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MINIMALIZATION OF UNCERTAINTY RELATIONSIN NONCOMMUTATIVE QUANTUM MECHANICSKatarzyna Bolonek and Piotr Kosi«skiyDepartment of Theoretial Physis IIUniversity of �ód¹Pomorska 149/153, 90-236 �ód¹, Poland(Reeived September 6, 2002; revised version reeived January 7, 2003)The expliit onstrution of states saturating unertainty relations fol-lowing from basi ommutation rules of NCQM is given both in Fok spaeand oordinate representation.PACS numbers: 02.40.Gh 1. IntrodutionThere are strong indiations oming from the study of brane on�gura-tions in string theory or matrix model of M -theory that nonommutativespaes are of some importane for very high energy physis [1℄. As a re-sult, there appeared a large number of papers devoted to the study of �eldtheories on suh spaes (for a review see [2℄). In order to reveal the im-portant aspets of quantum theory on nonommutative spaes one shouldtend to simplify the systems under onsideration as muh as possible. Byonsidering the low-energy limit of one-partile setor of �eld theory on non-ommutative spae one arrives at what is alled nonommutative quantummehanis. Again, various aspets of it have been studied reently [3�23℄.In partiular, in [23℄ we onsidered single-partile quantum mehanis onnonommutative plane de�ned by the following ommutation rules[x̂i; x̂j ℄ = i�"ijI ; (1a)[x̂i; p̂j ℄ = i~ÆijI ; i; j = 1; 2 (1b)[p̂i; p̂j ℄ = 0 ; (1)here we an assume � > 0 without loosing generality.y Supported by the Polish State Committee for Sienti� Researh (KBN) grant no5P03B05620. (2575)



2576 K. Bolonek, P. Kosi«skiBy standard arguments, Eqs. (1) result in the following unertainty re-lations �x1�x2 � �2 ; (2a)�x1�p1 � ~2 ; (2b)�x2�p2 � ~2 : (2)In the previous paper [23℄ we studied the above inequalities in some detail.In partiular, we have shown that, ontrary to the ommutative (� = 0)ase, for a given state  at most one of the inequalities (2) an be saturated.We have also outlined the onstrution of the states saturating any of them.Although the general theorems onerning the saturation of unertaintyrelations were already given in Ref. [23℄, we �nd it advantageous to supportthem by the onstrution of the Hilbert spae representation of the alge-bra (1). This allows to give an expliit desription of all relevant states interms of Fok representation. Moreover, we give also the oordinate-spaeform of relevant states and indiate how some �no-go� theorems formulatedin Ref. [23℄ show up at the level of expliit omputations. In Setion 2 weonstrut (or, rather, remind the onstrution) of Fok spae representationof the algebra (1). Then, in Se. 3, the expliit onstrution of all statessaturating the unertainty relations (2) is given; the relevant ingredientshere are the standard onstrution of oherent states and appropriate Bo-golubov transformations. Se. 4 is devoted to the study of minimalizingstates in oordinate representation. Their oordinate wave funtions aregiven expliitely and it is heked by straightforward alulations that nowave funtion exists whih saturates more than one of the inequalities (2).Finally, some basi fats onerning the standard oherent states are ol-leted in Appendix.2. Representations of the basi algebraIt is not di�ult to �nd irreduible representation of the algebra (1). Infat, this algebra is equivalent to standard Heisenberg�Weyl algebra:~xi � x̂i + �2~"ij p̂j ;~pi � p̂i ; (3)



Minimalization of Unertainty Relations in : : : 2577obey standard H�W ommutation rules. Eq. (3) suggests the following de�-nition of reation/annihilation operators (we work with ! = 1, m = 1 units)ai � 1p2~ �x̂i +�iÆij + �2~"ij� p̂j� ;ayi � 1p2~ �x̂i +��iÆij + �2~"ij� p̂j� : (4)Then the only nonvanishing ommutator reads[ai; ayj ℄ = Æij (5)and we arrive at the standard Fok spae spanned by the orthonormal vetorsjn1; n2i = 1pn1! 1pn2! (ay1)n1(ay2)n2 j0i : (6)The inverse relations to (4) readx̂i = r~2(ai + ayi ) + i�2p2~"ij(aj � ayj) ;p̂i = r~2 ai � ayii : (7)It is often onvenient to work with the modi�ed reation/annihilation oper-ators arrying de�nite angular momentum. To this end we de�nea� � 1p2(a1 � ia2) ;ay� � 1p2(ay1 � iay2) : (8)The new basis is jn+; n�i = 1pn+! 1pn�! (ay+)n+(ay�)n� j0i : (9)In terms of new variables the angular momentum operator readsL̂ = �i~"ijayiaj = ~(ay+a+ � ay�a�) : (10)The angular momentum of the state (9) equals ~(n+ � n�).



2578 K. Bolonek, P. Kosi«ski3. Saturating unertainty relationsLet us �rst �nd all vetors saturating the unertainty relation (2a). Therelevant ommutation rule (1a) resembles the one onerning x̂1 and p̂1, withp̂1 replaed by x̂2 and ~ replaed by �. Therefore, it is not surprising thatwe an use the same strategy as desribed in Appendix one the appropriatereation/annihilation operators are found. To this end we de�neb � r ~2� ��1 + �2~� a� +�1� �2~� ay+� ;by � r ~2� ��1 + �2~� ay� +�1� �2~� a+� ; � r ~2� ��1 + �2~� a+ +�1� �2~� ay�� ;y � r ~2� ��1 + �2~� ay+ +�1� �2~� a�� : (11)One easily veri�es that b, , by, y form the set of independent reation/ani-hilation operators.The key point is that b-operators are related to x̂-operators in the stan-dard way b � 1p2� (x̂1 + ix̂2) ;by � 1p2� (x̂1 � ix̂2) : (12)Therefore, we an repeat the proedure outlined in Appendix to �nd thestates saturating (2a). They readjz; i� = e� 12 jzj2 exp�+14 ln((by)2 � b2)� ezbyj�i ; (13)where j�i is arbitrary state suh thatbj�i = 0 : (14)The �vauum� state is by far not unique; it may ontain an arbitrary numberof -exitations.The representation given by b, by, , y is unitary equivalent to thatde�ned by a�, ay�. In fat, one an hek thatb = Wa�W y ; by =Way�W y ; = Wa+W y ; y =Way+W y ; (15)



Minimalization of Unertainty Relations in : : : 2579where W = exp�12 ln�2~� � (a+a� � ay+ay�)� : (16)This an be seen by using the results of [23℄. However, we prefer to give astraightforward proof. De�ne for any t 2 RW (t) = exp�t(a+a� � ay+ay�)� (17)and b(t) � W (t)a�W y(t) ;y(t) � W (t)ay+W y(t) : (18)Then b(0) = a�, y(0) = ay+, while simple omputation gives� _b(t)_y(t) � = � 0 11 0 �� b(t)y(t) � : (19)Therefore � b(t)y(t) � = �exp� 0 tt 0 ��� a�ay+ �= � osh t sinh tsinh t osh t �� a�ay+ � : (20)For t = 12 ln �2~� � we arrive at (11).Eqs. (15), together with the results presented in Appendix allow us toonlude that the states saturating (2a) are linear ombinations (with respetto n+ but with z,  �xed) of the statesjz; ; n+i = e� 12 jzj2W exp��14 ln(a2� � (ay�)2)� ezay� jn+; 0i : (21)Let us note that W ommutes with L̂. This implies that the states z = 0, = 1 are eigenstates of L̂. This onlusion is rather obvious: real andimaginary parts of z are related to expetation values of x̂1, x̂2 (whih shouldbe zero from rotational invariane) while expetation values of x̂21, resp. x̂22are proportional to , resp. 1 .Let us now onsider the states saturating�x1�p1 � ~2 : (22)



2580 K. Bolonek, P. Kosi«skiWe follow the same strategy. First, de�ne new reation/annihilation opera-tors d = a1 + i�4~(a2 � ay2) ;dy = ay1 + i�4~(a2 � ay2) ;e = a2 + i�4~(a1 � ay1) ;ey = ay2 + i�4~(a1 � ay1) (23)whih obey d = 1p2~ (x̂1 + ip̂1) : (24)Unitary equivalene of old and new operatorsd = Ta1T y ;e = Ta2T y (25)is obtained by hoosing T in the form (f. [23℄)T = exp� i�4~(a1 � ay1)(a2 � ay2)� : (26)Consequently the states saturating (26) an be written as linear ombina-tions, with respet to n2 but with z,  �xed, of the statesjz; ; n2i = e� 12 jzj2T exp��14 ln �a21 � (ay1)2�� ezay1 j0; n2i : (27)The states saturating (2) are obtained by replaing 1 $ 2, �! ��:jz; ; n1i = e� 12 jzj2T y exp��14 ln �a22 � (ay2)2�� ezay2 j0; n1i : (28)4. Coordinate representationFor the variables ~xi, ~pi we use standard representation~xi = xi ;~pi = �i~ ��xi (29)



Minimalization of Unertainty Relations in : : : 2581whih implies x̂i = xi + i�2 "ij ��xj ;p̂i = �i~ ��xi : (30)The state  saturating (2a) obeys(x̂1 � �) = �i(x̂2 � �) (31)whih, due to Eqs. (30), takes the form�2 � ��x1 + i ��x2� + ((x1 + ix2)� (�+ i�)) = 0 : (32)The general solution reads (x1; x2) = f � x1p + ipx2�� exp��1���x21 + x22�� z� x1p � ipx2��� (33)with z � �p + ip�; f is an arbitrary funtion suh that  is normalizable.In partiular, the eigenstate of L̂ orresponding to the eigenvalue ~m reads (x1; x2) = 2(m+1)=2p�pm! �m+12 eim�rme�r2=� : (34)One an hek expliitly that hx̂21i = hx̂22i = �2 as it should be.Let us note that only eigenstates with nonnegative eigenvalues m � 0an saturate (2a). This an be easily understood. We havehx̂21i = hx̂22i = 12 hx̂21 + x̂22i = 12 �~x21 + ~x22 + �24~2 (~p21 + ~p22)� �~ L̂� ; (35)the right-hand side is the ombination of harmoni osillator and angularmomentum. Standard reasoning gives for the spetra~x21 + ~x22 + �24~2 (~p21 + ~p22)� �~ L̂ : �(2n� + 1)L̂ : ~(n+ � n�) : (36)



2582 K. Bolonek, P. Kosi«skiThe states saturating (2a) orrespond to n� = 0; but n+ � n� = m, i.e.m = n+ � 0.Let us look for the states saturating (2b). The relevant equationx̂1 1 = �i1p̂1 1 (37)reads � i�2 ��x2 + 1~ ��x1� 1 + x1 1 = 0 (38)and gives 1 = f1�x1 + 2i1~� x2� exp�� 3x2181~ � 1~x222�2 + ix1x22� � ; (39)where f1 is arbitrary suh that  is normalizable.The states saturating (2) are obtained by replaement x1 $ x2, �! ��,1 ! 2: 2 = f2�x2 � 2i2~� x1� exp�� 3x2282~ � 2~x212�2 � ix1x22� � : (40)It is not di�ult to show that there exists no state saturating both (2b) and(2). To this end we insert (40) into Eq. (37) and �ndf 02 �x2 � 2i2~� x1�f2 �x2 � 2i2~� x1� = �54 � 12~2�2 �x1 � i� 3�82~ + 1~2� � x22i12~2� � i�2 : (41)The left-hand side depends only on one variable x2 � 2i2~� x1 so the right-hand side must also; this is, however, impossible as one an immediatelyhek.One an also ask whether (39) ((40)) an be an eigenstate of L̂ providedan appropriate hoie of f1 (f2) has been made. Again we hek that this isimpossible inserting (39) into the eigenequationL̂ = ~m : (42)Let us �nally insert Eq. (33) into Eq. (37). The resulting equation for thefuntion f readsf 0 � x1p + ipx2�f � x1p + ipx2� = �1� 21~� � x1 � ix2 + z �p2 + 1~�p��p2 � 1~p ; (43)



Minimalization of Unertainty Relations in : : : 2583the onsisteny ondition (the right-hand side should depend only onx1p + ipx2) implies 1~� = 1 : (44)Under this ondition the solution to (43) readsf = C exp 1� � x1p + ipx2�2 � 3p� z� x1p + ipx2�! : (45)Inserting this bak to (33) we onlude that  is non-normalizable. Thisshows that also (2a) and (2b) annot be simultaneously saturated.We veri�ed expliitly that, for a given state  , at most one of the in-equalities (2a)�(2) an be saturated; this on�rms the general theoremsof [23℄.Although there are no states saturating both (2b) and (2), both lowerbounds an be simultaneously approahed as lose as one wishes. To seethis we selet the state  =r2Æ� e�Æ(x21+x22) : (46)Then L̂ = 0, hp̂1i = 0, hx̂1i = 0, andhp̂21i = Æ~2 ; hx̂21i = 14Æ + �2Æ4 ; (47)onsequently (�x1)2 (�p1)2 = ~24 + �2~2Æ24 : (48)By symmetry (�x2)2 (�p2)2 = ~24 + �2~2Æ24 : (49)(46) is normalizable for any Æ > 0. The bounds are saturated for Æ ! 0;however, the state (46) beomes non-normalizable in the limit Æ ! 0.Appendix AUnertainty priniples and oherent statesFirst let us remind the general setting for unertainty priniples [24℄ (forreent alternative approah see [25℄). Given two observables Â, B̂ subjetto ommutation rule: [Â; B̂℄ = iĈ ; (A.1)



2584 K. Bolonek, P. Kosi«skione an derive the following inequality (generalized Heisenberg priniple)(�A) � (�B) � 12 jhCi j ; (A.2)with j i normalized to unity and(�A) =qh j(Â � hÂi I)2j i; et. ; (A.3)(A.2) is saturated i� the following ondition holds(Â� hÂi I)j i = �i(B̂ � hBi I)j i;  2 R : (A.4)Ating with Â� hÂi I on both sides of (A.4), using (A.1) and again (A.4)one arrives at(Â� hÂi I)2j i = �2(B̂ � hB̂i I)2j i+ Ĉj i (A.5)or, on multiplying by j i from the left(�A)2 + 2(�B)2 = hCi : (A.6)(A.6), together with the saturated form of (A.2) gives (provided  6= 0)(�A)2 = 2 hCi ; (�B)2 = 12 hCi (A.7)whih explains the meaning of .Let us apply this sheme to the standard Heisenberg relation[x̂; p̂℄ = i~ : (A.8)The relevant inequality reads �x�p � ~2 ; (A.9)(A.9) is saturated i�(x̂� �)j i = �i(p̂� �)j i ; � = hx̂i ; � = hp̂i : (A.10)Let us de�ne reation/annihilation operators (we work with ! = 1, m = 1units) a � 1p2~(x̂+ ip̂) ;ay � 1p2~(x̂� ip̂) ;ha; ayi = 1 : (A.11)



Minimalization of Unertainty Relations in : : : 2585Hilbert spae of states is spanned by the vetorsjni = 1pn! (ay)nj0i : (A.12)To �nd the general solution to (A.10) �rst note that  > 0. In fat,  6= 0beause x̂� �I annot have normalized eigenvetors (operators ommutingto C -number have no normalized eigenvetors in their ommon invariantdomain); for  6= 0 (A.7) gives  > 0. We start with  = 1. Eq. (A.10) anbe rewritten as aj i = zj i ; z = �+ i�p2~ : (A.13)The eigenstates of the annihilation operators are alled oherent states (s).Vauum state is the oherent state orresponding to z = 0. In order to �ndother s one de�nes, for any z 2 C , the unitary operatorsU(z) � ezay��za = e� 12 jzj2ezaye��za : (A.14)One easily heks that U y(z)aU(z) = a+ z I : (A.15)Therefore, the oherent states are given byjzi � U(z)j0i = e� 12 jzj2ezayj0i = e� 12 jzj2 1Xn=0 znpn! jni : (A.16)Consider now the ase  6= 1. Eq. (A.10) an be written asa j i = zj i ; (A.17)where z = 1p2~ � �p + i�p� ;a = 1p2~ � x̂p + ipp̂� ;ay = 1p2~ � x̂p � ipp̂� : (A.18)Again, [a ; ay ℄ = 1 and a=1 = a. Solutions to (A.17) an be onstrutedwith the help of a , ay , and �vauum j0i . However, all representations
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