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MATHISSON'S SPINNING ELECTRON:NONCOMMUTATIVE MECHANICS AND EXOTICGALILEAN SYMMETRY, 66 YEARS AGOP.A. HorváthyLaboratoire de Mathématiques et de Physique ThéoriqueUniversité de ToursPar de Grandmont, 37 200 Tours, Frane(Reeived Marh 12, 2003)The aeleration-dependent system with nonommuting oordinates,proposed by Lukierski, Stihel and Zakrzewski [Ann. Phys.260, 224 (1997)℄is derived as the non-relativisti limit of Mathisson's lassial eletron [AtaPhys. Pol. 6, 218 (1937)℄, further disussed by Weyssenho� and Raabe[Ata Phys. Pol. 9, 7 (1947)℄. The two-parameter entrally extendedGalilean symmetry of the model is reovered using elementary methods.The relation to Shrödinger's Zitternde Elektron is indiated.PACS numbers: 03.30.+p, 03.65.Sq1. IntrodutionNon-ommutative (quantum) mehanis, where the position oordinatessatisfy �X1;X2	 = � ; (1.1)has been at the enter of reent interest [1℄. In the plane and in the non-relativisti ontext, suh theories are losely related to the �exoti� Galileansymmetry assoiated with the two-fold entral extension of the planar Galileigroup [2℄. A model whih provides a physial realization of this symmetryhas been presented by Lukierski, Stihel and Zakrzewski [3℄ who onsideredthe aeleration-dependent LagrangianL = m _~x22 + �2 _~x� �~x : (1.2)My aim here is to point out that the model of Lukierski et al. an a-tually be derived from that published by Mathisson in `37 [4℄, and further(2611)



2612 P.A. Horváthydisussed byWeyssenho� and Raabe [5℄. Not surprisingly, their theory showsinteresting analogies also with Shrödinger's Zitternde Elektron [6℄.This Note is dediated to the memory of these outstanding physiistswho, with an extreme ourage, tried to ontinue their sienti� ativityunder those terrible years of World War II.2. The Mathisson eletronTwo years before the outbreak of World War II, Mathisson [4℄ proposedto desribe a lassial eletron with the relativisti equationsm _u� + 12S���u� = f� ;_S�� � 12S�� _u�u� + 12S�� _u�u� = 0 ; (2.1)where m is the mass, u� the four-veloity, f� the fore; the dot meansdi�erentiation w.r.t. proper time. The antisymmetri tensor S�� representsthe spin of the eletron and is assumed to satisfy the orthogonality onditionS��u� = 0 : (2.2)In the rest frame, the spatial omponents of S�� form therefore a three-vetor ~S.In the non-relativisti limit, ~S beomes a onstant of the motion. Inthe absene of external fore, the motion is [apart of free motion along thediretion of ~S℄, in the plane perpendiular to ~S and satis�es the third-orderequation m�xi = ��"ij ...xj ; (2.3)where the new onstant � has been de�ned by the Jakiw�Nair Ansatz [7℄s = �2; (2.4)s = j~Sj being the length of the spin vetor. Eq. (2.3) is preisely the equationof motion put forward by of Lukierski et al. [3℄.From now on we drop the oordinate parallel to ~S and fous our attentionon the motion in the plane.3. Conserved quantitiesThe equations of motion (2.3) are assoiated with the Lagrangian (1.2).Then Lukierski et al. derive the onserved quantities assoiated to the spae�time symmetries applying the higher-order version of Noether's theorem. Letus now reprodue their results using elementary methods.



Mathisson's Spinning Eletron: Nonommutative Mehanis and Exoti . . . 2613� An obvious �rst integral of (2.3) is the momentum,Pi = m _xi + �"ij �xj : (3.1)Eq. (2.3) is in fat _Pi = 0.� Multiplying (2.3) by the veloity, _~x, yields a total time derivative,where we reognize the onserved energy,H = m _~x22 + � _~x� �~x: (3.2)� Similarly, taking the vetor produt of (2.3) with ~x yields the onservedangular momentum, J = m~x� _~x+ �2 _~x2 � �~x � �~x : (3.3)� A Galilean boost ~x! ~x+~bt shifts the momentum as ~P ! ~P +m~b. Arest frame where the momentum vanishes an be found, providing us withthe onserved boost vetorKi = mxi � t�m _xi + �"ij �xj�+ �"ij _xj : (3.4)Somewhat surprisingly, one more onserved quantity an be found.� The vetor produt of (2.3) with the aeleration, �~x , yields the squareof the aeleration, I = �32m2 ��~x�2 ; (3.5)where a onstant fator has been inluded for later onveniene.� Curiously, multiplying (2.3) by ...~x yields one again the same quantity,namely (m=2)��~x�2 = (m=�)3I.The onstrution of this new quantity reminds one that of angular mo-mentum and of energy. Its preise origin will be lari�ed below.Let us observe that, owing to the onservation of I, �~x = 0 an be onsis-tently required. Then the onserved quantities found above redue to thoseof an �elementary exoti partile� studied in [8℄.4. Zitterbewegung and enter-of-mass deompositionThe equation of motion (2.3) is integrated at one. Putting indeedQi = �� �m�2 "ij�xj ; (4.1)



2614 P.A. HorváthyEq. (2.3) beomes _Qi = m� "ijQj ; (4.2)showing that the aeleration rotates uniformly with angular veloity m=�.Putting Q = Q1 + iQ2, Q(t) = Q0e�i(m=�)t. This is plainly onsistent withthe onservation of the magnitude of the aeleration, Eq. (3.5). ThenXi = xi + "ijQj (4.3)moves freely, �Xi = 0 : (4.4)In onlusion, the motion has been separated into the free motion of theenter of mass oordinate ~X, ombined with the �Zitterbewegung� [uniformrotation℄ of the internal oordinate ~Q.A key feature of Mathisson's eletron is that the internal variable ~Qmeasures in fat the extent of how muh the momentum, ~P , di�ers from[m-times℄ the veloity, _~x, ~Q = �m2 (m _~x� ~P ) : (4.5)Re-writing the onserved quantities in terms of the new oordinates on-�rms the above interpretation. In fat,~P = m _~X ;H = HCM +Hint = m _~X22 � m32�2 ~Q2 ;J = JCM + Jint = m ~X � _~X + �2 _~X2 + m22� ~Q2 ;Ki = m(Xi � _Xit) + �"ijXj ;I = m22� ~Q2 : (4.6)Mathisson's eletron is hene a omposite system. Note that in (4.6)the enter of mass behaves preisely as an elementary exoti partile [8℄;the internal oordinate only ontributes to the energy and the angular mo-mentum. In fat, Hint = �m� I and Jint = I. The new onserved quantityfound in (3.5) is hene the internal angular momentum and also the internalenergy [whih are linked in a 2-dimensional phase spae℄.Let us now observe that the equations of motion (4.2)�(4.4) are onsistentwith the Poisson struture assoiated with the sympleti form
 = 
CM +
int = dPi ^ dXi + �2m2 "ijdPi ^ dPj + m2� "ijdQi ^ dQj : (4.7)



Mathisson's Spinning Eletron: Nonommutative Mehanis and Exoti . . . 2615The 6 dimensional phase spae is hene the diret sum of the four-dimensional�exoti� phase spae of the enter of mass with oordinates ~X and ~P , withthe two-dimensional internal phase spae of the ~Q, endowed with a anonialsympleti struture.The Poisson struture an be used to alulate the algebrai strutureof the symmetries. Consistently with Lukierski et al. [3℄, we �nd that~P ;H; J; ~K , supplemented with the entral harges m and �, realize the�exoti� [two-fold entrally extended℄ planar Galilei group. The struturerelations of this latter only di�er from those of the usual Galilei group inthat the Poisson braket of the boost omponents yields the �exoti� entralharge, �K1;K2	 = � : (4.8)Similarly, the enter-of-mass oordinates have a nonvanishing Poisson braket,�X1;X2	 = �m2 ; �Q1; Q2	 = � �m2 : (4.9)Both the enter-of-mass and the internal oordinates are hene nonommut-ing, f. (1.1) with � = (�=m2) [while the original oordinates xi ommute℄.This is similar to what happens in the Landau problem where the guidingenter oordinates are nonommuting, with � = 1=eB.The additional onserved quantity I in (3.5) is atually assoiated withthe internal symmetries of the system. The translations and boosts formindeed an invariant subgroup K of the Galilei group. The quotient G=K,whih onsists of rotations and time translations, is hene a group that anbe made to at separately on the enter-of-mass and the internal spae. Wean, e.g., rotate the internal oordinate ~Q alone and leave the enter-of-mass oordinate ~X �xed. This is plainly a symmetry, and the assoiatedonserved quantity is the internal angular momentum Jint = I. (A physialrotation moves both the external and internal oordinates, yielding the totalangular momentum in (4.6).) The internal energy arises in a similar way. Inonlusion, the non-relativisti limit of the Mathisson eletron admits thediret produt of the �exoti� Galilei group with the internal rotations andtime translations, SO(2) �R, as symmetry. Here the ation of the Galileigroup is transitive on the submanifolds I = onst i.e., ~Q2 = onst.The same statement is valid for any omposite nonrelativisti system, i.e.one upon whih the Galilei group ats by symmetries but not transitively [9℄.5. Relation to Shrödinger's Zitternde ElektronThe results of Setion 4 remind those Shrödinger derived in his origi-nal paper on Zitterbewegung [6℄. Shrödinger starts in fat with the Dira



2616 P.A. HorváthyHamiltonian H = ~� � ~P +m22� ; (5.1)where ~� and � denote the usual Dira matries. In the Heisenberg piture,the operators satisfyd~Pdt = 0 ; dHdt = 0 ; d~xdt = ~� : (5.2)The last equation an be rewritten as �id~�dt = 2H~� ; (~ = 1), where ~� =~� � H�1 ~P : This an be integrated as ~�(t) = e2iHt~�0 = ~�0e�2iHt, where ~�0is a onstant operator. Hened~xdt = 2H�1 ~P + ~�0e�2iHt ;whih an again be integrated to yield~x(t) = � ~X0 + 2H�1 ~P t	+ 12 i~�0H�1e�2iHt ; (5.3)where ~X0 is a onstant operator. The struture is learly the same as in(4.3), with the operator ~X(t) = ~X0 + 2H�1 ~P t (5.4)representing the freely moving enter-of-mass, and the seond term desrib-ing the internal Zitterbewegung. The preise relation is more subtle, though.Intuitively, dropping the third omponent and working in the plane, puttings = 1=2 and s=2 ' � [whih would require the spin to diverge as  ! 1rather then remain a onstant℄, setting ~� ' _~x and replaing H ' m2,would transform (5.3) formally into (4.3). In fat,~X(t) ' ~X0 + ~Pmt ; m~� ' m2� ~Q ; e�i2Ht = e�i(H=s)t ' e�i(m=�)t : (5.5)Note that m~� = m~��m2H�1 ~P ' m _~x� ~P : (5.6)onsistently with (4.5).A distintive feature of Shrödinger's Zitternde Elektron is that theenter-of-mass oordinates satisfy the nontrivial ommutation relation�Xi;Xj ℄ = �i2E�2"ijkSk ; (5.7)where E = p~P 2 +m22 and ~S = �(i=4)~� � ~� is the spin operator. Ifwe assume that the spin is polarized in the third diretion, S3 = �s, and



Mathisson's Spinning Eletron: Nonommutative Mehanis and Exoti . . . 2617we onsider the non-relativisti limit E ' m2 + ~P 2=2m together with theAnsatz (2.4), we �nd for the planar omponents�X1;X2℄ ' i s2m2 = i �m2 ; (5.8)f. (1.1) with � = �=m2. Let us remark that our proedure here is in fatthe quantum version of the subtle non-relativisti limit proposed by Jakiwand Nair [7℄.6. The relativisti desription of Weyssenho� and RaabeMathisson's lassial eletron was further elaborated by Weyssenho� andRaabe in a paper published after the War [5℄. They posit the equations_p� = 0 ; p� = mu� + 12S�� _u� ;_S�� = p�u� � p�u� ;S��u� = 0 ; (6.1)where m = � 12u�p�: Eliminating p� yields the relativisti Mathisson equa-tions (2.1) one again. Eqs. (6.1) imply that m is onstant of the motion,_m = 0, identi�ed as the rest-mass of the partile. S��S�� = s2 is also a on-stant of the motion. They also observe that, owing to _p� = 0, the quantityM de�ned by p�p� = M22 is another onstant of the motion. It is worthnoting that the position satis�es again a third-order equation analogous to(2.3), namely m�x� = � 12S��...x �: (6.2)Then Weyssenho� and Raabe proeed to integrate the free relativistiequations of motion. In a suitable inertial frame (alled the proper sys-tem) the spatial omponents, Pi, of the vetor p� an be made to vanish, sothat its time omponent is M. In this frame ~S is onstant. The mass ism = M=p1� (~v=)2 where vi = uip1� (~v=)2 denotes the three-veloity.Hene the time omponent of the four-veloity is also onstant so that thefour-aeleration is proportional to the three-aeleration, ~a = d2~x=dt2.Transforming from proper time to t, ~P = 0 redues �nally toM~v + 12 ~S � ~a = 0 : (6.3)The partile moves hene along a irle in the plane perpendiular to ~S,with uniform angular veloity m2s �1� ~v22 � : (6.4)



2618 P.A. HorváthyIn a general Lorentz frame, the motion is a superposition of suh a motionwith a uniform translation.Our lue is to observe that in the non-relativisti limit these formulæredue, with the Jakiw�Nair Ansatz s = �2 f. (2.4), to those we derivedin Setion 4.It is worth mentioning that the equations of Weyssenho� and Raabehave again and again re-emerged in the ourse of the years. Consider, forexample, (6.1) in �ve dimensions and for s = 12 . Multipliation of p� withS�� allows us to express the �ve-vetor _u� as_u� = 42S��p� (6.5)whih, together with the remaining relations in (6.1) and the onstraintu�u� = 1, are preisely the equations proposed by Barut and Zanghi [10℄ asa �Kaluza�Klein� desription of a lassial Dira eletron.7. ConlusionIn this Note we have shown that the non-relativisti limit of Mathisson'slassial spinning eletron yields the aeleration-dependent model of Lukier-ski et al. [3℄. This latter has non-ommuting oordinates and realizes the�exoti� Galilean symmetry.Our results on�rm one again the relation between the relativisti spinand the non-relativisti �exoti� struture, advoated by Jakiw and Nair [7℄.Their rule (2.4) is, however, a rather strange one sine it requires the spinto diverge as !1 so that s=2 remains �nite. For this reason, the use ofa Dira equation valid for the �xed value s = 12 [as in Setion 5 above℄ islearly illegitimate, and should be replaed by some anyon equation, validfor any real spin s [11℄.Another intriguing feature of this proedure is the following. Whilethe relativisti model is assoiated with an irreduible representation of thePoinaré group, its dequantized & non-relativisti limit, namely the model ofLukierski et al., only arries a reduible representation of the Galilei group:irreduibility is lost in the proedure.A �nal remark onerns the spin onstraint (2.2) whih appears to lie atthe very root of the Zitterbewegung. Trading it forS��p� = 0 (7.1)would in fat eliminate the Zitterbewegung altogether and lead to models ofthe type disussed in [12℄.



Mathisson's Spinning Eletron: Nonommutative Mehanis and Exoti . . . 2619I am indebted to Professor J. Lukierski for sending me opies of thoseold Ata Physia Polonia papers, and also to Professor A. Staruszkiewiz,who provided me with some biographi data.REFERENCES[1℄ It is impossible to provide a omplete list of referenes. See, e.g., V.P. Nair,A.P. Polyhronakos, Quantum mehanis on the nonommutative plane andsphere, Phys. Lett. B505, 267 (2001); J. Gamboa, M. Loewe, F. Méndez,J. C. Rojas, The Landau problem in nonommutative Quantum Mehanis;S. Bellui, A. Nersessian, C. Sohihiu, Two phases of the nonommutativequantum mehanis, Phys. Lett. B522, 345 (2001), et.[2℄ J.-M. Lévy-Leblond, in Group Theory and Appliations (Loebl Ed.), II, Aad.Press, New York 1972, p. 222; A. Ballesteros, N. Gadella, M. del Olmo, Moyalquantization of 2 + 1 dimensional Galilean systems, J. Math. Phys. 33, 3379(1992); Y. Brihaye, C. Gonera, S. Giller, P. Kosi«ski, Galilean invariane in2 + 1 dimensions, hep-th/9503046 (unpublished); D.R. Grigore, Transitivesympleti manifolds in 1 + 2 dimensions, J. Math. Phys. 37, 240 (1996);The projetive unitary irreduible representations of the Galilei group in 1+2dimensions, 37, 460 (1996).[3℄ J. Lukierski, P.C. Stihel, W.J. Zakrzewski, Galilean-invariant (2 + 1)-dimensional models with a Chern-Simons-like term and d = 2 nonommutativegeometry, Ann. Phys. (NY) 260, 224 (1997). The model is further disussed inP.A. Horváthy, M.S. Plyushhay, Non-relativisti anyons, exoti Galilean sym-metry and the non-ommutative plane, J. High Energy Phys. 06, 033 (2002);J. Lukierski, P.C. Stihel, W.J. Zakrzewski, Nonommutative planar partiledynamis with gauge interation, Ann. Phys. (NY), in press, hep-th/0207149.[4℄ M. Mathisson, Das Zitternde Elektron und seine Dynamik, Ata Phys. Pol.6, 218 (1937). Myron Mathisson (1897-1940), of Jewish origin, taught math-ematial physis at Warsaw University as a Privatdozent. He also worked inKraków, bene�tting of a kind of �private sholarship� reated espeially for himby Weyssenho�. Then he spent one year in Kazan, in the Soviet Union. In 1939he esaped to Britain, where he died. He was remembered by P.A.M. Dira inthe Obituary reprodued below, published in Nature 146, 613 (1940): �Thedeath of Dr. Myron Mathisson on September 13 at the early age of fourty-threehas ut short an interesting line of researh. Mathisson had been engaged formany years in studying the general dynamial laws governing the motion of apartile, with possibly a spin or a moment, in a gravitational or eletromag-neti �eld, and had developed a powerful method of his own for passing from�eld equations to partile equations. The subjet is of partiular interest atthe present time, as it has now beome lear that quantum mehanis annotsolve the di�ulties that arise in onnexion with the interation of point par-tiles with �elds, and a deeper lassial analysis of the problem is needed. Itis muh to be regretted that Mathisson's death has oured before the rela-tions between his method and those of other workers on the subjet have been



2620 P.A. Horváthyompletely eluidated. Mathisson arried out his work at the Universities ofWarsaw and Kazan and at an institute whih he started in Craow, and, sinethe spring of 1939, at Cambridge.�[Soures: A short history of Theoretial Physis at Ho»a 69 . . . , and personalommuniation of Prof. A. Staruszkiewiz.℄[5℄ J. Weyssenho�, A. Raabe, Relativisti dynamis of spin �uids and spin par-tiles, Ata Phys. Pol. 9, 7-18 (1947). Let us also reord the footnote writtenby Weyssenho�. �Presented at a meeting of the Craow Setion of the PolishPhysial Soiety on February 28, 1945. [. . . ℄ Most of the results were subjetof a leture at a seret meeting of physiists at Prof. Pie«kowski's home inWarsaw, Otober 1942.Mr. Raabe was a highly gifted young physiist with whom I outlined in allits main features the ontents of this paper in 1940/41 in Lwów. We tried topursue our work in 1942 in Craow, but unfortunately in June 1942 Mr. Raabefell vitim of a man-hunt in the streets of Craow; he died four months laterin the German onentration amp O±wi�im [Aushwitz℄.�Jan Weyssenho� (1889-1972) ame from a prominent Balti-German aristo-rati family, whih remained Catholi and beame Polish in the XVIIth en-tury. He was a gentleman in the old sense of the word, who used his personalfortune and his wealthy friends to help other olleagues. His father was a su-essful writer. His mother ame from a very wealthy Jewish banking familywhih owned, among other things, the Warsaw�Vienna railway. Weyssenho�studied in Kraków and in Zürih, where he also met Einstein, who refers tohim in his work on Brownian Motions [available in Dover Publiations℄. Hewas also interested in the Hall e�et and wrote his Ph. D. on the theory ofparamagnetism. He returned to his ountry in 1919. He got involved in thestudy of relativisti spinning partiles and �uids in 1937. Between 1939 and1941 he worked at the Polytehnial University of Lwów, oupied by theSoviet army and attahed to Ukraine. In 1942 he returned to Kraków, andwas followed by Raabe, who lived in his �at and whom he helped also to getdouments, e.g., a �Kennkarte�.He also organized seret seminars on physis in his home. Unlike his youngollaborator, he survived the war and ontinued his sienti� work until hisdeath in Kraków, in 1972.[6℄ E. Shrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24, 418(1930). A summary of Shrödinger's original method is given by A.O. Barut,A.J. Braken, Zitterbewegung and the internal geometry of the eletron, Phys.Rev. D23, 2454 (1981).[7℄ R. Jakiw, V.P. Nair, Anyon spin and the exoti entral extension of the planarGalilei group, Phys. Lett. B480, 237 (2000).[8℄ C. Duval, P.A. Horváthy, The exoti Galilei group and the �Peierls substitu-tion�, Phys. Lett. B479, 284 (2000); Exoti Galilean symmetry in the non-ommutative plane, and the Hall e�et, J. Phys. A34, 10097 (2001).[9℄ J.-M. Souriau, Struture des Systèmes Dynamiques, Dunod, Paris 1970.[10℄ A.O. Barut, Classial model of the Dira eletron, Phys. Rev. Lett. 52, 2009(1984).
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