the mathematis and physis points of viewthat an be introdued as follows. Consider an even�even nuleus whoserotational spetra are expressed in terms of integer spins (i.e. `boson-type',as opposed to `fermion-type' half-integer spins, in the ase of odd-A nulei).The orresponding rotor Hamiltonian has therefore the `usual' tetrahedralgroup Td as its symmetry group. At the same time the Shrödinger equationthat governs the motion of the nuleons (fermions) in the same nuleus isinvariant under the double point group symmetry TDd . From the mathemat-



Atomi Nulei with Tetrahedral and Otahedral Symmetries 2511is point of view these two groups are totally di�erent, they have di�erentnumbers of groups elements as well as of the equivalene lasses and thusof the numbers and types of irreduible representations. In partiular: bothlassial (as opposed to double) point-groups, Td and Oh, have the samenumber of �ve irreduible representations, two of them one-dimensional, onetwo-dimensional, and two three-dimensional. These properties imply an un-preedented degeneray patterns in terms of the olletive rotational spetra:these degeneray patterns, already exoti, do not resemble at all the exotidegeneray patterns predited earlier in the artile for the single-nuleonispetra. (Some mathematial aspets related to quantum mehanial fea-tures of highly-symmetri rotating objets are disussed in Ref. [10℄.)This brings us to another aspet of the quantum desription of the prob-lem: for the �rst time we will be fored to onsider the three-dimensionalaspet of the quantum rotation from the start! � no simpli�ations suhas alignments on the `prinipal axis' (no suh axis an be de�ned) will bepossible.All these unpreedented quantum mehanisms will (perhaps) not be veryeasy to establish in experiment. But if on�rmed experimentally, the pres-ene of these new symmetries on the subatomi level will strongly in�ueneour present-day understanding of nulear phenomena.8. Summary and onlusionsIn addition to the general, new quantum mehanis related features sum-marized in the preeding setion, the presented approah involves a new wayof thinking about the nulear stability: it is, for the �rst time5 based on thegenuine symmetry onsiderations, and not e.g. on omparing the harmoniosillator axis-ratios:a : b :  = ratios of small integers :Another aspet of novelty onsists in going away from the multipole ex-pansion, that has been a standard approah during a long time, for instanewhen alulating the nulear potential energy surfaes [ e.g. (�; )-plane rep-resentation in terms of Y20 and Y22 multipoles, hexadeapole Y40-deformationet.℄. In this paper we have shown how to onstrut the point-symmetry ori-ented bases instead of the spherial harmoni basis, the latter remaining ofourse an ideal tool for studying the SO(3)-symmetry related properties.5 For a long time, the spherial-symmetry onsiderations have de�ned a standard whenstudying the symmetries in all domains of physis, in partiular in relating the prob-lems of degeneray of levels to the problem of inreased stability of the relatedon�gurations. Here we return to this very basi quantum mehanial problem ina non-trivially new physial situation generated by the possible ourrene of thetetrahedral and otahedral symmetries in nulei.
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