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ON (2+1) DIMENSIONAL TOPOLOGICALLY MASSIVENON-LINEAR ELECTRODYNAMICSM. �lusar
zyka;by and A. Weresz
zy«skiazaInstitute of Physi
s, Jagellonian UniversityReymonta 4, 31-152 Kraków, PolandbDepartment of Physi
s, University of AlbertaEdmonton, AB T6G 2J1, Canada(Re
eived September 10, 2002; revised version re
eived February 6, 2003)The (2+1) dimensional non-linear ele
trodynami
s, the so 
alledPagels�Tomboulis ele
trodynami
s, with the Chern�Simons term is 
onsid-ered. We obtain �generalised self-dual equation� and �nd the 
orrespondinggeneralised massive Chern�Simons Lagrangian. Similar results for (2+1)massive dilaton ele
trodynami
s have been obtained.PACS numbers: 11.10.Lm, 11.15.Tk1. The Pagels�Tomboulis modelAmong many gauge theories the Pagels�Tomboulis model [1℄L = �14 �F a��F a���4 �Æ�1 F a��F a�� (1)has a spe
ial pla
e. HereF a�� = ��Aa� � ��Aa� � "ab
Ab�A
�is the standard �eld tensor, Æ is a dimensionless parameter and � is a di-mensional 
onstant. The gauge �eld is SU(2) type i.e. a = 1; 2; 3. One 
an
he
k that this Lagrangian has positively de�ned energy for Æ � 12 .The Pagels�Tomboulis theory was originally proposed as an e�e
tivemodel for the low energy (3+1) QCD [1℄. In fa
t, it was shown that inthe frame of this model ele
tri
al sour
es are 
on�ned for Æ � 32 . Energyy e-mail: mslus�phys.ualberta.
az e-mail: weresz
z�alphas.if.uj.edu.pl(2623)
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zy«skiof the ele
tri
 �eld generated by the external 
harge is in�nite due to thedivergen
e at large distan
e. Moreover, the dipole-like external sour
e givesa �nite energy �eld 
on�guration. The energy E behaves likeE = 
0jqj 2Æ2Æ�1� 4Æ�42Æ�1R 2Æ�32Æ�1 ; (2)where 
0 is a numeri
al 
onstant, q is an external 
harge and R is the distan
ebetween 
harges [2℄. Interestingly enough for Æ = 52 we obtained the pRbehaviour of the energy, whi
h is in agreement with a phenomenologi
alpotential found in �ts to spe
tra of heavy quarkonia [3℄. The standardlinear potential appears in the limit Æ !1. Highly non-linear gauge modelsappear in studying of the (2+1) QCD as well. Corresponding 
on�ning for
ehas been re
ently obtained in [4℄.The Pagels-Tomboulis model has been also 
onsidered as an example ofa �eld theory with the vanishing tra
e of the energy-momentum tensor. In
ase of any (n+ 1)-dimensional gauge theory de�ned by a LagrangianL = L(F ) ;where F = F a��F a�� , the tra
e T = T �� has the following formT = 4 dLdF F � (n+ 1)L : (3)One 
an easily �nd that for any (n+1)-dimensional spa
e�time there existsthe unique Lagrangian (up to a multipli
ative 
onstant), whi
h gives thevanishing tra
e of the energy�momentum tensorL = �14(F a��F a��)n+14 : (4)Only in (3+1)-dimensional spa
e�time su
h a Lagrangian is a linear fun
tionof F . For instan
e, in (2 + 1) dimension the pertinent model takes the formL2+1 = �14(F a��F a��) 34 : (5)Su
h parti
ular Lagrangian, in its Abelian version, have been re
ently usedas a sour
e in the Einstein equations. Many stati
 spheri
ally symmetri
solutions have been obtained [5℄.This short and in
omplete list of appli
ations of the Pagels�Tomboulismodel in various areas of theoreti
al physi
s shows that the model is very in-teresting and has ri
h mathemati
al stru
ture. Unfortunately, in 
ontradis-tin
tion to other non-linear gauge theories (for example the Born�Infeldtheory [6℄) it has not been 
onsidered in the systemati
 way.



On (2+1) Dimensional Topologi
ally Massive Non-Linear . . . 2625In the present paper we fo
us on the (2+1) Abelian Pagels�Tomboulismodel with the additional topologi
al term � the Chern�Simons termL = �14(F��F ��)Æ + m4 "���A�F�� : (6)Here, for simpli
ity, the dimensional 
onstant � has been negle
ted. Thismodel is the natural generalisation of the non-linear ele
trodynami
s (5) 
on-sidered in [5℄. It is well known that the Chern�Simons part of the Lagrangian(6) does not enter expli
itly to the expression for the energy. It is due tothe fa
t that this term is metri
 independent. Thus the energy-momentumtensor remains un
hanged in 
omparison with the pure non-linear ele
tro-dynami
s 
ase. It has been shown using the �eld equations that in theMaxwell limit i.e. for Æ = 1 the gauge �eld from (6) is proportional to thedual strength tensor [8, 9℄ A� = 12m"���F �� : (7)Of 
ourse, using the U(1) gauge transformation A� ! A� + �� one 
angenerate the whole family gauge equivalent solutions. The solution (7) 
or-responds to the Lorentz gauge. This self-dual equation 
an be derived alsofrom the massive Chern�Simons Lagrangian [10℄Lmass = 1m2A�A� � m4 "���A�F�� : (8)In fa
t, it was shown that these Lagrangians are equivalent.Let us now generalise these results for all Æ > 12 . The pertinent equationsof motion read �� h(F��F ��)Æ�1F ��i+ m2Æ "���F�� = 0 : (9)The solution of the se
ond order equations (9) has the generalised form ofthe self-dual equation (7)A� = Æ2m (F��F ��)Æ�1"���F�� : (10)It is immediately seen that after di�erentiation of both side of generalisedself-dual equation and multipli
ation by "��
 we obtain (9). As in theMaxwell 
ase, the generalised self-dual equation emerges as a �eld equationfrom generalised massive Chern�Simons LagrangianLmass = 14(f�f�) Æ2Æ�1 � DÆ2Æ � 1"���f���f� ; (11)
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zy«skiwhere the U(1) gauge �eld in the generalised generalised massive Chern�Simons is denoted by f� to distinguish it from the 
orresponding �eld in theoriginal Pagels�Tomboulis Lagrangian. The �eld equations for (11) have thefollowing form "�����f� � 14D (f�f�) 1�Æ2Æ�1 f� = 0 : (12)In order to establish the generalised self-dual equation for the new gauge�eld f� one has to rewrite (12) asf��f�� = 18D2 (f�f�) 12Æ�1 : (13)Here f�� = ��f����f�. Then we express f�f� in terms of the 
orresponding�eld strength tensor and substitute this into the �eld equation (12). Oneeventually gets f� = 2� 8Æ�1D2Æ�1 (f��f��)Æ�1 "���f�� : (14)This generalised self-dual equation be
omes identi
al to (10) if the 
onstantD reads D = � 2Æm8Æ� 12Æ�1 : (15)One 
an see that equations (11) and (14) are in agreement with the resultspresented in [11℄, where the 
ase of Æ = pq , p; q 2 Z was 
onsidered. Therelation between the topologi
al massive Pagels�Tomboulis model and thegeneralised massive Chern�Simons model (11) be
omes 
learly visible whenwe observe that they have the 
ommon origin, that is they follow from asingle LagrangianLM = �4 (f�f�) Æ2Æ�1 � �"���f���A� + m2 "���A���A� ; (16)where the 
onstants are�Æ �2�2�2 �Æ = 1; �2� = 2m� 2Æm8Æ� 12Æ�1 ; (17)and the �elds A� and f� are treated independently. Indeed, after variationof (16) with respe
t to f� one 
an use the resulting equation to eliminate this�eld from the Lagrangian and get (6). In the same way the gauge �eld A�
an be expressed in terms of f�. As a result we get the generalised massiveChern�Simons model. The Lagrangian (16) gives in the limit Æ = 1 the so
alled master Lagrangian [8℄.



On (2+1) Dimensional Topologi
ally Massive Non-Linear . . . 26272. The dilaton modelLet us now �nd the analogous dual stru
ture for the dilaton-like La-grangian (it is possible to add a potential term for the s
alar �eld but itdoes not 
hange the result obtained below)L = ��(�)4 F��F �� + m4 "���A�F�� + 12(���)2 : (18)In fa
t, as it was shown in [1℄ the models (6) and (18) share many features(espe
ially in the 
ontext of the low energy QCD where the topologi
alterm is omitted). It emerges from the fa
t that they 
an be understoodas the usual ele
trodynami
s in rather an unusual medium. In the otherwords both models have the form L = "F��F �� + : : : where the diele
tri
fun
tion " is a fun
tion of F��F �� in the Pagels�Tomboulis model or � inthe dilaton model. In parti
ular, in (18) �(�) = �Æ�1 plays the same role as"(F��F ��) = (F��F ��)Æ�1 in (6) (see e.g. [2, 14℄).On the other hand, the Lagrangian (18) appears in the natural way as apart of the topologi
al generalisation of the (2+1) dilaton�Maxwell�Einsteintheory [12℄. This theory has been treated as the toy model of the quantumgravitation. There have been found exa
t solutions des
ribing the formationof a bla
k hole by 
ollapsing matter. The Hawking radiation 
an be alsodes
ribed in the frame of this model. The parti
ular form of � fun
tion ismotivated by the string theory and usually reads� = ea� ;where a is a dimensionless 
onstant. However, some other forms of � havebeen also under 
onsideration [13℄.The equations of motion are as follows��(�F ��) + m2 "���F�� = 0 (19)and �����+ 14�0F��F �� = 0 ; (20)where prime denotes the di�erentiation with respe
t to the s
alar �eld. It iseasy to noti
e that the solution of the equation (19) has self-dual-like formA� = �(�)2m "���F�� : (21)The 
orresponding massive Chern�Simons-like Lagrangian is found to beLmass = m22 1�(�)f�f� � m2 "���f���f� + 12(���)2 : (22)
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zyk, A. Weresz
zy«skiThe pertinent �eld equations readf� = 12m�(�)"���f�� (23)and �����+ m22 �0�2 f�f� = 0 : (24)It is immediately seen that the self-dual equation (21) for the massive Chern�Simons�dilaton model (22) is just the equation of motion. Moreover, using(23) one eliminates the �eld f� from the se
ond �eld equation. After thatequation (24) takes the from�����+ 14�0f��f�� = 0 : (25)As we have expe
ted both Lagrangian (18) and (22) give the same equationof motion. Additionally we see mutual duality of these models. The strong
oupling se
tor of the one theory is inter
hanged with the weak 
ouplingse
tor in the other one.At least at the theoreti
al level one 
an 
onsider a model where thediele
tri
 fun
tion depends on U(1) gauge invariant F��F �� as well as onthe s
alar fun
tion �:L = ��4 (F��F ��)Æ + m4 "���A�F�� + 12(���)2 : (26)We see that the Pagels�Tomboulis and the dilaton model are in
luded inthis Lagrangian and 
an be derived in the parti
ular limits. It is easy to
he
k that the 
orresponding generalised self-dual equation has the formA� = Æ�(�)2m "���F��(F��F ��)Æ�1 ; (27)whereas the massive Chern�Simons-like Lagrangian isLmass = A� 11�2Æ (f�f�) Æ2Æ�1 � DÆ2Æ � 1"���f���f� + 12(���)2 : (28)Here the 
onstants readDA = �Æ2Æ2m� 11+2Æ ; A�DA�2Æ = 2Æ�2(2Æ � 1) : (29)
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ally Massive Non-Linear . . . 26293. Con
lusionsIn the present paper we have 
onsidered the (2+1) Pagels�Tomboulisele
trodynami
s with topologi
al term. The generalised version of the self-dual equations and the 
orresponding massive Chern�Simons-like Lagrangianhave been found. Moreover, we have proved that both models 
an be derivedfrom the generalised master equation (16).The dual stru
ture has been also obtained in 
ase of the (2+1) topologi
aldilaton�Maxwell model. There are two equivalent Lagrangians (18) and (22)
onsisting of s
alar �eld and U(1) �eld. It seems to be interesting that thestrong 
oupling regime in the �rst theory is related to the weak 
ouplingse
tor in the se
ond. The non-perturbative e�e
ts in one model 
an bereformulated as the perturbative e�e
ts in the other one and solved applyingstandard methods. Knowing that (2+1) topologi
al dilaton�Maxwell modelplays an important role in studying (2 + 1) gravity we believe that thisfeature 
an give us possibility to �nd some new gravitational solutions forthe modi�ed model. It is quite remarkable that the dual stru
ture 
an befound not only in U(1) gauge models. Field theories 
ontaining additionaldegrees of freedom (here the s
alar �eld) possess the dual formulation aswell. The problem whether su
h a dual stru
ture is observed in 
ase of more
ompli
ated additional �eld is still unsolved and requires separate studies.Similar duality has been observed in the 
ombined Pagels�Tomboulis�dilaton model.There are two obvious dire
tions in whi
h the present work 
an be 
on-tinued. First of all, as it was mentioned before, the full (2 + 1) topologi
aldilaton�Maxwell�Einstein theory should be 
onsidered. Se
ondly, be
auseof the fa
t that the Pagels�Tomboulis Lagrangian is mostly 
onsidered inits non-Abelian version it seems to be important to analyse the non-Abeliangeneralisation of the results obtained here. Then the topologi
al term takesthe form of the well-known SU(2) Chern�Simons invariant. Very interest-ing, new results, 
on
erning the standard Æ = 1 
ase, have been re
entlyobtained [16℄.We would like to thank Professor H. Arod¹ for many helpful 
ommentsand suggestions. This work was supported in part by the ESF programmeCOSLAB.
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