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MINIMALIZATION OF UNCERTAINTY RELATIONSIN NONCOMMUTATIVE QUANTUM MECHANICSKatarzyna Bolonek and Piotr Kosi«skiyDepartment of Theoreti
al Physi
s IIUniversity of �ód¹Pomorska 149/153, 90-236 �ód¹, Poland(Re
eived September 6, 2002; revised version re
eived January 7, 2003)The expli
it 
onstru
tion of states saturating un
ertainty relations fol-lowing from basi
 
ommutation rules of NCQM is given both in Fo
k spa
eand 
oordinate representation.PACS numbers: 02.40.Gh 1. Introdu
tionThere are strong indi
ations 
oming from the study of brane 
on�gura-tions in string theory or matrix model of M -theory that non
ommutativespa
es are of some importan
e for very high energy physi
s [1℄. As a re-sult, there appeared a large number of papers devoted to the study of �eldtheories on su
h spa
es (for a review see [2℄). In order to reveal the im-portant aspe
ts of quantum theory on non
ommutative spa
es one shouldtend to simplify the systems under 
onsideration as mu
h as possible. By
onsidering the low-energy limit of one-parti
le se
tor of �eld theory on non-
ommutative spa
e one arrives at what is 
alled non
ommutative quantumme
hani
s. Again, various aspe
ts of it have been studied re
ently [3�23℄.In parti
ular, in [23℄ we 
onsidered single-parti
le quantum me
hani
s onnon
ommutative plane de�ned by the following 
ommutation rules[x̂i; x̂j ℄ = i�"ijI ; (1a)[x̂i; p̂j ℄ = i~ÆijI ; i; j = 1; 2 (1b)[p̂i; p̂j ℄ = 0 ; (1
)here we 
an assume � > 0 without loosing generality.y Supported by the Polish State Committee for S
ienti�
 Resear
h (KBN) grant no5P03B05620. (2575)



2576 K. Bolonek, P. Kosi«skiBy standard arguments, Eqs. (1) result in the following un
ertainty re-lations �x1�x2 � �2 ; (2a)�x1�p1 � ~2 ; (2b)�x2�p2 � ~2 : (2
)In the previous paper [23℄ we studied the above inequalities in some detail.In parti
ular, we have shown that, 
ontrary to the 
ommutative (� = 0)
ase, for a given state  at most one of the inequalities (2) 
an be saturated.We have also outlined the 
onstru
tion of the states saturating any of them.Although the general theorems 
on
erning the saturation of un
ertaintyrelations were already given in Ref. [23℄, we �nd it advantageous to supportthem by the 
onstru
tion of the Hilbert spa
e representation of the alge-bra (1). This allows to give an expli
it des
ription of all relevant states interms of Fo
k representation. Moreover, we give also the 
oordinate-spa
eform of relevant states and indi
ate how some �no-go� theorems formulatedin Ref. [23℄ show up at the level of expli
it 
omputations. In Se
tion 2 we
onstru
t (or, rather, remind the 
onstru
tion) of Fo
k spa
e representationof the algebra (1). Then, in Se
. 3, the expli
it 
onstru
tion of all statessaturating the un
ertainty relations (2) is given; the relevant ingredientshere are the standard 
onstru
tion of 
oherent states and appropriate Bo-golubov transformations. Se
. 4 is devoted to the study of minimalizingstates in 
oordinate representation. Their 
oordinate wave fun
tions aregiven expli
itely and it is 
he
ked by straightforward 
al
ulations that nowave fun
tion exists whi
h saturates more than one of the inequalities (2).Finally, some basi
 fa
ts 
on
erning the standard 
oherent states are 
ol-le
ted in Appendix.2. Representations of the basi
 algebraIt is not di�
ult to �nd irredu
ible representation of the algebra (1). Infa
t, this algebra is equivalent to standard Heisenberg�Weyl algebra:~xi � x̂i + �2~"ij p̂j ;~pi � p̂i ; (3)



Minimalization of Un
ertainty Relations in : : : 2577obey standard H�W 
ommutation rules. Eq. (3) suggests the following de�-nition of 
reation/annihilation operators (we work with ! = 1, m = 1 units)ai � 1p2~ �x̂i +�iÆij + �2~"ij� p̂j� ;ayi � 1p2~ �x̂i +��iÆij + �2~"ij� p̂j� : (4)Then the only nonvanishing 
ommutator reads[ai; ayj ℄ = Æij (5)and we arrive at the standard Fo
k spa
e spanned by the orthonormal ve
torsjn1; n2i = 1pn1! 1pn2! (ay1)n1(ay2)n2 j0i : (6)The inverse relations to (4) readx̂i = r~2(ai + ayi ) + i�2p2~"ij(aj � ayj) ;p̂i = r~2 ai � ayii : (7)It is often 
onvenient to work with the modi�ed 
reation/annihilation oper-ators 
arrying de�nite angular momentum. To this end we de�nea� � 1p2(a1 � ia2) ;ay� � 1p2(ay1 � iay2) : (8)The new basis is jn+; n�i = 1pn+! 1pn�! (ay+)n+(ay�)n� j0i : (9)In terms of new variables the angular momentum operator readsL̂ = �i~"ijayiaj = ~(ay+a+ � ay�a�) : (10)The angular momentum of the state (9) equals ~(n+ � n�).



2578 K. Bolonek, P. Kosi«ski3. Saturating un
ertainty relationsLet us �rst �nd all ve
tors saturating the un
ertainty relation (2a). Therelevant 
ommutation rule (1a) resembles the one 
on
erning x̂1 and p̂1, withp̂1 repla
ed by x̂2 and ~ repla
ed by �. Therefore, it is not surprising thatwe 
an use the same strategy as des
ribed in Appendix on
e the appropriate
reation/annihilation operators are found. To this end we de�neb � r ~2� ��1 + �2~� a� +�1� �2~� ay+� ;by � r ~2� ��1 + �2~� ay� +�1� �2~� a+� ;
 � r ~2� ��1 + �2~� a+ +�1� �2~� ay�� ;
y � r ~2� ��1 + �2~� ay+ +�1� �2~� a�� : (11)One easily veri�es that b, 
, by, 
y form the set of independent 
reation/ani-hilation operators.The key point is that b-operators are related to x̂-operators in the stan-dard way b � 1p2� (x̂1 + ix̂2) ;by � 1p2� (x̂1 � ix̂2) : (12)Therefore, we 
an repeat the pro
edure outlined in Appendix to �nd thestates saturating (2a). They readjz; 
i� = e� 12 jzj2 exp�+14 ln
((by)2 � b2)� ezbyj�i ; (13)where j�i is arbitrary state su
h thatbj�i = 0 : (14)The �va
uum� state is by far not unique; it may 
ontain an arbitrary numberof 
-ex
itations.The representation given by b, by, 
, 
y is unitary equivalent to thatde�ned by a�, ay�. In fa
t, one 
an 
he
k thatb = Wa�W y ; by =Way�W y ;
 = Wa+W y ; 
y =Way+W y ; (15)



Minimalization of Un
ertainty Relations in : : : 2579where W = exp�12 ln�2~� � (a+a� � ay+ay�)� : (16)This 
an be seen by using the results of [23℄. However, we prefer to give astraightforward proof. De�ne for any t 2 RW (t) = exp�t(a+a� � ay+ay�)� (17)and b(t) � W (t)a�W y(t) ;
y(t) � W (t)ay+W y(t) : (18)Then b(0) = a�, 
y(0) = ay+, while simple 
omputation gives� _b(t)_
y(t) � = � 0 11 0 �� b(t)
y(t) � : (19)Therefore � b(t)
y(t) � = �exp� 0 tt 0 ��� a�ay+ �= � 
osh t sinh tsinh t 
osh t �� a�ay+ � : (20)For t = 12 ln �2~� � we arrive at (11).Eqs. (15), together with the results presented in Appendix allow us to
on
lude that the states saturating (2a) are linear 
ombinations (with respe
tto n+ but with z, 
 �xed) of the statesjz; 
; n+i = e� 12 jzj2W exp��14 ln
(a2� � (ay�)2)� ezay� jn+; 0i : (21)Let us note that W 
ommutes with L̂. This implies that the states z = 0,
 = 1 are eigenstates of L̂. This 
on
lusion is rather obvious: real andimaginary parts of z are related to expe
tation values of x̂1, x̂2 (whi
h shouldbe zero from rotational invarian
e) while expe
tation values of x̂21, resp. x̂22are proportional to 
, resp. 1
 .Let us now 
onsider the states saturating�x1�p1 � ~2 : (22)



2580 K. Bolonek, P. Kosi«skiWe follow the same strategy. First, de�ne new 
reation/annihilation opera-tors d = a1 + i�4~(a2 � ay2) ;dy = ay1 + i�4~(a2 � ay2) ;e = a2 + i�4~(a1 � ay1) ;ey = ay2 + i�4~(a1 � ay1) (23)whi
h obey d = 1p2~ (x̂1 + ip̂1) : (24)Unitary equivalen
e of old and new operatorsd = Ta1T y ;e = Ta2T y (25)is obtained by 
hoosing T in the form (
f. [23℄)T = exp� i�4~(a1 � ay1)(a2 � ay2)� : (26)Consequently the states saturating (26) 
an be written as linear 
ombina-tions, with respe
t to n2 but with z, 
 �xed, of the statesjz; 
; n2i = e� 12 jzj2T exp��14 ln
 �a21 � (ay1)2�� ezay1 j0; n2i : (27)The states saturating (2
) are obtained by repla
ing 1 $ 2, �! ��:jz; 
; n1i = e� 12 jzj2T y exp��14 ln
 �a22 � (ay2)2�� ezay2 j0; n1i : (28)4. Coordinate representationFor the variables ~xi, ~pi we use standard representation~xi = xi ;~pi = �i~ ��xi (29)



Minimalization of Un
ertainty Relations in : : : 2581whi
h implies x̂i = xi + i�2 "ij ��xj ;p̂i = �i~ ��xi : (30)The state  saturating (2a) obeys(x̂1 � �) = �i
(x̂2 � �) (31)whi
h, due to Eqs. (30), takes the form�2 �
 ��x1 + i ��x2� + ((x1 + i
x2)� (�+ i
�)) = 0 : (32)The general solution reads (x1; x2) = f � x1p
 + ip
x2�� exp��1���x21
 + 
x22�� z� x1p
 � ip
x2��� (33)with z � �p
 + ip
�; f is an arbitrary fun
tion su
h that  is normalizable.In parti
ular, the eigenstate of L̂ 
orresponding to the eigenvalue ~m reads (x1; x2) = 2(m+1)=2p�pm! �m+12 eim�rme�r2=� : (34)One 
an 
he
k expli
itly that hx̂21i = hx̂22i = �2 as it should be.Let us note that only eigenstates with nonnegative eigenvalues m � 0
an saturate (2a). This 
an be easily understood. We havehx̂21i = hx̂22i = 12 hx̂21 + x̂22i = 12 �~x21 + ~x22 + �24~2 (~p21 + ~p22)� �~ L̂� ; (35)the right-hand side is the 
ombination of harmoni
 os
illator and angularmomentum. Standard reasoning gives for the spe
tra~x21 + ~x22 + �24~2 (~p21 + ~p22)� �~ L̂ : �(2n� + 1)L̂ : ~(n+ � n�) : (36)



2582 K. Bolonek, P. Kosi«skiThe states saturating (2a) 
orrespond to n� = 0; but n+ � n� = m, i.e.m = n+ � 0.Let us look for the states saturating (2b). The relevant equationx̂1 1 = �i
1p̂1 1 (37)reads � i�2 ��x2 + 
1~ ��x1� 1 + x1 1 = 0 (38)and gives 1 = f1�x1 + 2i
1~� x2� exp�� 3x218
1~ � 
1~x222�2 + ix1x22� � ; (39)where f1 is arbitrary su
h that  is normalizable.The states saturating (2
) are obtained by repla
ement x1 $ x2, �! ��,
1 ! 
2: 2 = f2�x2 � 2i
2~� x1� exp�� 3x228
2~ � 
2~x212�2 � ix1x22� � : (40)It is not di�
ult to show that there exists no state saturating both (2b) and(2
). To this end we insert (40) into Eq. (37) and �ndf 02 �x2 � 2i
2~� x1�f2 �x2 � 2i
2~� x1� = �54 � 
1
2~2�2 �x1 � i� 3�8
2~ + 
1~2� � x22i
1
2~2� � i�2 : (41)The left-hand side depends only on one variable x2 � 2i
2~� x1 so the right-hand side must also; this is, however, impossible as one 
an immediately
he
k.One 
an also ask whether (39) ((40)) 
an be an eigenstate of L̂ providedan appropriate 
hoi
e of f1 (f2) has been made. Again we 
he
k that this isimpossible inserting (39) into the eigenequationL̂ = ~m : (42)Let us �nally insert Eq. (33) into Eq. (37). The resulting equation for thefun
tion f readsf 0 � x1p
 + ip
x2�f � x1p
 + ip
x2� = �1� 2
1~
� � x1 � i
x2 + z �p
2 + 
1~�p
��p
2 � 
1~p
 ; (43)



Minimalization of Un
ertainty Relations in : : : 2583the 
onsisten
y 
ondition (the right-hand side should depend only onx1p
 + ip
x2) implies 
1~
� = 1 : (44)Under this 
ondition the solution to (43) readsf = C exp 1� � x1p
 + ip
x2�2 � 3p
� z� x1p
 + ip
x2�! : (45)Inserting this ba
k to (33) we 
on
lude that  is non-normalizable. Thisshows that also (2a) and (2b) 
annot be simultaneously saturated.We veri�ed expli
itly that, for a given state  , at most one of the in-equalities (2a)�(2
) 
an be saturated; this 
on�rms the general theoremsof [23℄.Although there are no states saturating both (2b) and (2
), both lowerbounds 
an be simultaneously approa
hed as 
lose as one wishes. To seethis we sele
t the state  =r2Æ� e�Æ(x21+x22) : (46)Then L̂ = 0, hp̂1i = 0, hx̂1i = 0, andhp̂21i = Æ~2 ; hx̂21i = 14Æ + �2Æ4 ; (47)
onsequently (�x1)2 (�p1)2 = ~24 + �2~2Æ24 : (48)By symmetry (�x2)2 (�p2)2 = ~24 + �2~2Æ24 : (49)(46) is normalizable for any Æ > 0. The bounds are saturated for Æ ! 0;however, the state (46) be
omes non-normalizable in the limit Æ ! 0.Appendix AUn
ertainty prin
iples and 
oherent statesFirst let us remind the general setting for un
ertainty prin
iples [24℄ (forre
ent alternative approa
h see [25℄). Given two observables Â, B̂ subje
tto 
ommutation rule: [Â; B̂℄ = iĈ ; (A.1)



2584 K. Bolonek, P. Kosi«skione 
an derive the following inequality (generalized Heisenberg prin
iple)(�A) � (�B) � 12 jhCi j ; (A.2)with j i normalized to unity and(�A) =qh j(Â � hÂi I)2j i; et
. ; (A.3)(A.2) is saturated i� the following 
ondition holds(Â� hÂi I)j i = �i
(B̂ � hBi I)j i; 
 2 R : (A.4)A
ting with Â� hÂi I on both sides of (A.4), using (A.1) and again (A.4)one arrives at(Â� hÂi I)2j i = �
2(B̂ � hB̂i I)2j i+ 
Ĉj i (A.5)or, on multiplying by j i from the left(�A)2 + 
2(�B)2 = 
hCi : (A.6)(A.6), together with the saturated form of (A.2) gives (provided 
 6= 0)(�A)2 = 
2 hCi ; (�B)2 = 12
 hCi (A.7)whi
h explains the meaning of 
.Let us apply this s
heme to the standard Heisenberg relation[x̂; p̂℄ = i~ : (A.8)The relevant inequality reads �x�p � ~2 ; (A.9)(A.9) is saturated i�(x̂� �)j i = �i
(p̂� �)j i ; � = hx̂i ; � = hp̂i : (A.10)Let us de�ne 
reation/annihilation operators (we work with ! = 1, m = 1units) a � 1p2~(x̂+ ip̂) ;ay � 1p2~(x̂� ip̂) ;ha; ayi = 1 : (A.11)



Minimalization of Un
ertainty Relations in : : : 2585Hilbert spa
e of states is spanned by the ve
torsjni = 1pn! (ay)nj0i : (A.12)To �nd the general solution to (A.10) �rst note that 
 > 0. In fa
t, 
 6= 0be
ause x̂� �I 
annot have normalized eigenve
tors (operators 
ommutingto C -number have no normalized eigenve
tors in their 
ommon invariantdomain); for 
 6= 0 (A.7) gives 
 > 0. We start with 
 = 1. Eq. (A.10) 
anbe rewritten as aj i = zj i ; z = �+ i�p2~ : (A.13)The eigenstates of the annihilation operators are 
alled 
oherent states (
s).Va
uum state is the 
oherent state 
orresponding to z = 0. In order to �ndother 
s one de�nes, for any z 2 C , the unitary operatorsU(z) � ezay��za = e� 12 jzj2ezaye��za : (A.14)One easily 
he
ks that U y(z)aU(z) = a+ z I : (A.15)Therefore, the 
oherent states are given byjzi � U(z)j0i = e� 12 jzj2ezayj0i = e� 12 jzj2 1Xn=0 znpn! jni : (A.16)Consider now the 
ase 
 6= 1. Eq. (A.10) 
an be written asa
 j i = zj i ; (A.17)where z = 1p2~ � �p
 + i�p
� ;a
 = 1p2~ � x̂p
 + ip
p̂� ;ay
 = 1p2~ � x̂p
 � ip
p̂� : (A.18)Again, [a
 ; ay
 ℄ = 1 and a
=1 = a. Solutions to (A.17) 
an be 
onstru
tedwith the help of a
 , ay
 , and 
�va
uum j0i
 . However, all representations



2586 K. Bolonek, P. Kosi«skiof Fo
k algebra are unitarily equivalent. Indeed one 
an easily verify that,with the unitary operator V (
) de�ned byV (
) = exp��14 ln
(a2 � (ay)2)� ; (A.19)the following relations are obeyedV (
)aV y(
) = a
 ;V (
)ayV y(
) = ay
 : (A.20)The solution to Eq. (A.10) 
an be now written asjz; 
i = V (
)U(z)j0i ; (A.21)the 
omplex parameter z is related to the mean values of x and p while 
des
ribes their dispersions: (�x)2 = 
~2 ;(�p)2 = ~2
 : (A.22)REFERENCES[1℄ See W. Taylor, Le
tures at the NATO S
hool, I
eland, 1999.[2℄ M.R. Douglas, N.A. Nekrasov, A. S
hwarz, hep-th/0106048; R.J. Szabo,hep-th/0109162.[3℄ G. Dunne, R. Ja
kiw, C. Trugenberger, Phys. Rev. D41, 661 (1990).[4℄ G.G. Athanasiu, E.G. Floratos, S. Ni
olis, J. Phys. A 29, 6737 (1996).[5℄ J. Lukierski, P.C. Sti
hel, W.J. Zakrzewski, Ann. Phys. 260, 224 (1997).[6℄ D. Bigatti, L. Susskind, Phys. Rev. D62, 06604 (2000).[7℄ C. Duval, P.A. Horvathy, Phys. Lett. B479, 284 (2000).[8℄ J. Gamboa, M. Loeve, F. Mendez, J.C. Rojas, Mod. Phys. Lett. A16, 2075(2001).[9℄ J. Gamboa, M. Loeve, F. Mendez, J.C. Rojas, Phys. Rev.D64, 067901 (2001).[10℄ V. P. Nair, Phys. Lett. B505, 249(2001)[11℄ V.P. Nair, A.P. Poly
hronakos, Phys. Lett. B505, 267 (2001).[12℄ B. Morariou, A.P. Poly
hronakos, Nu
l. Phys. B610, 531 (2001).[13℄ D. Karabali, V.P. Nair, A.P. Poly
hronakos, Nu
l. Phys. B627, 565 (2002).[14℄ B. Morariu, A. P. Poly
hronakos, hep-th/0201070[15℄ R. Jengo, R. Rama
handran, J. High Energy Phys. 0202, 017 (2002).



Minimalization of Un
ertainty Relations in : : : 2587[16℄ M. Chai
hian, M.M. Sheikh-Jabbari, A. Tureanu, Phys. Rev. Lett. 86, 2716(2001).[17℄ B. Muthukumar, P. Mitra, Phys. Rev. D66, 027701 (2002).[18℄ M. Demetrian, D. Ko
han, A
ta Phys. Slov. 52, 1 (2002).[19℄ A.A. Deriglazov, Phys. Lett. B530, 235 (2002).[20℄ S. Bellu

i, A Nersessian, hep-th/0205024[21℄ R. Banerjee, Mod. Phys. Lett. A17, 631 (2002).[22℄ P. Horvathy, M. Plyush
hay, J. High Energy Phys. 0206, 033 (2002).[23℄ K. Bolonek, P. Kosi«ski, Phys. Lett. B547, 51 (2002).[24℄ L.J. S
hi�, Quantum Me
hani
s , M
Graw-Hill, New York 1968.[25℄ T. Curtright, C.K. Za
hos Mod. Phys. Lett. A16, 2381 (2001).


