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TWO-DIMENSIONAL INTERACTIONS
IN A CLASS OF TENSOR GAUGE FIELDS
FROM LOCAL BRST COHOMOLOGY
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Lagrangian interactions in a class of two-dimensional tensor gauge field
theory are derived by means of deforming the solution to the master equa-
tion with specific cohomological techniques. Both the gauge transforma-
tions and their algebra are deformed. The gauge algebra of the coupled
model is open.

PACS numbers: 11.10.Ef

1. Introduction

The key point in the development of the BRST symmetry is represented
by its reconstruction on cohomological grounds [1]. This cohomological ap-
proach added to the BRST sets extremely powerful capabilities, such as the
investigation of perturbative renormalization [2, 3], the anomaly-tracking
mechanism [3,4], the simultaneous study of local and rigid invariances of a
given theory [5], as well as the reformulation of the construction of consis-
tent interactions in gauge theories [6] in terms of the deformation theory [7],
or, actually, in terms of the deformation of the solution to the master equa-
tion. A wide class of models has been studied within the background of the
deformation of the master equation |[8].

In this paper we solve the problem of constructing all consistent La-
grangian interactions in a special class of two-dimensional tensor gauge field
theories from the deformation of the solution to the master equation. We
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begin with a free two-dimensional theory that involves a vector field and a
two-tensor field with no special symmetry. The gauge transformations of
the free action are Abelian and irreducible, such that we deal with a La-
grangian model of Cauchy order two. Consequently, the free antifield-BRST
symmetry decomposes into a sum between the Koszul-Tate differential and
the exterior derivative along the gauge orbits only, s = § + . Next, we de-
form the solution to the master equation of the free model. The first-order
deformation belongs to the zeroth order cohomological space of the BRST
differential modulo the exterior spacetime derivative, H(s|d). Its compu-
tation proceeds by expanding the cocycles according to the antighost num-
ber, and by further using the cohomological spaces H(vy) and Ha(d|d). We
completely determine the first-order deformation, which stops at antighost
number two and contains some antisymmetric functions that involve only
the undifferentiated vector field. Its consistency requires that the above
mentioned antisymmetric functions fulfill a certain identity, which is shown
to possess solutions. Under these circumstances, we can set all the defor-
mations of order higher than one to be equal to zero. From the deformed
solution to the master equation that is consistent to all orders in the cou-
pling constant we extract the Lagrangian action of the interacting model,
together with its gauge transformations and accompanying gauge algebra.
We find that the gauge transformations are modified with respect to the
initial ones, while their algebra is open.

2. The BRST symmetry of the free model

We begin with the Lagrangian action in two spacetime dimensions
So[Auw, Bu) = / d*ze"” A 00, B, (2.1)

where the fields are bosonic, and A, is a two-tensor field with no specific
symmetry. The notation " signifies the two-dimensional antisymmetric
symbol, with €% = +1. We work with the flat Minkowskian metric g, of
signature (1, —1). Action (2.1) is invariant under the gauge transformations

0eAuy = Oyey, 68, =10, (2.2)

with €, the bosonic vector gauge parameter.
In order to construct the BRST symmetry of this free model, we intro-
duce the field/ghost, respectively, antifield spectra

02 = (A, Bui) , O = (A7, B ), (2.3)

where 1), represents the fermionic ghost associated with the vector gauge pa-
rameter €,. The above gauge transformations are Abelian and irreducible.
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Consequently, the BRST differential s reduces to the sum between the
Koszul-Tate differential § and the exterior longitudinal derivative v only

s=0+7, (2.4)

that are, respectively, graded in terms of the antighost number (antigh) and
the pure ghost number (pgh). While the Koszul-Tate differential (6% = 0,
antigh (6) = —1, pgh () = 0) realizes a resolution of smooth functions de-
fined on the stationary surface of field equations, the exterior longitudinal
derivative (pgh(y) = 1, antigh(y) = 0) anticommutes with § and turns
out to be a true differential in the particular case of the model under study
(72 = 0). Its cohomological space at pure ghost number zero computed in
the homology of 6, H® (y|H, (6)), is given by the algebra of Lagrangian
physical observables, and is in the meantime isomorphic to the zeroth order
cohomological space of s, H° (s), that contains the so-called BRST observ-
ables. The degrees (antigh) and (pgh) of the BRST generators (2.3) are
given by

pgh (A[u/) 07 pgh (BIL) = Oa
pgh(nu) =1,  pgh(2;) =0, (2.5)
antigh (#4) = 0,  antigh (A*™) =1, (2.6)
antigh (B*) = 1, antigh (n*#) = 2, (2.7)
while the actions of § and «y read as

0A,, =0, 6B,=0, dn,=0, (2.8)

JA™ = —eMO\B,

SB* = £,50° A%,
ontt = —9,A", (2.9)
7Auu = a,u"]ua ’YB;L =0, YN = 0, (2'10)
YA =0,  yB™ =0, ™ =0. (2.11)

The overall degree of the BRST complex is named ghost number (gh) and is
defined like the difference between the pure ghost number and the antighost
number, such that gh(s) = 1. The BRST symmetry of the free model is

(0)
canonically generated in the structure of antibracket (,) via a generator S,

(0)
namely, s- = <-, S) . This structure is defined by decreeing the fields/ghosts
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conjugated in the antibracket with the corresponding antifields. The canon-

ical generator is bosonic, its ghost number is equal to zero, and represents
(0) (0
the solution to the master equation <S , S ) = 0. Its expression is found

by means of developing S according to the antighost number. In the case
of our free model, it takes the simple form

) 2 * UV
S= SO + /d T A a;ﬂ]ua (2'12)

and contains only components of antighost number equal to zero and one.

3. The deformation procedure

A consistent deformation of the free action (2.1) and of its gauge invari-
ances (2.2) defines a deformation of the corresponding solution to the mas-
ter equation that preserves both the master equation and the field /antifield
spectra. So, if So[A,, Byl + ¢ fdeao + 0 (92) stands for a consistent de-
formation of the free action, with deformed gauge transformations SéAW =
Ouew + 9B + O (%), 6By = 9By + O (g?), then the deformed solution to
the master equation

(0)
S=S —i—g/d?xa—i—O(gQ) (3.1)

satisfies (S,S) = 0, where a = ag + A** B, + B**f, + ‘more’ (g is the
so-called deformation parameter or coupling constant). The terms BH,,, Bﬂ
are obtained by replacing the gauge parameters €, with the fermionic ghosts
7y in the functions £, and f,.

The master equation (S,S) = 0 holds to order g if and only if

sa = dyj", (32)

for some local j#. This means that the nontrivial first-order consistent in-
teractions belong to HO (s|d), where d is the exterior space-time derivative.
In the case where a is a coboundary modulo d (a = s\ + d,b"), then the
deformation is trivial (it can be eliminated by a redefinition of the fields).
In order to investigate the solution to (3.2), we develop a according to the
antighost number

a=ag+a+...+ay, antigh(ay)==%k, (3.3)

where the last term can be assumed to be annihilated by «, yajy = 0. Thus,
we need to know the cohomology of v, H (), in order to determine the
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terms of the highest antighost number in a. From (2.10)—(2.11) it is simple
to see that the cohomology of v is generated by J), A 15, By, A™, B*H, n*#
together with their spacetime derivatives, as well as by the undifferentiated
ghosts n#. (The derivatives of the ghosts are discarded from H (v) since
they are ~y-exact, as results from the first formula in (2.10).) If we denote
by eM (n*) a basis in the space of the polynomials in the ghosts, it follows
that the general solution to the equation yaj = 0 takes the form

ay = ay ([0, Aup]  [Ba, [A*],[B*], [n]) €’ (n*) (3.4)

where antigh (a;) = J and pgh (e’ (7)) = J. In (3.4) the notation f ([g])
signifies that f depends on ¢ and its derivatives up to a finite order.
By projecting the equation (3.2) on antighost number (J — 1), we obtain

day +yay—1 = Oym. (3.5)

Inserting (3.4) into (3.5), it follows that the existence of aj_; requires that
oy pertains to Hy (6|d) , i.e.,

dwy = Oyn*. (3.6)

On the other hand, since the free model under consideration is of Cauchy
order two, from [9] it follows that Hy (d|d) = 0 for k£ > 2, so we can assume
that the development (3.3) stops at antighost number two

a=ag+a +ay, (37)

where ag is of the form (3.4) with J = 2, and a9 belongs to Hs (d]d). On
the one hand, the most general representative of Hy (d|d) is

W 1 82w

_ *UN A*V,

a2
where W (B)‘) is an arbitrary function that involves only the undifferentiated
vector fields. On the other hand, the elements of pure ghost number two of
a basis in the ghosts are of the type

n°n°. (3.9)

Combining (3.8) with (3.9), we find that the last component in (3.7) becomes

a9 =

1<5Wa5 o 1 P Wep
=2 (55

6y~ AFHA ARVP ) oy 3.10
where the functions W, are antisymmetric, W, = —Wp,, due to the
anticommutation of the ghosts. Then, the equation (3.5) for J = 2 takes
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the form dag + ya; = d,m*. Taking into account (3.10), we determine the
piece of antighost number one from the first-order deformation like

Wy
5B/\5A*‘“A P — WagB*nP. (3.11)

a] = —

Further, (3.2) projected on antighost number zero produces the equation
day +yag = 0,k*, whose solution reads as

1
ag = —geWWaﬂAuﬁAya. (3.12)
Putting together the relations (3.10-3.12), we can write down the first-order

deformation of the solution to the master equation corresponding to the free
model under study as

1 oW,
S, = / a2z (—igﬂ"WQﬂAuﬂAya -5 "B AAA Py — Wop B
Wap o 1 Wag oun guv
+= < 5303\/37) At gwéBAdaBEPA A A p) nanﬂ) (3.13)

Next, we investigate the higher-order deformations. If we make the no-
tations Sy = fdeb and (S1,51) = fdeA, the second-order deformation is
subject to the equation (written in local form)

A= —2sb+ 9,0". (3.14)

With the help of (3.13), by direct computation we arrive at
(51,51) = /dgx (mﬁ)\p <5WAHBA/7))‘ —i—B*)‘npnﬂ)
0msnp (e g BoApp o Loev 8on 0
BT:Th A™A Pt +3m n°n*n’
1

52 mexp
- A*;WA*UT 1
GEH0 SIS BT n’n’n’ (3.15)

where we employed the notation

SW
558,

mgrp = Wa (3.16)

Since none of the terms in (3.15) can be written like in the right hand-side
of (3.14), the consistency of the first-order deformation requires that

manp = 0. (3.17)
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The solution to (3.17) reads as
Woas (B") = c1easW (B") + c2 (6(1)\3)‘35 - sBABABa) , (3.18)

where W (B*) is a scalar function depending on the undifferentiated vector
field B*, while ¢; and ¢z are some constants. Then, the solution to (3.14)
can be taken of the form b = 0, which further yields S, = 0. Accordingly,
we find that all the equations that stipulate the higher-order deformations
of the solution to the master equation are satisfied for S, =0, k > 2.

4. Identification of the interacting theory

So far, we have constructed the complete deformed solution to the master
equation for the model under discussion, which is consistent to all orders in
the coupling constant, of the type

1
S = / e <5’“’AM <8,,B’\ + 5gW*mW))

* YV 5WC\6 *
+A <<9m7u —g 5Bf A,ﬁn”‘) — gB**Wysn”

1 (Was 4 1 §*Wap
+§g<5BA” 25" 5B B

o)),

where Wy (B*) is given by (3.18). With the help of (4.1), we identify the
resulting interacting theory and its gauge structure. Thus, the component of
antighost number zero is nothing but the Lagrangian action of the coupled
theory

_ 1
SolAu, B, = / d*z <gf“o4,M <a,,BA + §gW)“’A,,p>) .42

The terms linear in the antifields of the original fields provide the gauge
transformations of the action (4.2) like

Wap

SGA;LV = aMGy - g 5B

AP, 5By = —gWae, (4.3)
such that the gauge generators in De Witt condensed notations are expressed
by

oW,
Z/S:ég\c = guaau - QWOLBA“[?, Zl(tg) = —ng. (4.4)

Regarding the antighost number two pieces, they are of two kinds: ones
are linear in the antifields of the ghosts, while the others are quadratic in
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the antifields of the fields. This means that the deformed gauge algebra
of the interacting theory is non-Abelian, and, more precisely, open. The
commutators among the gauge transformations (4.3) take the concrete form
(again in De Witt notations)

(4) A (4)
7(A) 5Z;wﬁ _7A) 5Z;(u/()1 7(B) 5Z;wﬁ
PA 5 A, P §A,N TP 6B,
o 5Waﬂ (A) 52Waﬂ 55’0
= 9%p, Jun P9 spsp A, (9
(B) B
28 %8 ) Zpa) _ IWap 7(B) (4.6)
v 5B, 708 5B, 9sB, T ‘

Obviously, the gauge transformations (4.3) are irreducible, just like those of
the free model.

5. Conclusion

To conclude, in this paper we have shown that there exist consistent
and nontrivial Lagrangian interactions which can be introduced in a special
class of two-dimensional tensor gauge field theories. Starting with the BRST
differential of the free theory, we fully compute the first-order deformation,
which contains some antisymmetric functions of the undifferentiated vector
field. Next, we investigate its consistency, and evaluate the appearance of
higher-order deformations. It turns out that the consistency of the defor-
mation procedure restricts the antisymmetric functions to fulfill a certain
identity, in which case all the higher-order deformations can be taken to
vanish. As a result, we derive a coupled model with modified gauge trans-
formations, endowed with an open gauge algebra.
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tional Council for Academic Scientific Research (CNCSIS) and the Ministry
of Education and Research (MEC).
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