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1. Introduction

Quantum groups have emerged in physics in connection with an at-
tempt to understand the symmetries underlying exact solvability of certain
quantum—mechanical and statistical models; they appeared to be quite pow-
erful in this respect.

Therefore, it is natural to ask whether their range of applicability as
a mathematical tool for describing physical symmetries is wider and covers,
in particular, the most important case of space-time symmetries. The the-
ory of Hopf algebras offers a variety of structures which can be viewed as
deformations of classical space—time symmetry groups. For example, a num-
ber of deformed Poincaré groups were considered [1]. They possess many
attractive features. However, if one is going to take seriously the very idea of
quantum space time symmetries, many conceptual problems arise the solu-
tion of which seems to be quite difficult. It is rather obvious that one should
concentrate on deformations of relativistic symmetries because it is a high
energy /small distance region where the deviations from the predictions of
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“clagsical” theory should occur. However, as far as the conceptual problems
are concerned, the nonrelativistic region provides a similar challenge. On the
other hand it seems that the study of nonrelativistic deformed symmetries
is slightly simpler. One is not here faced with some complications typical
of relativistic quantum theory as, for example, the nonexistence of particle
number conserving nontrivial interactions.

In the present paper as a first step towards the understanding of non-
relativistic quantum space—time symmetries we classify all nonequivalent
Poisson—Lie structures on the Galilei group acting in 4-dimensional space—
time. The method we use (cf. [2]) is based on solving directly the co-cycle
condition; it has been already used for finding Poisson—Lie structures on the
Galilei group of 2-dimensional space—time [3,4].

We find families of structures which cannot be related to each other by
the automorphisms of the Galilei group; contrary to the case of the Poincaré
group [5] many of them are not of the co-boundary type.

The paper is organized as follows. In Sec. 2 we sketch a general strategy
while the results are presented in Sec. 3. All technical details are relegated
to a number of appendices.

Let us conclude the introduction with some details concerning the Galilei

group [6].
The generic element g of the ten-parameter Galilei group G is denoted by
9= (47, R). (1)
We shall denote by
T = {(+,0,0,1)},
§ = {(0,d,0,1)},
V = {(0,6,’[7,.[)},
R = {(0,0.0,R)}

The subgroups of time translations, space-translations, pure Galilei trans-
formations (boosts), rotations, respectively.
The group law is expressed by

g =g-g = (t,&',ﬁ,R)(t',(;’,z;;,R')
= (' +t,d+ Ra' + 5,7+ Rv', RR). (2)
The identity for the group is
e = (0,0,0,1) (3)
and the inverse of the generic element is given by

gil = (ta C_’:a 17, R)il = (_ta _Ril(a" - tﬁ), _Rilﬁa Ril) . (4)



Poisson—Lie Structures on the Galilei Group 2591

The generators H, 13,[? and J of the Galilei Lie algebra G are defined with
the help of the exponential parametrization

g = o itH 4idP GivK Li0] (5)
and they obey the following commutation rules (only the non vanishing ones
are written up)

[JZ,J]] = iffiijk,
[Ji, Kj] = ieiji Ky,
[JZ,P]] = igijkpka
[Ki, H] = iP;, (6)

here and in the sequel the summation over repeated indices is understood
(i,4.k = 1,2,3).

The automorphism group of G consists of the inner automorphisms to-
gether with two outer ones generated by space and time dilations.

a
,a,7,R) — (bt,d,b ‘¥, R). (7)

In what follows we shall need the right invariant vector fields on . Denoting
by X the right invariant vector field corresponding to the element X of Lie
algebra G we have

. 0
H = —i—
"ot
. 0
P =i
1 'Laai )
. 0 0
K, =1 o
< Oa; + 802)
. _ , 9
J; = —Z&Z’jka]’a—ak — UKV 5 Y. 'nggkR]laR (8)

2. Poisson—Lie structures on the Galilei group
— the general strategy

Let us recall the notion of Poisson-Lie group [7,8]. It is a Lie group
G which has a Poisson structure {, } such that the multiplication map

m:Gx G — @ is a Poisson map (of course G xG is given the product
Poisson structure).
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Poisson—Lie structures can be described explicitly as follows. Let GN be
the Lie algebra of G; denote by {X;} an arbitrary basis in G and let c - be

the corresponding structure constants. One defines a mapping 1 : G — /\2g )
n(g) =n"(9Xi© X;, 0" (9) =—1"(9). 9)

Let {X; RY be the realization of G in terms of right invariant vector fields
on G. The Poisson bracket on G given by

(2.0} = 717(X['®)(X}'P) (10)

defines the Poisson-Lie structure on G provided the following conditions are
obeyed
(i) Poisson—Lie property (co-cycle condition)

n(g'9) = nlg') + Ad(g')n(g), (11)
(1) Jacobi identity
" X PP M X P e X = e P = P = et =0, (12)

The inverse is also true: any Poisson-Lie structure on G can be written
in the above form. The infinitesimal analogues of Poisson-Lie groups are
Lie bialgebras. For any X € G define

J(X) = %n (ei1X) ‘t:o' (13)

Then it can be easily shown that 9 : C; — /\QC; has the following properties
which are the infinitesimal counterparts of (i) and (i):
(i’) co-cycle condition

M(X)Y]) = [ XQI+IX,6(Y)]+[0(X),IQY +Y®I], (14)

(#’) co-Jacobi identity

Y (d@id)os(X) = 0, (15)

c.p.

where c.p. means the summation over cyclic permutation of the factors in
Go¢ad. ) )

Every Poisson—Lie structure on G defines a Lie bialgebra structure on G.
The inverse is true provided G is connected and simple connected [9].
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Two Piosson-Lie structures on G will be called equivalent if there exists
an automorphism of G which is a Poisson map.

The main aim of the present paper is to classify, up to equivalence, all
Poisson—Lie structures on the Galilei group G acting in 4-dimensional space—
time. We adopt the following, rather straightforward, strategy.

First, we write out 7 in the form

n(9) = Ti(9)H A Ji + i(9)H A Py + Ty(9)H A K + Ai(g)eiji Py A Py
+255(9) P A K + Zij(9) Py A Jj + Ei(g)eijn K A Ki
+ 2i5(9) Ki A Jj + Ii(9)eijnJs A J (16)
where g = (¢,d, v, R) is an arbitrary element of the Galilei group G.

Inserting the expansion (16) into the co-cycle condition (11) one obtains
the following set of functional equations for the coefficients ¥;, @; etc.

T(gg') = Wi(g) + Ru¥i(g') ,
Di(99") = Di(9) + Ru®Pi(9') + ik (vnt — an) Ry (g') — tRuIi(g')
Ii(g9g') = Ti(g) + Ruli(g') — &?mkvanzWI( ",
Ai(gg') = Ai(g) + Ra/i(g') — 3€imnvmBui®i(g')
+ % [(v t — GmVm)Oin — vn(vit — a;) | Ru¥i(g")
+% tgzanmRanl(gl) - % tRilglmnTmn(gl)
+ 3 [(tvi = a3)0mp — Rim Rup(tvn — an)]
X (Zpm(g') — % t2m(9')) + tQRilEl(gl)
+ (FPopvi — vpait — viayt + apa;) Rym I (g')
Tii(99") = Tij(9) + RimRjnLon(9") + vicjukvn R (g')

—viRjI(g") — ejnivnRipRig Xpi — 2teijs RaZ1(g")
+ [Eml(an — Unt)ij + EjnlvntRip]le.ka(gl)
+ 2[eijnvn(ap — vpt) Rpm — €njranvy Rim I (g")
Yii(99") = Zij(9) + RipRjuXpr(9') — viRiWi(g") — tRip Rk 2p(9")
+2[(a; — tvj) Rim — (a1 — tv) Rim i) T (g") |
Ei(ggl) = Zi(g) + RinEn(gl) - % (Ui(spm - RimRnpUn)'me(gl)

+ UiUpRpmHm(gl) )
2i(99") = 2ij(9) + RipRjr2pi(9") + 2(Rimv;j — Rimv10i5) 1 (g') |
ITi(gg') = II(g) + RimIIm(g') . (17)

In spite of their complicated structure they can be solved in the following
way (cf. [2-4]). Omne decomposes the general element g = (¢,d, ¥, R) into
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the product of four elements belonging to the subgroups of time and space
translations, boosts and rotations, (see Sec. 1).

(taaaﬁaR) = (t’6a6a1) ' (0,6,6,[) : (0’676"[) ' (076767R) . (18)

According to the condition (i) one can successively calculate n(g) using
the above decomposition provided the form of 5 for all four subgroups is
known. In order to find the latter we specialize Egs. (17) to those subgroups.
The resulting equations can be easily solved; this is done in Appendix A.
However, in obtaining the final form of n we apply Eq. (17) with some
definite order of multiplication — for example using

(t,&:, 177 R) = (ta 6a 6a I) ' ((0,6,0,[)((0,0,5, I)(0a67 67 R)))7

so there could be further constraints on parameters entering 7 following from
associativity. Therefore, we reinsert 7 into Eq. (11) with arbitrary g and ¢’
to find all missed relations between parameters. In this way we produce the
general solution to Eq. (11) described in Appendix B (see Eq. (B.1)).

There remains to solve (i) which imposes additional relations between
coefficients of 1. It is very tedious to try to solve Eq. (12) directly, so we
adopt a different method. From our general form of  we calculate § and
impose (4i’) which, in this context, is equivalent to (7). On the other hand
it is well known that (4i’) can be restated as the condition that the dual map
0* defines Lie algebra structure on G*. Therefore, we first calculate § and
the commutators on G* resulting from it and then solve the Jacobi identities.
This is still a complicated problem but it can be simplified by using boost
and translation automorphisms of Galilei group/algebra. Once this is done
there remains only to use the residual automorphisms to put our solutions
in canonical position. The more detailed discussion is given in Appendix C.

At the end, having the form of  (Eq. (16)) and the form of right
invariant vector fields (Eq. (8)), using Eq. (10) and taking into account
that for all families of solutions II;(g) = 0 (see Eq. (B.1) and Sec. 3) one
can easily calculate the following fundamental Poisson-Lie brackets.

{Rap; Rea} = 0,
{Vas Rpe} = epjiRic82aj
{a4, Roc} = epjiRic(Xaj + 18245)
{t,Rpc} = —epjRic¥;,
{t,va} = I — ey,
{va, v} = —2eapjEj + ejiviaj — €ajivif;
{ag, v} = —Top + vy Xaj — 2teaj =5 + tepjivif2a; — €ajiar2pj ,
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{aa, ab} = _25abj/1j — oy + tYpa — 2t25abj5j + 5bjlalEaj
—Eqj1a1 2y + tepjiarf2a; — teajuar$y;
{t,aa} = —€inan¥i+ Pg+ I,. (19)
3. Poisson—Lie structures on the Galilei group — the results

By applying the procedure outlined above we solve the relevant Jacobi
identities for dual algebra (making use of boost and translation automor-
phisms) and we arrive at the following families of Poisson—Lie structures
(for all cases 77 = 0).

I G-arbitrary, § # 0,7 = 0,¢ = 0,v = 0, = 0,0 = 0,p = 0,0, = 0,
Xij = 0,wij =0
free parameters: @, # 0

I a@#0,6=0,9=0,4=Fa X=La,v arbitrary, £=0,0=0, p=0, 0;; =0,
wi]' = W(a2(5i]’ — aiaj),xij = B(aiaj — %Ozgdij) + 2WUEijkak
free parameters: F,L,v,W #0,B

I &=0,=0,9=0,¢ = Fji,A = Lii,v= 0,6 =0,0 =0,p=0,04 =0,
wij = W(8ij — pitj), Xij = Bpipj — £6i5) + Ceijfix
free parameters: F' # 0,L, B,C,W # 0, i, ||ji|]| = 1

IV @:0,5:0’57:0,5:0’X:L[j,y:0,§:Xﬁ,07arbitrary, pZO,UZ]:07
wij =W (dij — pitts), Xij = Bpattj — 50i5) + Ceijnpik
free parameters: L, X, 0,W # 0,B,C, i, ||f|| =1

Va+#0,=0+= 0,(;;: Fo'Z,X = L@,Vfarbitrary, 5: 0,0 =0,p =0,
0ij = 0,w;; =0, x5 = B(oyorj — %oﬂ&j)
free parameters: @ # 0, F, L,v, B

VI @=0,8=0,7=0,¢=0,v=0, =0,0-arbitrary, p=0,0,; = 0,w;; =0,
X and Xij— arbitrary except that ,pcXapAe =0
free parameters: X, Xabs O

VIL& =0, = 0,7 = 0,¢i = FeimnXmn, A = 0,v = 0,6 = 0,0 = 0,
p=0,04 = 0,w;; = 0, x;;— arbitrary except that e;mnXmn 7# 0
free parameters: F' # 0, Xmn

VIII @ =0,8=0,9=0,¢; % FeimnXmn and ¢ #0,X = L, v =0, =0,
0 =0,p=0,04 = 0,w;j =0, x;;— arbitrary
free parameters: <Z #0, L, xij
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IX @ =08=07= 0,(;;farbitrary,5: = 0,v &# 0,52 0,0 = 0,p = 0,
045 = 0 yWij = 0 XZJ arbitrary
free parameters: ng, v # 0, Xij

Xad=0p8=0+=0, gz; = v, X arbitrary,v = 0 5# 0, f—arbitrary,

=0,04 =0  Wij = 0, xij arbltrary except that &?achabfc =0
free parameters: X f# 0,0, xij

—

XIa =0 p o= 0,6 = 0,X = Lij,v = 0,§ = 0, 0-arbitrary,
p=-3 S%—S(uzu]—%é )swij = 0,x55 = Bluiy — 4di)
free parameters S#0,L,B O,ﬁ,||ﬁ|| =1

XII & = 0,8 =09 =0, = 0,X = 0,v = 0§ = 0, 0-arbitrary,
p=- 15 Oj = S(p Hiftj — %6z )7wij =0,x45 = B(MZMJ 51])+05zgk/vbk
fre eparameters S#0,B,C#0,0,0,||F =

XIII& = 0,8 = 0,57 = 0,6 = 0,X = 0,v 7505_09 = 0,
p=—3585,0i5 = S(pipj — 30ij), wij = 0, xij = Bpipj — 56i) + Ceijkpin
free parameters: S # 0,v = 0,B,C,ﬁ,||[£|:1

XIV & = 0,8 = 0,7y = 0,(;; = O,X = Lji,v f = XM,H arbitrary,
p= ;,SaUZJ_S(NZN]_%dij)7WZJ:0 X]—B(Nzﬂj 51])
free parameters: S # 0, X #0,L,0, B, fi,||f]|| =1

XVa=0p=07 = ,&’:F*,Xzo,u#o,{:oe)—o
p= éS, 045 = S(Ni,uj - %52‘7)7(“}’5]' =0,xij = B(Nz:u] - _51j)+05z3k,uk
free parameters: S # 0,F # 0,v #0,B,C, i, ||jii|]| = 1

XVI&@ = 08 = 0,y = 0,6 = Fji, :0, :05_09—0

—%S, oij = S(Miuj — 50

p= S 05 = S(Nz/‘]

- -

XVIII & ﬁ =0,y # 0,¢ = 0, = LHy,v
p=—57°n,0i = —eijiyk + vV — 3
w-arbitrary except that @y =0
free parameters: X, L, n, W

H
=
.
=22
€
£l
Il
O
=
Q
Il
(%Y
o
3
=2
§

Let us note that all Poisson—Lie structures with § =0, v =0 and § =0
are co-boundary and the corresponding r—matrix reads
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r = ¢ H NPy + iy H AN Ky + 1o H N Jg
+i5ijk>\kpi A Pj + ’i(O’ij — p(;ij)Pi A Jj
+iXijF)i A Kj — i(2wij — wnndij)Ji VAN Kj
+i5ijk§kKi A Kj . (20)

Now there remains only to classify the orbits under the action of resid-
ual automorphisms corresponding to the rotations and scaling and put our
structure in the canonical form. This is a straightforward although very te-
dious task. The result can be summarized as follows. There are 69 families
of inequivalent Poisson—Lie structures which have been grouped for conve-
nience into eight groups. Each group is described by the appropriate tables
which are given below. They provide the main result of our paper.

Let us note that for all groups 77 = 0. In the last column (labeled by #)
we indicate the number of essential parameters.

D) p=0,0ij =0,wij =0,xi; =0,7 =0,

TABLE I
N a é X v I3 ]
1|(0,0,0) 1 0 0 0 0 0 1
a>0
2 | (0,01) 0 (0,0,1) (0,0,L) v 0 0 2
3| (0,01) 0 0 0,0,£1) v 0 0 1
4| (0,01) 0 0 0 1 0 0 0
5| (0,01) 0 0 0 0 0 0 0
6 0 0 (0,0,1) (0,0,41) 0 0 0 0
7 0 0 (0,0,1) 0 0 0 0 0
8 0 0 (0,0,1) 0 1 0 0 0
9 0 0 0 M =0 0 (001 6 2
M+ A=1
10 0 0 0 (0,0,1) 0 0 +1 0
11 0 0 0 (0,0,1) 0 0 0 0
12 0 0 0 0 0 (001 6 1
13 0 0 0 0 0 0 +1 0
14 0 0 0 0 0 0 0 0
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(IT) B=0,9=0,p=0,0; = 0,wy; = W(ds; — 6i3053) ,
Xij = B(8i30j3 — $0i5) + Ceyjs
TABLE 11
N a é X v & 9 B C W #
15 | (0,0,1) (0,0,F) (0,0,L) v 0 0 B 2o 1 4
16 | (0,0,1) (0,0,F) (0,0,L) v 0 o1 0 0 3
7] 0 0,0+£1) (0,0,L) 0 0 o B C 1 3
18 0 é 0 1 0 0 0 1 0 3
9] 0 0 (0,0L) 0 (0,0X) 6 2B46c®=s | 1 4
20| 0 0 0,0+1) 0 (00,X) 6 0 0 1 2
20| 0 0 0 0 (00X) 6 0 0 1 2
II) @=0,8=0,5=0,p=—%,05 = (0;30j3 — 50i5),wi; =0,
xij = B(di3dj3 — 30ij) + Ceija
TABLE III

N é v I3 ¢ B C #

22 | (0,0,1) (0,0L) 0 0 O B 0 2

23 | (0,0,1) 0 v£0 0 0 B 0 P

24 | (0,0,1) 0 v 0 0 B C#0 3

2% 0 00L) 0 (00+1) 6 B 0 3

26| 0  (0,0L) 0 0 £1 B 0 2

27 0  (0,0L) 0 0 o 1 0 1

28 0  (0,0L) 0 0 o 0o 0 1

29 0 0 1 0 0 B C 2

30 0 0 0 0 0 2B%t6c?=3 2

C#0
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(IV) &:0518:07520’”:0”9:07p:_%’wij:0’

Xij = Oopdizwj, w3 = 0,05 = —€453 + (33053 — $0i5) ,
TABLE IV
N| 7 £ #
31| (0,0,1) (0,0,L) (00,%1) 1
32 | (0,0,1) (0,0,L) 0 1

(V) a@=0,=0,9=0,v=0,p=0,045 =0,w;; =0,trxy =0,

3
X3 = 1,xij = diag(xi1, x22, X33) »
)

(Va)  x11 # X22 7 X33+

TABLE Va
N é X I3 6 #
33 0 X =1 0 6 4
34 0 X 1él=1 6 7
35| |l4]|=1 X=Lg¢ 0 0 4
(Vb)  x11 = x22 # X33
TABLE Vb
N ¢ X £ #
36 0 A =0 0 9 2
M +A=1
37 0 X &=0 6 5
G+g=1
38 $1=0 X=1¢ 0 0 2
¢ +¢3=1

(VI) a=0,=0,y=0,vr=0,p=0,04 =0,w;; =0,trx =0,
3

ZX%’ =1,x32 = —x23 # 0, x12 = X21, X13 = X32,
ij
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(VIa)  x22 # X33,

TABLE VIa
N é X & o #
39 0 M =0 0 6 6
M4+ M=1
40 0 X &6§=0 6 9
&G+6=1
41| gl =1 X=1¢ 0 0 7
¢3+¢3=1
(VIb) X22 = X33,
TABLE VIb
N| ¢ X £ 0 #
42 0 A =X =0 0 6 4
Ao = +1
43 0 X &L =6=0 0 7T
& = +1
44 | (F0,1) X=L¢ 0 0 5

(VII) 5220,,8:0,’7:0,&’:0,5:0,;):0,0'2']‘:O,U}Z‘j:0,

3
trsz,Zngzl,
ij

(VITa)  x11 # x22 7 X33, X13 = —X31, X23 = —X32, X12 = —X21 »

TABLE VIIa
N|é v 6 #
4500 0 £1,0 4
606 1 0 7
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(VIIb)  x11 = x22 7 Xx33:X13 = —x31 7 0, X23 = Xx32 = 0, x12 = —X21,

TABLE VIIb
¢ |v 8§ #
4710 0 +1,0
8¢ 1 0

(VHC) X11 = X22,X13 = X31 = x23 = X32 = 0, x12 = —X21,
TABLE VIlc

=

N é v 0 4
49 0 0 +1,0 1
50 (07¢25¢3) 1 0 3

(VIIH @=0,8=0,7=0,¢ = (0,0,1),X=0,0 =0, =0,0 =0,
3
PZOanj :Oawij :OatTXZOaZXZQJ :17X12 = —X21 :1/Fa
)

(VIIIa)  x11 # X22, X13 = X31, X23 = X325

(VIIIb)  x11 = X22, X13 = X31 = 0, X23 = X32-

Now, inserting appropriate values of parameters (listed above) to Eq. (B.1)
and using Eq. (19) one can easily calculate the fundamental Poisson brackets
for all nonequivalent structures.

4. Summary

We have obtained all Lie-Poisson structures on the Galilei group acting
in 4-dimensional space—time and classified them up to the equivalence im-
plied by group automorphisms. The resulting set of structures appears to
be quite rich; in particular, it includes many non—co-boundary structures,
to be contrasted with the Poincare group case [5|. In spite of that, part of
them can be surely obtained from those on Poincare group by a contraction
procedure.

The next step to be done is to quantize the Lie—Poisson structures. In
general, the consistent quantization is not an easy task. However, the pre-
liminary study already done by us shows, that most of the cases described
here are quantization friendly.
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The problem of finding the behavior of the co-boundary Poisson struc-
tures of the Poincaré group under contraction to the Galilei group is under

investigation.

Appendix A

The co-cycle condition for subgroups

Let us specify the Eqgs. (17) for the subgroups of rotations, boosts, space
and time translations. They read, respectively,

7;(RR') =

[1]

N

/\/\/\AA/\/\/@T/\/\/\/\/\/\/\
++ F+ A+ A

2

7;(R) + Ry (R')
®;(R) + Ry®y(R'),
R) + Ry (R')
i(R) + Ry Ay(R'),
Z‘j(R) + RimRﬂTml(Rl) ,
ii(R) + RiijlZml(R') ,
Z(R) + RimEm(R/) ,
i (R) + Riijlle(R') ,
i(R) + Ry I (R) . (A1)

{\.j
A~~~
~—

=~

—~
~—

M 3

N QO In

S8 5

- -
/ /

Ai(v ) - % EimnVm@Pn (v )7
& ink0n T (V)i — Tj(0")0; — € jnion Zig (07) ,
Yij(v") — v (v')

J
Zi(0) + Zi(0") = 3 (02 (V') — 0p2pi(07)) + Ty (0 Y005

SR
=

Qi () + 24 (0") + 21T (v v; — 2 (0" )0y i

I1,(%) + IT;(v") . (A.2)
Wi(@) + i),

(@) + Pi(d) = einkanPi(a)

(@) + Iy(dl)

Ai(@) + Ai(a’) + (@) ama; — & (aidim — @1dim) Sim (@) ,

~ §
<.

—~
QL
~
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Zi(@+d) = Zi(a) + Zi(a),
“Qij(‘_i'i' ‘?) ‘QZJ (5) + ‘QZ](C;;) )
(@ + d) = IT;(@) + IT;(d) (A.3)
Ti(t+t') = ¥(t) + (t'),
Gi(t+t') = &;(t) + &;(t) —tI(),
Li(t+1t) = Ti(t) + Li(t'),
At +t) = L)+ AH) = 3 teimn L) + 2 5(F),
Tij(t+1) = Ti(t) + (1) — 2teipEi(t),
Dijt+1) = Zig(t) + Ty (') — t92i5(t")
Zit+t) = 5) + 5,
“Qij(t + tl) = ‘QZJ (t) + ‘QZJ (tl) )
IT(t +t') = II;(t) + IT;(t). (A.4)

Note that all Egs. (A.1) have the same structure
Tj,..i,(RR") = Ty, i, (R) + Ryj, ... Ry, Tj,..j, (R') . (A.5)
They can be solved by integrating over R’ with respec to Haar measure on SO(3)
Tir.in(R) = (Riyjy -+ Rigjx — Oiyoy - - - Oigjig )Cii1 o, - (A.6)

This result agrees with the general theorem stating that all semi-simple
Lie groups are coboundaries. On the other hand it follows immediately
from Eqgs. (A.2)—(A.4) that all functions entering there are polynomials in
the relevant parameters. This allows us to write out explicitly the general
solutions.

v; = Oa

¢i = Oa

Ii(v) = aijvy,
Ai bijvj

1 1
= CijkVk — 5 (Oik@ji + 0501k — a0k + 5 €jkIEinmGnm)VEUL ,

el

= (% 5jk5inmanm - 5ijnakn)vk,

= digvi + (3ejin — (€0 + erdis)) vivi

(eijk + 5 (exdji — eidjr))vi ,

=0, (A7)

T T T ~— ~— ~—

S S S S S S A

<
A~ N N N N N N S
~

SESEE
=

where eijk = ekji, Ciik — 0;
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vi(@ = 0,

Pi(d) = fija;,

ri(@) = gija;,

Ai(@) = hijaj + 3(hjik — 5 (hjdix + hidij))aja ,

T5(@) = kijrax

i@ = (hijk + 5 (hidij — hidjk))ak ,

52(5:) = lijaj,

(@) = 0,

1,(@) = 0, (A.8)

where hijk = hkji7 hiik = 0;

v(t) = pit,

Qsi(t) = T'Z't — % Sitg,

Ii(t) = sit,

Az(t) = u;t — i{fimnmmn252 + %wit3a

7;(t) = Iz‘jt—6ijkwkt2

Eij(t) = Yt — 5 Zzgtg

Zi(t) = wgt,

25(t) = 2t

II;(t) = myt. (A.9)

Appendix B
The general solution to the cocycle condition

According to the procedure outlined in Sec. 2 we use the cocycle condition
(1) together with the decomposition (18) and the expressions written out in
Appendix A to produce the Ansatz for n(g). Inserting it back into (17) we
find the general solution for 7 of the form.

% (9) R;; — 5”)043 )

Di(9) = (Rij — 6ij)¢pj + Bla; — vit) — v Rijt + eijroq Ry (ay, — vit)
Ti(g) = (Rzg dij)v; + Bvi + 6z‘jk041Rszk ,

Ai(g) = — 8i))Aj + (p— & onn)(a; — vit) + & Beyjrajvg

(R
+2 5zgk¢lel'Uk § a]RZ](a’kvk - t)
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+% Oszijk(ai —vit) + ijith — % gijkViBjvgt
—1 ejuxrRijt — wjRij Rejart + vv; + wi Ryk Rivnt?
+% Uininkl(ak — vpt) + N Rk (aiam + 205,0;t)
—ny(ap Rvi + a;iRgog)t,
= (RiRji — 0ix0j1)Xwt + 0;50t — 5 6:587°
+ejkion Rinvpvi — yeRjpvi — 26415 Ryt
—€jk10ns Rin Risvk + pEijrvk + Wnnijrak
+2wns(eiiRjs Rinar, — €ijiRis Rinvit)
+2n(Rjivr, — RmniVmOik)€kintn — 2n50s0m Rimkesijt
= (RixRj; — 6itdj1)ons — Beijrvr — caRjpv;
—ZkaRiklet + wnndijt
+2ny, (Rikaj — Rmkaméij — Rjpvjt + Rmkvméijt) ,
= (Rij — 0i5)&; + wjiRij Rpvi + np Rk mv; »
= Q(Rikle — 5ik5jl)wlk + 2ny (Rikvj — Rmkvméij) ,
= (Rj; — 0ij)n; - (B.1)

Appendix C
Jacobi identities

the general form of n described in Appendix B we find from

= %H AP+ % (xkj — Xj6)Pj A P + (2651&k — 00;5) P A K

+(20in — wméji)Pi A Jj ,

= (Bdis + insox) H N P; + €4 (pdis — 5 Onndis + 5 05i)Pj A Py

+(2ep55wi5 — €jiswnn) P A Kj
+2(n;idsj — ng0i;) Py N Jj

= (Bdis + einsox)H A P + (vegjk — 5 (drdjs — joks)) P A P

+(peijs — €rjsOik — V0is) P N K
—(Beijs + j0is) Py N Jj + eijpwis Kj N K,
+2(nj(55k — nséjk)Kj AN Jg,

= 65ijOsz NJ; + 65ij¢jH A P; + 5ijs'YjH NK;

+(Njoks — Medjs) Pj A Py + (€sik My + €5k Xik) Pi A K
+(esikonrj + €sjk0in) Pi N T + (§i0ks — E10js) Kj N Ky
+2(5sikwjk + 5sjkwki)Ki NJj+2ng i N Js. (C.1)
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Let X; denote the basis in G* defined by < )E'i,Xj >= 0;;. Then 0 imposes
the following commutator structure in G*.

[H, Ji] = eimad;,

[H, Py = veH + (Boik + cimen) Py + eiudi Ji

[H,Ki] = (Béir, + eman) Ki + emndi

Kk, Ji] = 2(nibii — nidi) Ki + 2(€ikntin + €itnwnr) Ji »

[P, ] = (Xim — Xmt) H + 2€pim[p0ki + 5 (0ik — 0Onndin)| P

+2[veim + 5 (B10im — ¢m51z)]K + 2(Nidim — Amik) i
[Pka Kl] = (2€n5nkl Hékl)H + (25nkzwnl wnnglkz)P
+(perti — €tinkn — ki) Ki + (€iknXnt + EitnXrn)Ji »
[P, Ji] = (2wik — wnndi)H + 2(ngdy; — ni0p) P;
—(Bekti + ki) Ki + (€ikn0ni + EitnTkn)Ji
(K, K] = 2€pmnwii K + 2(Emoni — &ndmi) i
[Ty i) = 2(ngdy; — nyopi)J; - (C.2)
Now we have to solve the Jacobi identities for the structure described in
(C.2). This is still a complicated task so we apply a mixed procedure con-
sisting in solving part of Jacobi identities directly and applying the group
of automorphisms to simplify the remaining ones.

Therefore, we first give the action of the automorphism group on the
parameters of 0. Let us start with inner automorphisms. They read

Vg = Vi = Yk — Bk + eravicy
g =p Ap = Ak — VO — 3 EpirdiVa
p=¢ & = &k — WenVn — Vk(Vn7n)
0'=0 p'=p—Fonvy,
Vi=v wij = wij + ving + (vnnn)dij
! =i Oiq = Oia + BEiatVl + 0taVi — 200 Un0ai
X:zb = Xab T VaVb + EbnmUnOmUq — % EabkOnkUn
— P€abn¥Un — % EalmOIblVm — % EblmTalVUm
- %(Un’)/n + 5lnm0nlvm)5ab s (03)
for boosts,
=i, od=a =8,
vV =v, 5_7:5, 0 =0,
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/

i = ¢i — Ba; — Empanay
/

Ye = Yk — 25knmamnna

e = M — 3 Onkan — pag — any — (nia;)ny,,
p=p- %ak”kafw =0q + %(aknk)%b — 2ng4ayp,
Xop = Xab — EabnWnk@k + EamkWmbQk
+ EomkWmak + %5mnkwmnak5ab )
wfzb = Wab > (C.4)

for space translations and

n'=i, d=a, f =8+ =7,

V=u, ¢ =E, 9'=0,w;]=w”,
¢ = ¢+t’?7 A;:Az_ % tgimanm+t2fia
:0/ = p+%twnna U;bzaab‘i‘thba_%twnn(Saba

Xizb Xab + 2t5abk5k 3
for time translations, respectively.

Under the rotations the parameters transform as tensors of appropriate
rank.

Besides, there are two outer automorphisms, which correspond to rescal-
ing of space and time unit, (@ — ad, t — bt). They read

1
nlzﬁ, O/:%O_Za /8125/87
I L g
’725’77 ¢:Ea Azﬁ)‘a
1 o 2 b?
! _ b I
v _%Va f_a_2£a 0 _907
, 1 , 1 ) b
Pzgpa Oub = g %ab> XabZEXab,
Wiy = gwab. (C.5)

We shall not enter into all details. Let us rather give a sketch of the proce-
dure. o

By solving the Jacobi identities for the subalgebra generated by H, J;, K,
we find the following six families of constraints on parameters 7, 8, &, w;j, 7,
and &.
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(a) 7 = 0,d-arbitrary, 3 # 0,7-arbitrary, Ez 0,w;j =0,

(b) =0,a 7& 0,/ = 0,¥-arbitrary, £ = £& + W (& x ¥), wij
W(a?0;; — ), W #0,

(c) ﬁ] 0,d =0, = 0,&arbitrary, wij = W (dij — pipj) + Vegjutin,
fill =1,

Vi if W]+ V] #0,
arbitrary if W =V =0,

=21
I

3

(d) _’:0,0_1’750,,820,(4}”:W(szj,’?:%( X

!

W £ 0,5 arbitrary,

(f) 7=0,d =0,8 = 0,w;; = Wdi;,7 = 0, arbitrary .

Now we have to solve the remaining Jacobi identities. First of all let
us note that there are ambiguities in determining the matrices o;; and x;;.
Namely, both can be redefined by adding arbitrary multiples of the unit
matrix. In order to remove this ambiguity we put tro = try = 0. Now we
use the automorphisms generated by boosts, space and time translations to
simplify the Jacobi identities. For example in the cases (a),(d) and (e) we
may use the boost to put ¥ = 0 from the very beginning. On the other hand
in the case (b) by solving the Jacobi 1dent1ty for H, P;, P, we find 3@ = 0
and again the boost can be used to put 4 = 0. Proceeding in this way we
obtain the eighteen families of solutions described in Sec. 3.

The authors thank Prof. P. Kosiriski and Prof. S. Giller for many helpful
discussions.
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