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MATHISSON'S SPINNING ELECTRON:NONCOMMUTATIVE MECHANICS AND EXOTICGALILEAN SYMMETRY, 66 YEARS AGOP.A. HorváthyLaboratoire de Mathématiques et de Physique ThéoriqueUniversité de ToursPar
 de Grandmont, 37 200 Tours, Fran
e(Re
eived Mar
h 12, 2003)The a

eleration-dependent system with non
ommuting 
oordinates,proposed by Lukierski, Sti
hel and Zakrzewski [Ann. Phys.260, 224 (1997)℄is derived as the non-relativisti
 limit of Mathisson's 
lassi
al ele
tron [A
taPhys. Pol. 6, 218 (1937)℄, further dis
ussed by Weyssenho� and Raabe[A
ta Phys. Pol. 9, 7 (1947)℄. The two-parameter 
entrally extendedGalilean symmetry of the model is re
overed using elementary methods.The relation to S
hrödinger's Zitternde Elektron is indi
ated.PACS numbers: 03.30.+p, 03.65.Sq1. Introdu
tionNon-
ommutative (quantum) me
hani
s, where the position 
oordinatessatisfy �X1;X2	 = � ; (1.1)has been at the 
enter of re
ent interest [1℄. In the plane and in the non-relativisti
 
ontext, su
h theories are 
losely related to the �exoti
� Galileansymmetry asso
iated with the two-fold 
entral extension of the planar Galileigroup [2℄. A model whi
h provides a physi
al realization of this symmetryhas been presented by Lukierski, Sti
hel and Zakrzewski [3℄ who 
onsideredthe a

eleration-dependent LagrangianL = m _~x22 + �2 _~x� �~x : (1.2)My aim here is to point out that the model of Lukierski et al. 
an a
-tually be derived from that published by Mathisson in `37 [4℄, and further(2611)



2612 P.A. Horváthydis
ussed byWeyssenho� and Raabe [5℄. Not surprisingly, their theory showsinteresting analogies also with S
hrödinger's Zitternde Elektron [6℄.This Note is dedi
ated to the memory of these outstanding physi
istswho, with an extreme 
ourage, tried to 
ontinue their s
ienti�
 a
tivityunder those terrible years of World War II.2. The Mathisson ele
tronTwo years before the outbreak of World War II, Mathisson [4℄ proposedto des
ribe a 
lassi
al ele
tron with the relativisti
 equationsm _u� + 1
2S���u� = f� ;_S�� � 1
2S�� _u�u� + 1
2S�� _u�u� = 0 ; (2.1)where m is the mass, u� the four-velo
ity, f� the for
e; the dot meansdi�erentiation w.r.t. proper time. The antisymmetri
 tensor S�� representsthe spin of the ele
tron and is assumed to satisfy the orthogonality 
onditionS��u� = 0 : (2.2)In the rest frame, the spatial 
omponents of S�� form therefore a three-ve
tor ~S.In the non-relativisti
 limit, ~S be
omes a 
onstant of the motion. Inthe absen
e of external for
e, the motion is [apart of free motion along thedire
tion of ~S℄, in the plane perpendi
ular to ~S and satis�es the third-orderequation m�xi = ��"ij ...xj ; (2.3)where the new 
onstant � has been de�ned by the Ja
kiw�Nair Ansatz [7℄s = �
2; (2.4)s = j~Sj being the length of the spin ve
tor. Eq. (2.3) is pre
isely the equationof motion put forward by of Lukierski et al. [3℄.From now on we drop the 
oordinate parallel to ~S and fo
us our attentionon the motion in the plane.3. Conserved quantitiesThe equations of motion (2.3) are asso
iated with the Lagrangian (1.2).Then Lukierski et al. derive the 
onserved quantities asso
iated to the spa
e�time symmetries applying the higher-order version of Noether's theorem. Letus now reprodu
e their results using elementary methods.
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 . . . 2613� An obvious �rst integral of (2.3) is the momentum,Pi = m _xi + �"ij �xj : (3.1)Eq. (2.3) is in fa
t _Pi = 0.� Multiplying (2.3) by the velo
ity, _~x, yields a total time derivative,where we re
ognize the 
onserved energy,H = m _~x22 + � _~x� �~x: (3.2)� Similarly, taking the ve
tor produ
t of (2.3) with ~x yields the 
onservedangular momentum, J = m~x� _~x+ �2 _~x2 � �~x � �~x : (3.3)� A Galilean boost ~x! ~x+~bt shifts the momentum as ~P ! ~P +m~b. Arest frame where the momentum vanishes 
an be found, providing us withthe 
onserved boost ve
torKi = mxi � t�m _xi + �"ij �xj�+ �"ij _xj : (3.4)Somewhat surprisingly, one more 
onserved quantity 
an be found.� The ve
tor produ
t of (2.3) with the a

eleration, �~x , yields the squareof the a

eleration, I = �32m2 ��~x�2 ; (3.5)where a 
onstant fa
tor has been in
luded for later 
onvenien
e.� Curiously, multiplying (2.3) by ...~x yields on
e again the same quantity,namely (m=2)��~x�2 = (m=�)3I.The 
onstru
tion of this new quantity reminds one that of angular mo-mentum and of energy. Its pre
ise origin will be 
lari�ed below.Let us observe that, owing to the 
onservation of I, �~x = 0 
an be 
onsis-tently required. Then the 
onserved quantities found above redu
e to thoseof an �elementary exoti
 parti
le� studied in [8℄.4. Zitterbewegung and 
enter-of-mass de
ompositionThe equation of motion (2.3) is integrated at on
e. Putting indeedQi = �� �m�2 "ij�xj ; (4.1)



2614 P.A. HorváthyEq. (2.3) be
omes _Qi = m� "ijQj ; (4.2)showing that the a

eleration rotates uniformly with angular velo
ity m=�.Putting Q = Q1 + iQ2, Q(t) = Q0e�i(m=�)t. This is plainly 
onsistent withthe 
onservation of the magnitude of the a

eleration, Eq. (3.5). ThenXi = xi + "ijQj (4.3)moves freely, �Xi = 0 : (4.4)In 
on
lusion, the motion has been separated into the free motion of the
enter of mass 
oordinate ~X, 
ombined with the �Zitterbewegung� [uniformrotation℄ of the internal 
oordinate ~Q.A key feature of Mathisson's ele
tron is that the internal variable ~Qmeasures in fa
t the extent of how mu
h the momentum, ~P , di�ers from[m-times℄ the velo
ity, _~x, ~Q = �m2 (m _~x� ~P ) : (4.5)Re-writing the 
onserved quantities in terms of the new 
oordinates 
on-�rms the above interpretation. In fa
t,~P = m _~X ;H = HCM +Hint = m _~X22 � m32�2 ~Q2 ;J = JCM + Jint = m ~X � _~X + �2 _~X2 + m22� ~Q2 ;Ki = m(Xi � _Xit) + �"ijXj ;I = m22� ~Q2 : (4.6)Mathisson's ele
tron is hen
e a 
omposite system. Note that in (4.6)the 
enter of mass behaves pre
isely as an elementary exoti
 parti
le [8℄;the internal 
oordinate only 
ontributes to the energy and the angular mo-mentum. In fa
t, Hint = �m� I and Jint = I. The new 
onserved quantityfound in (3.5) is hen
e the internal angular momentum and also the internalenergy [whi
h are linked in a 2-dimensional phase spa
e℄.Let us now observe that the equations of motion (4.2)�(4.4) are 
onsistentwith the Poisson stru
ture asso
iated with the symple
ti
 form
 = 
CM +
int = dPi ^ dXi + �2m2 "ijdPi ^ dPj + m2� "ijdQi ^ dQj : (4.7)
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e is hen
e the dire
t sum of the four-dimensional�exoti
� phase spa
e of the 
enter of mass with 
oordinates ~X and ~P , withthe two-dimensional internal phase spa
e of the ~Q, endowed with a 
anoni
alsymple
ti
 stru
ture.The Poisson stru
ture 
an be used to 
al
ulate the algebrai
 stru
tureof the symmetries. Consistently with Lukierski et al. [3℄, we �nd that~P ;H; J; ~K , supplemented with the 
entral 
harges m and �, realize the�exoti
� [two-fold 
entrally extended℄ planar Galilei group. The stru
turerelations of this latter only di�er from those of the usual Galilei group inthat the Poisson bra
ket of the boost 
omponents yields the �exoti
� 
entral
harge, �K1;K2	 = � : (4.8)Similarly, the 
enter-of-mass 
oordinates have a nonvanishing Poisson bra
ket,�X1;X2	 = �m2 ; �Q1; Q2	 = � �m2 : (4.9)Both the 
enter-of-mass and the internal 
oordinates are hen
e non
ommut-ing, 
f. (1.1) with � = (�=m2) [while the original 
oordinates xi 
ommute℄.This is similar to what happens in the Landau problem where the guiding
enter 
oordinates are non
ommuting, with � = 1=eB.The additional 
onserved quantity I in (3.5) is a
tually asso
iated withthe internal symmetries of the system. The translations and boosts formindeed an invariant subgroup K of the Galilei group. The quotient G=K,whi
h 
onsists of rotations and time translations, is hen
e a group that 
anbe made to a
t separately on the 
enter-of-mass and the internal spa
e. We
an, e.g., rotate the internal 
oordinate ~Q alone and leave the 
enter-of-mass 
oordinate ~X �xed. This is plainly a symmetry, and the asso
iated
onserved quantity is the internal angular momentum Jint = I. (A physi
alrotation moves both the external and internal 
oordinates, yielding the totalangular momentum in (4.6).) The internal energy arises in a similar way. In
on
lusion, the non-relativisti
 limit of the Mathisson ele
tron admits thedire
t produ
t of the �exoti
� Galilei group with the internal rotations andtime translations, SO(2) �R, as symmetry. Here the a
tion of the Galileigroup is transitive on the submanifolds I = 
onst i.e., ~Q2 = 
onst.The same statement is valid for any 
omposite nonrelativisti
 system, i.e.one upon whi
h the Galilei group a
ts by symmetries but not transitively [9℄.5. Relation to S
hrödinger's Zitternde ElektronThe results of Se
tion 4 remind those S
hrödinger derived in his origi-nal paper on Zitterbewegung [6℄. S
hrödinger starts in fa
t with the Dira




2616 P.A. HorváthyHamiltonian H = 
~� � ~P +m2
2� ; (5.1)where ~� and � denote the usual Dira
 matri
es. In the Heisenberg pi
ture,the operators satisfyd~Pdt = 0 ; dHdt = 0 ; d~xdt = 
~� : (5.2)The last equation 
an be rewritten as �id~�dt = 2H~� ; (~ = 1), where ~� =~� � 
H�1 ~P : This 
an be integrated as ~�(t) = e2iHt~�0 = ~�0e�2iHt, where ~�0is a 
onstant operator. Hen
ed~xdt = 
2H�1 ~P + 
~�0e�2iHt ;whi
h 
an again be integrated to yield~x(t) = � ~X0 + 
2H�1 ~P t	+ 12 i
~�0H�1e�2iHt ; (5.3)where ~X0 is a 
onstant operator. The stru
ture is 
learly the same as in(4.3), with the operator ~X(t) = ~X0 + 
2H�1 ~P t (5.4)representing the freely moving 
enter-of-mass, and the se
ond term des
rib-ing the internal Zitterbewegung. The pre
ise relation is more subtle, though.Intuitively, dropping the third 
omponent and working in the plane, puttings = 1=2 and s=
2 ' � [whi
h would require the spin to diverge as 
 ! 1rather then remain a 
onstant℄, setting 
~� ' _~x and repla
ing H ' m
2,would transform (5.3) formally into (4.3). In fa
t,~X(t) ' ~X0 + ~Pmt ; m
~� ' m2� ~Q ; e�i2Ht = e�i(H=s)t ' e�i(m=�)t : (5.5)Note that m
~� = m
~��m
2H�1 ~P ' m _~x� ~P : (5.6)
onsistently with (4.5).A distin
tive feature of S
hrödinger's Zitternde Elektron is that the
enter-of-mass 
oordinates satisfy the nontrivial 
ommutation relation�Xi;Xj ℄ = �i
2E�2"ijkSk ; (5.7)where E = 
p~P 2 +m2
2 and ~S = �(i=4)~� � ~� is the spin operator. Ifwe assume that the spin is polarized in the third dire
tion, S3 = �s, and
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 limit E ' m
2 + ~P 2=2m together with theAnsatz (2.4), we �nd for the planar 
omponents�X1;X2℄ ' i s
2m2 = i �m2 ; (5.8)
f. (1.1) with � = �=m2. Let us remark that our pro
edure here is in fa
tthe quantum version of the subtle non-relativisti
 limit proposed by Ja
kiwand Nair [7℄.6. The relativisti
 des
ription of Weyssenho� and RaabeMathisson's 
lassi
al ele
tron was further elaborated by Weyssenho� andRaabe in a paper published after the War [5℄. They posit the equations_p� = 0 ; p� = mu� + 1
2S�� _u� ;_S�� = p�u� � p�u� ;S��u� = 0 ; (6.1)where m = � 1
2u�p�: Eliminating p� yields the relativisti
 Mathisson equa-tions (2.1) on
e again. Eqs. (6.1) imply that m is 
onstant of the motion,_m = 0, identi�ed as the rest-mass of the parti
le. S��S�� = s2 is also a 
on-stant of the motion. They also observe that, owing to _p� = 0, the quantityM de�ned by p�p� = M2
2 is another 
onstant of the motion. It is worthnoting that the position satis�es again a third-order equation analogous to(2.3), namely m�x� = � 1
2S��...x �: (6.2)Then Weyssenho� and Raabe pro
eed to integrate the free relativisti
equations of motion. In a suitable inertial frame (
alled the proper sys-tem) the spatial 
omponents, Pi, of the ve
tor p� 
an be made to vanish, sothat its time 
omponent is M
. In this frame ~S is 
onstant. The mass ism = M=p1� (~v=
)2 where vi = uip1� (~v=
)2 denotes the three-velo
ity.Hen
e the time 
omponent of the four-velo
ity is also 
onstant so that thefour-a

eleration is proportional to the three-a

eleration, ~a = d2~x=dt2.Transforming from proper time to t, ~P = 0 redu
es �nally toM~v + 1
2 ~S � ~a = 0 : (6.3)The parti
le moves hen
e along a 
ir
le in the plane perpendi
ular to ~S,with uniform angular velo
ity m
2s �1� ~v2
2 � : (6.4)



2618 P.A. HorváthyIn a general Lorentz frame, the motion is a superposition of su
h a motionwith a uniform translation.Our 
lue is to observe that in the non-relativisti
 limit these formulæredu
e, with the Ja
kiw�Nair Ansatz s = �
2 
f. (2.4), to those we derivedin Se
tion 4.It is worth mentioning that the equations of Weyssenho� and Raabehave again and again re-emerged in the 
ourse of the years. Consider, forexample, (6.1) in �ve dimensions and for s = 12 . Multipli
ation of p� withS�� allows us to express the �ve-ve
tor _u� as_u� = 4
2S��p� (6.5)whi
h, together with the remaining relations in (6.1) and the 
onstraintu�u� = 1, are pre
isely the equations proposed by Barut and Zanghi [10℄ asa �Kaluza�Klein� des
ription of a 
lassi
al Dira
 ele
tron.7. Con
lusionIn this Note we have shown that the non-relativisti
 limit of Mathisson's
lassi
al spinning ele
tron yields the a

eleration-dependent model of Lukier-ski et al. [3℄. This latter has non-
ommuting 
oordinates and realizes the�exoti
� Galilean symmetry.Our results 
on�rm on
e again the relation between the relativisti
 spinand the non-relativisti
 �exoti
� stru
ture, advo
ated by Ja
kiw and Nair [7℄.Their rule (2.4) is, however, a rather strange one sin
e it requires the spinto diverge as 
!1 so that s=
2 remains �nite. For this reason, the use ofa Dira
 equation valid for the �xed value s = 12 [as in Se
tion 5 above℄ is
learly illegitimate, and should be repla
ed by some anyon equation, validfor any real spin s [11℄.Another intriguing feature of this pro
edure is the following. Whilethe relativisti
 model is asso
iated with an irredu
ible representation of thePoin
aré group, its dequantized & non-relativisti
 limit, namely the model ofLukierski et al., only 
arries a redu
ible representation of the Galilei group:irredu
ibility is lost in the pro
edure.A �nal remark 
on
erns the spin 
onstraint (2.2) whi
h appears to lie atthe very root of the Zitterbewegung. Trading it forS��p� = 0 (7.1)would in fa
t eliminate the Zitterbewegung altogether and lead to models ofthe type dis
ussed in [12℄.
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