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ON (2+1) DIMENSIONAL TOPOLOGICALLY MASSIVENON-LINEAR ELECTRODYNAMICSM. �lusarzyka;by and A. Wereszzy«skiazaInstitute of Physis, Jagellonian UniversityReymonta 4, 31-152 Kraków, PolandbDepartment of Physis, University of AlbertaEdmonton, AB T6G 2J1, Canada(Reeived September 10, 2002; revised version reeived February 6, 2003)The (2+1) dimensional non-linear eletrodynamis, the so alledPagels�Tomboulis eletrodynamis, with the Chern�Simons term is onsid-ered. We obtain �generalised self-dual equation� and �nd the orrespondinggeneralised massive Chern�Simons Lagrangian. Similar results for (2+1)massive dilaton eletrodynamis have been obtained.PACS numbers: 11.10.Lm, 11.15.Tk1. The Pagels�Tomboulis modelAmong many gauge theories the Pagels�Tomboulis model [1℄L = �14 �F a��F a���4 �Æ�1 F a��F a�� (1)has a speial plae. HereF a�� = ��Aa� � ��Aa� � "abAb�A�is the standard �eld tensor, Æ is a dimensionless parameter and � is a di-mensional onstant. The gauge �eld is SU(2) type i.e. a = 1; 2; 3. One anhek that this Lagrangian has positively de�ned energy for Æ � 12 .The Pagels�Tomboulis theory was originally proposed as an e�etivemodel for the low energy (3+1) QCD [1℄. In fat, it was shown that inthe frame of this model eletrial soures are on�ned for Æ � 32 . Energyy e-mail: mslus�phys.ualberta.az e-mail: wereszz�alphas.if.uj.edu.pl(2623)



2624 M. �lusarzyk, A. Wereszzy«skiof the eletri �eld generated by the external harge is in�nite due to thedivergene at large distane. Moreover, the dipole-like external soure givesa �nite energy �eld on�guration. The energy E behaves likeE = 0jqj 2Æ2Æ�1� 4Æ�42Æ�1R 2Æ�32Æ�1 ; (2)where 0 is a numerial onstant, q is an external harge and R is the distanebetween harges [2℄. Interestingly enough for Æ = 52 we obtained the pRbehaviour of the energy, whih is in agreement with a phenomenologialpotential found in �ts to spetra of heavy quarkonia [3℄. The standardlinear potential appears in the limit Æ !1. Highly non-linear gauge modelsappear in studying of the (2+1) QCD as well. Corresponding on�ning forehas been reently obtained in [4℄.The Pagels-Tomboulis model has been also onsidered as an example ofa �eld theory with the vanishing trae of the energy-momentum tensor. Inase of any (n+ 1)-dimensional gauge theory de�ned by a LagrangianL = L(F ) ;where F = F a��F a�� , the trae T = T �� has the following formT = 4 dLdF F � (n+ 1)L : (3)One an easily �nd that for any (n+1)-dimensional spae�time there existsthe unique Lagrangian (up to a multipliative onstant), whih gives thevanishing trae of the energy�momentum tensorL = �14(F a��F a��)n+14 : (4)Only in (3+1)-dimensional spae�time suh a Lagrangian is a linear funtionof F . For instane, in (2 + 1) dimension the pertinent model takes the formL2+1 = �14(F a��F a��) 34 : (5)Suh partiular Lagrangian, in its Abelian version, have been reently usedas a soure in the Einstein equations. Many stati spherially symmetrisolutions have been obtained [5℄.This short and inomplete list of appliations of the Pagels�Tomboulismodel in various areas of theoretial physis shows that the model is very in-teresting and has rih mathematial struture. Unfortunately, in ontradis-tintion to other non-linear gauge theories (for example the Born�Infeldtheory [6℄) it has not been onsidered in the systemati way.



On (2+1) Dimensional Topologially Massive Non-Linear . . . 2625In the present paper we fous on the (2+1) Abelian Pagels�Tomboulismodel with the additional topologial term � the Chern�Simons termL = �14(F��F ��)Æ + m4 "���A�F�� : (6)Here, for simpliity, the dimensional onstant � has been negleted. Thismodel is the natural generalisation of the non-linear eletrodynamis (5) on-sidered in [5℄. It is well known that the Chern�Simons part of the Lagrangian(6) does not enter expliitly to the expression for the energy. It is due tothe fat that this term is metri independent. Thus the energy-momentumtensor remains unhanged in omparison with the pure non-linear eletro-dynamis ase. It has been shown using the �eld equations that in theMaxwell limit i.e. for Æ = 1 the gauge �eld from (6) is proportional to thedual strength tensor [8, 9℄ A� = 12m"���F �� : (7)Of ourse, using the U(1) gauge transformation A� ! A� + �� one angenerate the whole family gauge equivalent solutions. The solution (7) or-responds to the Lorentz gauge. This self-dual equation an be derived alsofrom the massive Chern�Simons Lagrangian [10℄Lmass = 1m2A�A� � m4 "���A�F�� : (8)In fat, it was shown that these Lagrangians are equivalent.Let us now generalise these results for all Æ > 12 . The pertinent equationsof motion read �� h(F��F ��)Æ�1F ��i+ m2Æ "���F�� = 0 : (9)The solution of the seond order equations (9) has the generalised form ofthe self-dual equation (7)A� = Æ2m (F��F ��)Æ�1"���F�� : (10)It is immediately seen that after di�erentiation of both side of generalisedself-dual equation and multipliation by "�� we obtain (9). As in theMaxwell ase, the generalised self-dual equation emerges as a �eld equationfrom generalised massive Chern�Simons LagrangianLmass = 14(f�f�) Æ2Æ�1 � DÆ2Æ � 1"���f���f� ; (11)



2626 M. �lusarzyk, A. Wereszzy«skiwhere the U(1) gauge �eld in the generalised generalised massive Chern�Simons is denoted by f� to distinguish it from the orresponding �eld in theoriginal Pagels�Tomboulis Lagrangian. The �eld equations for (11) have thefollowing form "�����f� � 14D (f�f�) 1�Æ2Æ�1 f� = 0 : (12)In order to establish the generalised self-dual equation for the new gauge�eld f� one has to rewrite (12) asf��f�� = 18D2 (f�f�) 12Æ�1 : (13)Here f�� = ��f����f�. Then we express f�f� in terms of the orresponding�eld strength tensor and substitute this into the �eld equation (12). Oneeventually gets f� = 2� 8Æ�1D2Æ�1 (f��f��)Æ�1 "���f�� : (14)This generalised self-dual equation beomes idential to (10) if the onstantD reads D = � 2Æm8Æ� 12Æ�1 : (15)One an see that equations (11) and (14) are in agreement with the resultspresented in [11℄, where the ase of Æ = pq , p; q 2 Z was onsidered. Therelation between the topologial massive Pagels�Tomboulis model and thegeneralised massive Chern�Simons model (11) beomes learly visible whenwe observe that they have the ommon origin, that is they follow from asingle LagrangianLM = �4 (f�f�) Æ2Æ�1 � �"���f���A� + m2 "���A���A� ; (16)where the onstants are�Æ �2�2�2 �Æ = 1; �2� = 2m� 2Æm8Æ� 12Æ�1 ; (17)and the �elds A� and f� are treated independently. Indeed, after variationof (16) with respet to f� one an use the resulting equation to eliminate this�eld from the Lagrangian and get (6). In the same way the gauge �eld A�an be expressed in terms of f�. As a result we get the generalised massiveChern�Simons model. The Lagrangian (16) gives in the limit Æ = 1 the soalled master Lagrangian [8℄.



On (2+1) Dimensional Topologially Massive Non-Linear . . . 26272. The dilaton modelLet us now �nd the analogous dual struture for the dilaton-like La-grangian (it is possible to add a potential term for the salar �eld but itdoes not hange the result obtained below)L = ��(�)4 F��F �� + m4 "���A�F�� + 12(���)2 : (18)In fat, as it was shown in [1℄ the models (6) and (18) share many features(espeially in the ontext of the low energy QCD where the topologialterm is omitted). It emerges from the fat that they an be understoodas the usual eletrodynamis in rather an unusual medium. In the otherwords both models have the form L = "F��F �� + : : : where the dieletrifuntion " is a funtion of F��F �� in the Pagels�Tomboulis model or � inthe dilaton model. In partiular, in (18) �(�) = �Æ�1 plays the same role as"(F��F ��) = (F��F ��)Æ�1 in (6) (see e.g. [2, 14℄).On the other hand, the Lagrangian (18) appears in the natural way as apart of the topologial generalisation of the (2+1) dilaton�Maxwell�Einsteintheory [12℄. This theory has been treated as the toy model of the quantumgravitation. There have been found exat solutions desribing the formationof a blak hole by ollapsing matter. The Hawking radiation an be alsodesribed in the frame of this model. The partiular form of � funtion ismotivated by the string theory and usually reads� = ea� ;where a is a dimensionless onstant. However, some other forms of � havebeen also under onsideration [13℄.The equations of motion are as follows��(�F ��) + m2 "���F�� = 0 (19)and �����+ 14�0F��F �� = 0 ; (20)where prime denotes the di�erentiation with respet to the salar �eld. It iseasy to notie that the solution of the equation (19) has self-dual-like formA� = �(�)2m "���F�� : (21)The orresponding massive Chern�Simons-like Lagrangian is found to beLmass = m22 1�(�)f�f� � m2 "���f���f� + 12(���)2 : (22)



2628 M. �lusarzyk, A. Wereszzy«skiThe pertinent �eld equations readf� = 12m�(�)"���f�� (23)and �����+ m22 �0�2 f�f� = 0 : (24)It is immediately seen that the self-dual equation (21) for the massive Chern�Simons�dilaton model (22) is just the equation of motion. Moreover, using(23) one eliminates the �eld f� from the seond �eld equation. After thatequation (24) takes the from�����+ 14�0f��f�� = 0 : (25)As we have expeted both Lagrangian (18) and (22) give the same equationof motion. Additionally we see mutual duality of these models. The strongoupling setor of the one theory is interhanged with the weak ouplingsetor in the other one.At least at the theoretial level one an onsider a model where thedieletri funtion depends on U(1) gauge invariant F��F �� as well as onthe salar funtion �:L = ��4 (F��F ��)Æ + m4 "���A�F�� + 12(���)2 : (26)We see that the Pagels�Tomboulis and the dilaton model are inluded inthis Lagrangian and an be derived in the partiular limits. It is easy tohek that the orresponding generalised self-dual equation has the formA� = Æ�(�)2m "���F��(F��F ��)Æ�1 ; (27)whereas the massive Chern�Simons-like Lagrangian isLmass = A� 11�2Æ (f�f�) Æ2Æ�1 � DÆ2Æ � 1"���f���f� + 12(���)2 : (28)Here the onstants readDA = �Æ2Æ2m� 11+2Æ ; A�DA�2Æ = 2Æ�2(2Æ � 1) : (29)



On (2+1) Dimensional Topologially Massive Non-Linear . . . 26293. ConlusionsIn the present paper we have onsidered the (2+1) Pagels�Tombouliseletrodynamis with topologial term. The generalised version of the self-dual equations and the orresponding massive Chern�Simons-like Lagrangianhave been found. Moreover, we have proved that both models an be derivedfrom the generalised master equation (16).The dual struture has been also obtained in ase of the (2+1) topologialdilaton�Maxwell model. There are two equivalent Lagrangians (18) and (22)onsisting of salar �eld and U(1) �eld. It seems to be interesting that thestrong oupling regime in the �rst theory is related to the weak ouplingsetor in the seond. The non-perturbative e�ets in one model an bereformulated as the perturbative e�ets in the other one and solved applyingstandard methods. Knowing that (2+1) topologial dilaton�Maxwell modelplays an important role in studying (2 + 1) gravity we believe that thisfeature an give us possibility to �nd some new gravitational solutions forthe modi�ed model. It is quite remarkable that the dual struture an befound not only in U(1) gauge models. Field theories ontaining additionaldegrees of freedom (here the salar �eld) possess the dual formulation aswell. The problem whether suh a dual struture is observed in ase of moreompliated additional �eld is still unsolved and requires separate studies.Similar duality has been observed in the ombined Pagels�Tomboulis�dilaton model.There are two obvious diretions in whih the present work an be on-tinued. First of all, as it was mentioned before, the full (2 + 1) topologialdilaton�Maxwell�Einstein theory should be onsidered. Seondly, beauseof the fat that the Pagels�Tomboulis Lagrangian is mostly onsidered inits non-Abelian version it seems to be important to analyse the non-Abeliangeneralisation of the results obtained here. Then the topologial term takesthe form of the well-known SU(2) Chern�Simons invariant. Very interest-ing, new results, onerning the standard Æ = 1 ase, have been reentlyobtained [16℄.We would like to thank Professor H. Arod¹ for many helpful ommentsand suggestions. This work was supported in part by the ESF programmeCOSLAB.
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