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PION GENERALIZED DISTRIBUTION AMPLITUDESIN THE NONLOCAL CHIRAL QUARK MODELMihaª Praszaªowizy and Andrzej RostworowskizM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived February 25, 2003)We use a simple, instanton motivated, nonloal hiral quark model toalulate pion Generalized Distribution Amplitudes (GDAs). The nonlo-ality appears due to the momentum dependene of the onstituent quarkmass, whih we take in a form of a generalized dipole formula. With thishoie all alulations an be performed diretly in the Minkowski spaeand the sensitivity to the shape of the uto� funtion an be studied. Wedemonstrate that the model ful�lls soft pion theorems both for hirally evenand hirally odd GDAs. The latter annot be derived by the methods ofurrent algebra. Whenever possible we ompare our results with the exist-ing data. This an be done for the pion eletromagneti form fator andquark distributions as measured in the proton-pion sattering.PACS numbers: 12.38.Lg, 14.40.Aq1. IntrodutionIn this work we alulate two pion distribution amplitudes (2�DAs) andpion skewed parton distributions (�SPDs) in the instanton motivated, e�e-tive hiral quark model. 2�DAs and �SPDs are de�ned as Fourier transformsof matrix elements of ertain light-one operators, taken between the pionstates. 2�DAs appear in the amplitude for the proess � ! ��, if thevirtuality of the photon is muh larger then the squared invariant mass ofthe two pion system [1℄. 2�DAs desribe the transition from partons to twopions in a �nal state. They are also related to the pion eletromagneti formfator in the time like region and pion eletromagneti radius.The proess � ! �� an be related by rossing symmetry to virtualCompton sattering �� ! �. This proess fatorizes into a hard photon�parton sattering and �SPDs [2�4℄. In the forward limit the latter reduey e-mail: mihal�if.uj.edu.plz e-mail: arostwor�th.if.uj.edu.pl (2699)



2700 M. Praszaªowiz, A. Rostworowskito the quark densities whih are measurable in the ��p Drell�Yan proessor prompt photon prodution [5, 6℄. Finally ertain integral of �SPDs givespion eletromagneti form fator in the spae like region.Pions are the simplest hadroni states being q�q pairs and Goldstonebosons of spontaneously broken hiral symmetry at the same time. There-fore, their properties may be alulated with little dynamial input, relyingon their hiral struture and hiral symmetry breaking. In this work weuse the instanton motivated e�etive hiral quark model [7℄ with nonloalinterations. This model has been suessfully applied to the alulationof the leading twist pion distribution amplitude [7�10℄, 2�DAs [11�13℄ andpion SPDs [12, 13℄. The main ingredient of the model is the momentumdependene of the onstituent quark mass whih regularizes ertain, other-wise divergent, integrals. To make the alulation feasible this momentumdependene has been taken in the form [9℄:Mk =M � ��2k2 � �2 + i��2n =MF 2(k) : (1)M is the onstituent quark mass at zero momentum. Its value, obtained fromthe gap equation, is approximately 350 MeV. Quantities n and � = �(n;M)are model parameters. As explained below we expet the model to beroughly independent of n, if the value of � is properly adjusted. The for-mula (1) maybe thought to be instanton motivated in a sense that whenontinued to Eulidean momenta (k2 ! �k2E) it reprodues reasonablywell [9℄ the momentum dependene alulated expliitly [14, 15℄ in the in-stanton model of the QCD vauum:Finst(kE) = 2z[I0(z)K1(z)� I1(z)K0(z)℄ � 2I1(z)K1(z) ; (2)where z = �kE=2, with � = (600 MeV)�1 being an average instanton size.The alulations presented here may be viewed as an extension of theprevious results of Refs. [11�13℄ and were partially reported in [16,17℄. Ourmotivations are both theoretial and phenomenologial. First, the asymp-totis of Eq. (2) suggests n = 3=2 in Eq. (1), however, taking the non-integern results in additional di�ulties. In the previous works [7, 8, 11�13℄ thevalue n = 1 was assumed. Therefore it should be heked that the resultsdo not depend strongly on n. This is indeed true for the pion distributionamplitude, as has been shown in [9℄. Seondly in [7,8,11�13℄ the momentumdependene of the onstituent mass in the quark propagators was negleted.With the method developed in [9℄ we an alulate generalized parton dis-tributions for arbitrary n, keeping trak of momentum dependene of theonstituent quark mass both in numerators and denominators even for theonvergent quantities. This is in fat neessary if one insists on the soft pion



Pion Generalized Distribution Amplitudes in the Nonloal . . . 2701theorems whih would be otherwise not ful�lled. Apart from a well knownsoft pion theorem for hirally even 2�DAs [12℄, we derive (in the frameworkof the present model) a soft pion theorem for hirally odd 2�DAs.On the phenomenologial side, apart from the alulation of the pion gen-eralized distribution amplitudes (GDAs for short), i.e. 2�DAs and �SPDsthemselves, we alulate pion eletromagneti radius, eletromagneti formfator and quark distributions, and ompare them with the existing data.This omparison although not bad, is not entirely satisfatory. We shalldisuss our results in Set. 7. We start with the short desription of themodel in Set. 2 Then, in Set. 3, we proeed with de�nitions of 2�DAs and�SPDs and their general properties. In Set. 4 we sketh the alulationsand present numerial results. In Set. 5 we demonstrate soft pion theorems.Finally, in Set. 6, we disuss pion quark densities alulated in the modeland ompare them with data and other theoretial alulations. Tehnialdetails an be found in the Appendix.2. E�etive hiral quark modelFor two quark �avors (u and d) the e�etive model we use to alulatepion GDAs is given by the ation (in momentum spae):Se� = Z d4k(2�)4 � (k)/k  (k)�Z d4p(2�)4 d4k(2�)4 � (p)pMpU5(p�k)pMk (k) ;(3)where  (x) = Z d4k(2�)4 e�i kx (k):The matrixU5(x) = exp � iF� 5�a�a(x)� = 1 + iF� 5�a�a(x)� 12F 2� �a(x)�a(x) + : : :(4)(in oordinate spae) gives the interation between quarks and pions. Thereis no kineti term for the pions and the pion �eld is treated as an externalsoure. F� = 93 MeV is the pion deay onstant, �a are Pauli matriesand the pion T̂3 eigenstates are: �0 = �3, �+ = � ��1 + i�2� =p2, �� =��1 � i�2� =p2. The momentum dependene of the quark onstituent massis given by Eq. (1). The � parameter is �xed one for all by adjusting thevalue of F�(�) alulated in the e�etive model (3) to its physial valueF� = 93 MeV. This has been done in [9℄. For example for M = 350 MeVand n = 1 we have obtained � = 1157 MeV.Neither M nor � should be identi�ed with the normalization sale Q0 ofthe quantities alulated in the model. The preise de�nition of Q0 is only



2702 M. Praszaªowiz, A. Rostworowskipossible within QCD and in all e�etive models one an use only qualitativeorder of magnitude arguments to estimate Q0. Arguments an be given thatthe harateristi sale of the instanton model is of the order of the inverseinstanton size 1=� = 600 MeV, or so. We shall ome bak to this questionin Set. 6. 3. De�nitions and general properties of GDAsWe de�ne two light-like vetors: n� = (1; 0; 0;�1) and ~n� = (1; 0; 0; 1).These vetors de�ne plus and minus omponents of any four-vetor: k+ �k0 + k3 = n � k and k� � k0 � k3 = ~n � k.3.1. Two pion distribution amplitudesWe take the de�nitions of pion generalized distribution amplitudes from[12, 13℄. Z d�2� exp (�iu�n � P )D�a(p1)�b(p2) ��� � f 0(�n)� f (0)��� 0E= Æab Æff 0 �I=02� (u; v; s) + i"ab (� )ff 0 �I=12� (u; v; s) ; (5)where P = p1 + p2 is the total momentum of the two pion system. For theleading twist (hirally even) 2�DAs we have:� = /n ; (6)whereas for the hirally odd 2�DAs� = in�P ���� : (7)An impat parameter representation of the 2�DAs an be found in Ref. [18℄.Note that with the de�nition (7), hirally odd 2�DAs have the dimensionof mass. 2�DAs depend on the following kinematial variables: squaredinvariant mass of the two pions, s = P 2; the longitudinal momentum frationarried by quark with respet to the total longitudinal momentum, u =k+=P+ and the longitudinal momentum fration arried by one of the pionswith respet to the total longitudinal momentum, v = p+1 =P+.2�DAs have the following symmetries [12℄:�I=02� (u; v; s) = ��I=02� (1� u; v; s) = �I=02� (u; 1 � v; s); (8)�I=12� (u; v; s) = �I=12� (1� u; v; s) = ��I=12� (u; 1 � v; s) : (9)



Pion Generalized Distribution Amplitudes in the Nonloal . . . 2703The isovetor hirally even 2�DA is normalized to the pion eletromagnetiform fator in the time-like region:1Z0 du�I=12� (u; v; s) = (1� 2v)F em� (s) : (10)From its s dependene the pion eletromagneti radius an be evaluated
(rem� )2� = 6 dF em� (s)ds ����s=0 : (11)The normalization ondition for the isosalar 2�DA gives the fration of apion momentum arried by the quarks, M (�)2 :1Z0 du (2u � 1)�I=02� (u; v; s = 0) = �2v(1� v)M (�)2 : (12)It is onvenient do expand the 2�DAs in the basis of the eigen funtionsof the ERBL equation [19, 20℄ (Gegenbauer polynomials C3=2n (2u � 1)) andpartial waves of sattered pions (Legendre polynomials Pl(1� 2v)):�I2�(u; v; s) = 6u(1� u) 1Xn=0 n+1Xl=0 BInl(s)C3=2n (2u � 1)Pl(1� 2v) : (13)Beause of the symmetry properties (8), (9), the sum in Eq. (13) goes overodd (even) n and even (odd) l for isosalar (isovetor) 2�DA.The expansion oe�ients BInl are renormalized multipliatively:BInl(s;Q) = BInl(s;Q0)� �s(Q)�s(Q0)�n ; (14)with n being anomalous dimensions [21℄. From (13) and (14) it is easy toread the asymptoti form of 2�DAs:�as: I=02� (u; v; s) = 0 (15)and �as: I=12� (u; v; s) = 6u(1� u)(1 � 2v)BI=101 (s): (16)This asymptoti form is plotted in Fig. 1. For hirally even 2�DA, from(10), we have BI=101 (s) = F em� (s).
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quark uquark u pion vFig. 1. Asymptoti form the isovetor 2�DA as given by Eq. (16).In Ref. [12℄ the following soft pion theorem for the hirally even 2�DAshas been demonstrated. In the hiral limit (m� = 0), in the ase of one ofthe pions momenta going to zero (v(1 � v)! 0) we get�I=02� (u; v = 0; s = 0) = �I=02� (u; v = 1; s = 0) = 0 (17)and �I=12� (u; v = 0; s = 0) = ��I=12� (u; v = 1; s = 0) = �AV� (u) ; (18)where �AV� (u) is the axial-vetor (leading twist) pion distribution amplitude:h0j �d(z)�5u(�z)j�+(p)i = ip2F�p� 1Z0 du ei(2u�1)z p�AV� (u) : (19)We shall ome bak to this point in Set. 5.3.2. Pion skewed distributionsFor �SPDs we have (for a review see Ref. [4℄):12 Z d�2� exp (i�Xn �p)��b(p0) ���� � f 0 ���n2 � /n f ��n2 ������a(p)�= Æab Æff 0 HI=0(X; �; t) + i"ab (� )ff 0 HI=1(X; �; t) ; (20)where �p = (p + p0)=2 is the average pion momentum. SPDs depend on thefollowing kinematial variables: the asymmetry parameter � = ��+=(2�p+),where � = p0 � p is the four-momentum transfer; t = �2 and the variable



Pion Generalized Distribution Amplitudes in the Nonloal . . . 2705X de�ning the longitudinal momenta of the struk and sattered quarks inDVCS, (X + �)�p+ and (X � �)�p+, respetively.The pion SPDs obey the following symmetry properties [13℄:HI=0(X; �; t) = HI=0(X;��; t) = �HI=0(�X; �; t) ; (21)HI=1(X; �; t) = HI=1(X;��; t) = HI=1(�X; �; t) : (22)In the forward limit the SPDs redue to the usual quark and antiquarkdistributions:HI=0(X; � = 0; t = 0) = 12 [�(X)qs(X) ��(�X)qs(�X)℄ ; (23)HI=1(X; � = 0; t = 0) = 12 [�(X)qv(X) +�(�X)qv(�X)℄ ; (24)where qs(X), qv(X) are singlet (quark plus antiquark) and valene (quarkminus antiquark) distributions. For example for �+ we have:2HI=0(X; � = 0; t = 0) = �u�+(X) + �u�+(X) for X > 0 ,�d�+(�X)� �d�+(�X) for X < 0 (25)and2HI=1(X; � = 0; t = 0) = �u�+(X)� �u�+(X) for X > 0 ,�d�+(�X) + �d�+(�X) for X < 0 : (26)In the present model we get �u�+(X) = d�+(X) � 0.The normalization onditions for SPDs are analogous to the 2�DAs ase(10)�(12). In partiular, independently of �,+1Z�1 dX HI=1(X; �; t) = F em� (t) ; (27)
(rem� )2� = 6 dF em� (t)dt ����t=0 (28)and +1Z�1 dX XHI=0(X; �; t = 0) = 12(1� �2)M (�)2 : (29)In analogy to the soft pion theorem for 2�DAs, in the ase of �SPD wehave [12℄:HI=1(X; � = 1; t = 0) = �AV� �X + 12 � ; HI=0(X; � = 1; t = 0) = 0 :(30)
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(a) (b) (c)Fig. 2. Diagrams ontributing to the matrix elementD�a(p1)�b(p2) ��� � f 0(z1)� f (z2)��� 0E ; Eq. (5). Diagrams (a) and (b) ontribute both toisosalar and isovetor 2�DAs; diagram () ontributes only to the isosalar 2�DA.4. Pion generalized distribution amplitudes in the e�etive model4.1. Analytial resultsFor the matrix elements entering the de�nitions of 2�DAs and SPDs,Eqs. (5), (20), in the e�etive model desribed in Set. 2, we obtain:D�a(p1)�b(p2) ��� � f 0(z1)� f (z2)��� 0E = iNF 2� Z d4k(2�)4 eikz1�i(k�P )z2nÆabÆff 0 [T1(k � P; k) + T2 (k � P; k � p2; k) + T2 (k � P; k � p1; k)℄+i"ab (� )ff 0 [T2 (k � P; k � p2; k)� T2 (k � P; k � p1; k)℄o ; (31)andD�b(p0) ��� � f 0(z1)� f (z2)��� �a(p)E = iNF 2� Z d4k(2�)4 ei(k+�2 )z1�i(k��2 )z2��ÆabÆff 0 �T1�k � �2 ; k + �2 �+T2�k � �2 ; k � �p; k + �2 �+ T2�k � �2 ; k + �p; k + �2 ��+i"ab (� )ff 0 �T2�k � �2 ; k � �p; k + �2 �� T2�k � �2 ; k + �p; k + �2 ��� ;(32)where T1(q; k) = Tr �� 1/q �Mq + i�pMqMk 1/k �Mk + i�� ; (33)T2(r; q; k) = Tr �� pMr/r �Mr + i�5 Mq/q �Mq + i�5 pMk/k �Mk + i�� : (34)
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2708 M. Praszaªowiz, A. RostworowskiFrom �2? � 0 it follows� p�tp�t+ 4m2� � � � p�tp�t+ 4m2� : (42)In what follows we take the hiral limit, m� = 0. In this limit, from (38)and (42), we get 0 � v � 1 and �1 � � � 1.Inserting Eqs. (31) and (32) into Eqs. (5) and (20) we �nd k+ = uP+and k+ = X �p+, respetively.We shall alulate d4k integral in Eqs. (31) and (32) in the light oreoordinates: d4k = 12dk�dk+d2~k?. The method of evaluating dk� integral,taking the full are of the momentum mass dependene, has been givenin [9℄. To evaluate dk� integral we have to �nd the poles in the omplexk� plane. It is important to note that the poles ome only from momentumdependene in the denominators of Eqs. (33), (34). Indeed, for eah quarkline with the momentum k, in the ase Mk ! 1 we have at most Mk inthe numerator (if the line is oupled to pion lines at both ends) and Mk inthe denominator. This means that the position of the poles is given by thezeros of denominator, that is by the solutions of the equationk2 �M2� �2k2 � �2 + i��4n + i� = 0 : (43)This equation is equivalent toG(z) = z4n+1 + z4n � r2 = 4n+1Yi=1 (z � zi) ; (44)with z = k2=�2 � 1 + i� and r2 =M2=�2. For r2 6= 0 (or �nite �) equation(44) has 4n+ 1 nondegenerate solutions. In general ase 4n of them an beomplex and the are must be taken about the integration ontour in theomplex k� plane. Beause of the imaginary part of the zi's, the poles inthe omplex k� plane an drift aross Rek� axis. In this ase the ontourhas to be modi�ed in suh a way that the poles are not allowed to ross it.This follows from the analytiity of the integrals in the � parameter andensures the vanishing of GDAs in the kinematially forbidden regions. Weget nonvanishing results for 2�DAs and SPDs for 0�u�1 and �1� X� 1,respetively.After evaluating dk� integral the d2k? integral has to be treated numeri-ally. The integral over angular dependene in the transverse plane an be inpriniple evaluated analytially (using residue tehnique), or in other wordsan exat algorithm for its evaluation an be given. In this way we are leftwith the numerial integration in only one variable, whih is an easy task todo. The tehnial details of the alulations are presented in Appendix A.



Pion Generalized Distribution Amplitudes in the Nonloal . . . 27094.2. Numerial resultsOur results for 2�DAs and SPDs are presented in Figs. 4�7. Althoughstritly speaking the present model is valid only for small pion momenta, s,we show also results for s as large as 1 GeV in order to trae the trends ofthe hange of shape.For small s and one pion momentum equal zero (i.e. v = 0) the shapeof the hirally even isovetor 2�DA resembles � as funtion of u � theaxial-vetor one pion distribution amplitude in agreement with the soft piontheorem (18), (63). Similarly, hirally odd isosalar 2�DA resembles thederivative (straight line) of the pseudo-tensor one pion distribution ampli-tude, also in agreement with the soft pion theorem (68) whih we shalldisuss in detail in Set. 5. The funtions that we obtain, obey orretsymmetry properties (8), (9) and (21), (22). The asymptoti form for theisovetor 2�DA is plotted in Fig.1 and we see that it has a di�erent shapefrom the model predition of Fig. 4.s = 0 GeV2 s = 1 GeV2
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2712 M. Praszaªowiz, A. Rostworowskisolid urve orresponds to the full result, whereas the dashed-dotted urveorresponds to diagrams (a) + (b) of Fig. 3, and dashed line to diagram ().In the forward limit (t = 0 and � = 0, Fig. 8(b) HI=0(X; � = 0; t = 0) orre-sponds to the quark densities in the pion (25). We see little n dependene.For omparison we also plot quark distributions obtained in the model withsharp uto� in the transverse momentum plane whih oinides with theresult obtained in Refs. [22, 23℄. These quark distributions are understoodto be at low normalization sale Q0 and have to be evolved to some physialsale Q at whih they are experimentally aessible. This will be done inSet. 6.
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Pion Generalized Distribution Amplitudes in the Nonloal . . . 2713The values of F em� (s) and F em� (t) evaluated by means of Eqs. (10), (27)do not depend (as they should) on v and �, respetively. They are depitedin Fig. 9, together with the experimental data of Refs. [26�28℄. We see thatthe spae like pion form fator overshoots the experimental points. Thisdisrepany may be eventually ured by negative ontribution from the pionloops. In the time like region we see that very soon the � resonane tailswithes on. Of ourse, vetor mesons are not aounted for in the presentmodel. The similar buildup of the � tail an be seen in the ��� satteringdata [29℄. One should note that stritly speaking our model an be used onlyfor very low momentum transfers. For higher momenta QCD perturbativetehniques should be used [30℄.
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2714 M. Praszaªowiz, A. RostworowskiThe values of the pion eletromagneti radius, obtained from Eqs. (11)and (28) are onsistent with eah other, although too small. Numeriallywe get h(rem� )2i = (0:54 fm)2, whih is omparable with the value
(rem� )2� = N4�2F 2� = (0:58 fm)2;obtained within the instanton models. The experimental value [26℄ is bigger:h(rem� )2i = (0:66 fm)2. This an be, however, ured by the pion loops, whihare negleted in the present approah.5. Soft pion theoremsSoft pion theorems relate 2�DAs for one pion momentum going to 0 withthe one pion light one distribution amplitude.We reall the de�nitions of the axial-vetor and pseudo-tensor one pionDAs:�AV� (u) = 1ip2F� +1Z�1 d�� e�i�(2u�1)(n P ) h0j �d(�n) /n5 u(��n) ���+(P )� ;(46)ddu�PT� (u) = � 6F�ip2 h�qqi +1Z�1 d�� e�i�(2u�1)(n�P )�h0j �d(�n) in�P ����5 u(��n) ���+(P )� : (47)The matrix element entering the de�nitions (46), (47), alulated in thepresent model, gives:h0j �d(z1)u(z2) ���+(P )� = �p2NF� Z d4k(2�)4 ei(k�P )z1�ikz2 T (k; k�P ) ; (48)withT (k; k � P ) = Tr  pMk/k �Mk + i�5 pMk�P(/k � /P )�Mk�P + i�!= pMkMk�P Tr �5[�/k +Mk℄[(/k � /P ) +Mk�P ℄��k2 �M2k + i�� �(k � P )2 �M2k�P + i�� : (49)Further alulations require an expliit form of . Substituting (48) into(46) and (47) we get�AV� (u) = iNF 2� Z d4k(2�)4 Æ(n � (k � uP ))T (k; k � P )j=/n5 (50)



Pion Generalized Distribution Amplitudes in the Nonloal . . . 2715andddu�(u) = �6iNh�qqi Z d4k(2�)4 Æ(n � (k � uP ))T (k; k � P )j=in�P����5 ; (51)respetively. Similarly, in the ase of 2�DAs, from (5) and (31) we get�I=02� (u; v; s) = iNF 2� Z d4k(2�)4 Æ(n (k � uP ))� [T1(k � P; k) + T2 (k � P; k � p2; k) + T2 (k � P; k � p1; k)℄ (52)and �I=12� (u; v; s) = iNF 2� Z d4k(2�)4 Æ(n � (k � uP ))� [T2 (k � P; k � p2; k)� T2 (k � P; k � p1; k)℄ ; (53)with T1 and T2 de�ned in (33) and (34). Soft pion theorems relate matrixelements (48) and (31) for one pion momentum, say p2 ! 0 and for di�erent and � . For T1 we have:T1(k � P; k) = pMk�PMk Tr (� [(/k � /P ) +Mk�P ℄ [/k +Mk℄)�(k � P )2 �M2k�P + i�� �k2 �M2k + i�� ; (54)whereas for the two T2's in the limit p2 ! 0 (that is v ! 1) we get:T2(k � P; k; k) = �pMk�PMkMk Tr (� [(/k � /P ) +Mk�P ℄)�(k � P )2 �M2k�P + i�� �k2 �M2k + i�� ; (55)T2(k � P; k � P; k) = � pMk�PMkMk�P Tr (� [/k +Mk℄)�(k � P )2 �M2k�P + i�� �k2 �M2k + i�� : (56)5.1. Chirally even 2�DA and axial-vetor wave funtionConsider �rst the soft pion theorem disussed already at the end ofSet. 3.1. To this end let us take  = /n5 : (57)ThenT (k; k � P )j�=/n5 = pMkMk�P [�Mk�P Tr (/n/k) +Mk Tr (/n(/k � /P ))℄�k2 �M2k + i�� �(k � P )2 �M2k�P + i�� :(58)



2716 M. Praszaªowiz, A. RostworowskiFor two pions we have to take � = /n : (59)Then in the soft limit p1 = P , p2 = 0 (this means v = 1) the isovetorombination in Eq. (53) readsT2(k � P; k; k)j�=/n � T2(k � P; k � P; k)j�=/n= �pMk�PMk [MkTr(/n(/k � /P ))�Mk�PTr(/n/k)℄�(k � P )2 �M2k�P + i�� �k2 �M2k + i��= �T (k � P; k)j=/n5 : (60)Similarly, for the sum entering the isosalar ombination in Eq. (31) we have:T1(k � P; k)j�=/n + T2(k � P; k; k)j�=/n + T2(k � P; k � P; k)j�=/n = 0 : (61)Hene the soft pion theorem for the hirally even 2�DA takes the followingform �I=02�;�even(u; v = 1; s = 0) = 0 ; (62)�I=12�;�even(u; v = 1; s = 0) = ��AV� (u) : (63)5.2. Chirally odd 2�DA and pseudo-tensor wave funtionLet us now onsider hirally odd 2�DA in the soft pion limit. To thisend let us take  = in�P ����5 = 12 [/P; /n℄ 5 (64)whose matrix element de�nes the derivative of pseudo-tensor one pion dis-tribution amplitude. ThenT (k; k�P )j= 12 h/P;/ni5 = �12 pMkMk�P Tr [/P; /n℄ /k(/k � /P )�k2 �M2k + i�� �(k � P )2 �M2k�P + i�� : (65)For 2 pions let us take � = in�P ���� = 12 [/P; /n℄ : (66)Here only T1 survivesT1(k � P; k)j�= 12 h/P;/ni = 12 pMk�PMkTr ([/P; /n℄ (/k � /P )/k)�(k � P )2 �M2k�P + i�� �k2 �M2k + i��= T (k; k � P )j= 12 h/P;/ni5 (67)



Pion Generalized Distribution Amplitudes in the Nonloal . . . 2717while T2 = 0. Therefore the soft pion theorem relates the isosalar part ofthe hirally odd 2�DA to the derivative of pseudo-tensor one pion amplitude:�I=02�;�odd(u; v = 1; s = 0) = �h�qqi6F 2� ddu�PT� (u) ; (68)�I=12�;�odd(u; v = 1; s = 0) = 0 : (69)This result annot be derived by urrent algebra. Sine the pseudo-tensorone pion distribution amplitude is lose to the asymptoti form 6u(1�u) [10℄therefore we expet �I=02�;�odd(u; v = 0; s = 0) � 1 � 2u. That this is indeedthe ase an be seen from Fig. 6(left). We reall that with our de�nitions(5) and (7) the hirally odd 2�DAs have the dimension of mass.6. Pion struture funtionAs explained in Set. 3.1 skewed pion distributions are in the forwardlimit diretly related to the parton distributions inside the pion. For exam-ple, as explained after Eqs. (25), (26) and as seen from Fig. 8(b)u�+(x) = �d�+(x) = 2HI=0(x; � = 0; t = 0) : (70)On the other hand one an relate pion quark distributions to the wave fun-tions for all Fok states and polarizations [31℄. For �+ we haveu�+(x) = XFok statesX� Z d2k?2 (2�)3 j �(x; k?)j2= Z d2k?2 (2�)3 �� AV(x; k?)��2 + : : : ; (71)where we have saturated the sum over the di�erent Fok omponents andpolarizations by the axial-vetor wave funtion. The funtion  AV is (forN = 3) normalized in the following way [31℄:1Z0 dx Z d2k?(2�)3 AV(x;~k?) = F�p3 : (72)It is lear that the normalization ondition for u�+1Z0 dxu�+(x) = 1 (73)



2718 M. Praszaªowiz, A. Rostworowskiand normalization ondition (72) are in general inompatible sine otheromponents denoted by dots in Eq. (71) are of importane. For example ina model with a onstant M one obtains for  AV [7℄: AV(u;~k?) = � (u(1� u)) 2p3F� M2~k2? +M2 (74)and the normalization ondition (72) is ahieved by imposing a uto� � onthe transverse momentum integration dk2?:F 2� = NM2(2�)2 lnM2 + �2M2 : (75)It is now straightforward to alulate u�+ by means of Eq. (71)u�+(x) = � (x(1� x)) 6(2�)2M2F 2� "1� exp �(2�)2 F 2�NM2 !# : (76)The normalization onstant is, as expeted, smaller than 1, however, forM = 350 MeV we get 0.9 � a fairly satisfatory result for suh a simplistimodel. Of ourse, the properly de�ned quark distribution is also properlynormalized [22, 23℄.In the present model [9℄ AV(x;~k?) = 2p3M2�2F� Xi;k fifk zni z3nk x+ z3ni znk (1� x)~k2?�2 + 1 + zix+ zk(1� x) (77)and the normalization ondition for M = 350 MeV and n = 2 gives 0:88instead of 1. The shape is also di�erent from the properly normalized resultobtained with the help of Eq. (70), however, it an be expliitly seen thatfor large x both de�nitions onverge, as they should [32℄. This is depitedin Fig. 10.One of the major problems of the e�etive models like the one onsideredhere, is the normalization sale Q0 at whih the model is de�ned. This isruial shortoming as far as the omparison with the experimental data isonerned. It is argued that the relevant sale for the instanton motivatedmodels is of the order of the inverse instanton size 1=� i.e. approximately600 MeV. The preise de�nition of Q0 is only possible within QCD and in alle�etive models one an use only qualitative order of magnitude argumentsto estimate Q0. A more pratial way to determine Q0 was disussed inRef. [10℄ where we assoiated Q0 with the transverse integration uto� K?whih was of the order of 760 < K? < 1100 MeV.
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Pion Generalized Distribution Amplitudes in the Nonloal . . . 2721There have been several other alulations of the pion struture fun-tion in the literature. A result similar to ours was obtained in Ref. [33℄where the authors alulate expliitly a hand-bag diagram in a loal NJL(nonbosonized) model in the Bjorken limit. They, however, introdue anx dependent uto� in order to regularize the divergent integrals and getproper behavior of the valene quark distribution in the large x limit. Theirresult is in agreement with a similar alulation of Ref. [34℄. In an approahbased on Ward�Takahashi identities, whih is in fat equivalent to the loalNJL model with a sharp momentum uto�, the valene quark distribution isequal to 1 over the whole range of x [23℄. This very simple quark distributionis properly normalized, in a sense that the quark number is 1 and its totalmomentum is 1/2. The vanishing of q(x) for x! 1 is ahieved by DGLAPevolution. We have plotted the result of this evolution in Fig. 11.Diret alulations in the instanton model [35℄ show phenomenologiallyquite similar behavior as ours. An advantage of Ref. [35℄ is that they usewell de�ned urrents with nonloal piees [36℄, whereas we use naive quarkbillinears. This is re�eted in wrong normalization of the �rst moment ofthe quark distributions whih at low sale should be 1 (for R dxx(u+d) ) asopposed to 0.93 what we get. An even larger mismath has been reportedin a similar model of Ref. [37℄, where the remainder of the momentum wasattributed to gluons and sea, whih are, however, absent in our approah.Our quark distributions show little n dependene. This is depited inFig. 12.
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2722 M. Praszaªowiz, A. Rostworowski7. DisussionIn this paper we have alulated the Generalized Distribution Ampli-tudes using the nonloal, instanton motivated, hiral quark model. Thenonloality has been taken in the form of Eq. (1) whih allowed us to performall alulations in the Minkowski spae. Introduing light one integrationvariables allowed us to perform most of the alulations analytially. As aresult we were left with the numerial integration in only one variable, dk2?.We de�ne the GDA's through the matrix elements of the nonloal quarkbillinears (5), (20). Although in QCD this is ertainly a orret de�nition,one might envisage alternative de�nitions whih would be more appropriatefor the nonloal e�etive models [22, 35℄. The reason is that in the limitwhen the quark operators are taken in the same point, quark billinears (5),(20) do not orrespond to the properly normalized Noether urrents. This isbeause in the nonloal models Noether urrents get additional piees whihrestore Ward�Takahashi identities [36℄. It is not lear how to generalizequark billinears (5), (20), sine suh generalization is, in priniple, proessdependent. Therefore an alternative way would be to alulate the wholesattering amplitude diretly in the e�etive model and then extrat thequantities one is interested in by imposing ertain kinematial onstraints,like Bjorken limit for example. Although this proedure seems at the �rstsight attrative, there is a problem beause the Bjorken limit requires largemomentum transfer, whereas the e�etive models are de�ned at low mo-menta.In fat the preise determination of the normalization sale Q0 at whihthe model is de�ned poses a serious problem. In the instanton model ofthe QCD vauum [15℄ that the pertinent energy sale is of the order of theinverse instanton size Q0 = 1=� � 600 MeV. However, it has been arguedin Ref. [23℄ that Q0 may be as low as 350 MeV. This estimate is based onthe requirement that the valene quark distribution alulated in the modelof Ref. [23℄ and evolved from Q0 to Q = 2 GeV arry observed fration oftotal momentum. Unfortunately we annot apply the same proedure inour ase, sine the momentum sum rule is violated in our model. From bothequations, (12) and (29) we �nd the momentum fration arried by quarksto be 93%, independently of v and �. This auses the problem, as in themodel we use, the pion is built from onstituent quarks (there are no gluons)so there is 7% of the pion momentum missing. A natural explanation of thismismath is that we missed some terms whih, in the limit where the quarkoperators are in the same point, would redue quark billinears (5), (20) tothe full nonloal Noether urrents [36, 38℄.



Pion Generalized Distribution Amplitudes in the Nonloal . . . 2723We would like to thank W. Broniowski and E. Ruiz-Arriola for ommentsand disussion. Speial thanks are due to K. Goeke and all members ofthe Institute of Theoretial Physis II at Ruhr-University where part ofthis work was ompleted. M.P. aknowledges disussion with S. Brodsky,A. Dorokhov, V.Y. Petrov, P.V. Pobylitsa, M. Polyakov, A. Radyushkinand Ch. Weiss. A.R. aknowledges support of the Polish State Committeefor Sienti� Researh (KBN) under grant 2P03B048 22 and M.P. undergrant 2P03B043 24. Appendix ATehnial details of the alulation of the pion GDAsInserting (31) and (32) into (5) and (20), respetively we get�I=02� (u; v; s) = J1(u; v; t) + J2(u; v; t) + J3(u; v; t);�I=12� (u; v; s) = J2(u; v; t) � J1(u; v; t) (A.1)and HI=0(X; �; t) = I1(X; �; t) + I2(X; �; t) + I3(X; �; t);HI=1(X; �; t) = I1(X; �; t) � I2(X; �; t): (A.2)J1, J2, J3, I1, I2, I3 stand for the integrals:J1(u; v; s) = iN2(2�)4F 2� Z d2k? +1Z�1 dk� T2(k � P; k � p1; k)������k+=uP+; (A.3)J2(u; v; s) = iN2(2�)4F 2� Z d2k? +1Z�1 dk� T2(k � P; k � p2; k)������k+=uP+; (A.4)J3(u; v; s) = iN2(2�)4F 2� Z d2k? +1Z�1 dk� T1(k � P; k)������k+=uP+; (A.5)I1(X; �; t) = iN4 (2�)4 F 2�� Z d2k? +1Z�1 dk� T2�k � �2 ; k � �p; k + �2 �������k+=X �p+ ;(A.6)



2724 M. Praszaªowiz, A. RostworowskiI2(X; �; t) = iN4 (2�)4 F 2�� Z d2k? +1Z�1 dk� T2�k � �2 ; k + �p; k + �2 �������k+=X �p+ ;I3(X; �; t) = iN4 (2�)4 F 2�� Z d2k? +1Z�1 dk� T1�k � �2 ; k + �2 �������k+=X �p+ ; (A.7)with T1 and T2 de�ned in (33), (34). It is onvenient to introdue the saledvariables:�� = k�� ; !2 = s�2 ; ~�? = ~p?� ; � = ~t4�2 ; ~Æ? = ~�?2� (A.8)and the notation: �u = 1� u ; �v = 1� v : (A.9)We introdue the fators fi = 4n+1Yk=1k 6=i 1zi � zk ; (A.10)whih we will use below. zi are 4n+ 1 roots of the Eq. (44). The fators fihave a property: 4n+1Xi=1 zmi fi = � 0 for m < 4n ;1 for m = 4n : (A.11)This property is ruial for the onvergene of the integrals (A.3)�(A.7), inanalogy to the ase of the pion distribution amplitude [9℄. This property istrue for any set of di�erent 4n + 1 numbers, irrespetively to the fat thatthey are solutions of ertain polynomial equation.It an be shown thatJ3(u; v; s) = J3(u; s) = �J3(�u; s) ; (A.12)J1(�u; v; s) = �J2(u; v; s); (A.13)J1(u; �v; s) = J2(u; v; s) (A.14)



Pion Generalized Distribution Amplitudes in the Nonloal . . . 2725and I2(�X; �; t) = �I1(X; �; t); I3(�X; �; t) = �I3(X; �; t); (A.15)I2(X;��; t) = I1(X; �; t); I3(X;��; t) = I3(X; �; t): (A.16)The properties (A.12)�(A.16), together with Eqs. (A.1)�(A.2), provide theorret symmetry properties for 2�DAs (8), (9) and SPDs (21), (22).For J3(u; s) we get analytial results:J3(u; s) = NM2(2�)2 F 2� 4n+1Xi=1 4n+1Xk=1 zni znk fi fk �uz2ni � �uz2nk �� ln ��u�u!2 + 1 + �uzi + uzk� : (A.17)If 0 � u � �v then J2(u; v; s) readsJ2(u; v; s)= (�1)n+1 iNM2(2�)3 F 2� 4n+1Xi=1 zni fi 1Z0 d ��2?� u7n+1 ���u�u!2 + ~�2? + 1 + �uzi��n4n+1Qk=1 ��u�u!2 + ~�2? + 1 + �uzi + uzk�� ZC(0;1) d� �4n4n+1Qk=1 (A(u)�2 +Bik(u; v)� +A(u)) g(u; v) =: F(u; v; s) ; (A.18)whereg(u; v) = �2 "��u��u�u!2 + ~�2? + 1 + �uziu �2n + uz2ni� (u� �v)�A(u)�2 + bi(u; v)� +A(u)�u �2n#+z2ni ��u�u!2 + ~�2? + 1 + �uziu �2n�A(u)�2 + bi(u; v)�+A(u)�u �2n�24�vu�u!2 + (u+ �u� v)| {z }�v �2? + �u (1 + zi) + (u� �u)q�2?�2?�2 + 12� 35 :(A.19)If �v � u � 1, then J2(u; v; s) = �F(�u; �v; s); (A.20)



2726 M. Praszaªowiz, A. Rostworowskiwith F(u; v; s) de�ned in (A.18). The symbols A(u), bi(u; v), Bik(u; v) inEq. (A.18), (A.19) stand forA(u) = uq�2?�2? ;bi(u; v) = u�2? + uv(u� �v)!2 + �v(~�2? + 1)� (u� �v)zi ;Bik(u; v) = u�2? + uv(u� �v)!2 + �v(~�2? + 1)� (u� �v)zi + uzk :Beause HI=0 and HI=1 are symmetri in � we an assume � � 0. ThenI1(X; �; t) is nonzero only if �� � X � 1. Similarly I3(X; �; t) is nonzeroonly if �� � X � �.For �� � X � �, I3(X; �; t) and I1(X; �; t) readI3(X; �; t)= (�1)n iNM22(2�)3F 2� 1Z0 d ��2?� 4n+1Xi=1 fi ZC(0;1) d� �(X + �)�zi �A�2 + bi�+A��n�(X + �) [(X + �)�zi℄2n + (X � �) �A�2 + bi�+A�2n4n+1Qk=1 [A�2 +Bik�+A℄ ; (A.21)
I1(X; �; t) = (�1)n iNM22(2�)3F 2� 1Z0 d ��2?� 4n+1Xi=1 fi� ZC(0;1) d� [(X + �)�℄7n+1zni �A�2 + bi�+A�n4n+1Qk=1 [(A�2 +Bik�+A) (C�2 +Dik�+ C)℄h(a)1 (X; �; t) ;whereh(a)1 (X; �; t) = �2 "(X � �)�A�2 + bi�+A(X + �)� �2n + (X + �)z2ni�(X � 1)�C�2 + di�+ C(X + �)� �2n#+z2ni �A�2 + bi�+A(X + �)� �2n�C�2 + di�+ C(X + �)� �2n�" ��2 �X2� (1� �)� + (� + 1) �2?



Pion Generalized Distribution Amplitudes in the Nonloal . . . 2727+Xq�2?Æ2?�2 + 1� + (� � 1) Æ2? + (� �X)(1 + zi)# : (A.22)For � � X � 1, I1(X; �; t) readsI1(X; �; t) = (�1)n+1 iNM22(2�)3F 2� 1Z0 d ��2?� 4n+1Xi=1 fi� ZC(0;1)d� [(X � 1)�℄6n+1 �C�2 + fi�+ C�n �C�2 + gi�+ C�n4n+1Qk=1 [(C�2 + Fik�+ C) (C�2 +Gik�+ C)℄ h(b)1 (X; �; t) ;(A.23)whereh(b)1 (X; �; t)= �2 "(X � �)�C�2 + gi�+ C(X � 1)� �2n + (X + �)�C�2 + fi�+ C(X � 1)� �2n�(X � 1)z2ni �+�C�2 + fi�+ C(X � 1)� �2n�C�2 + gi�+ C(X � 1)� �2n z2ni� ��2 � 1X � 1�2? + �q�2?Æ2?�2 + 1� + (X � 1) Æ2? + �2 �X2X � 1 (1 + zi)� :(A.24)The symbols A, bi, Bik, C, di, Dik, fi, Fik, gi, Gik in Eqs. (A.21)�(A.24)stand forA = 2Xq�2?Æ2? ;bi = 2� ��X2 � �2� � + �2? + Æ2? + 1�+ (� �X)zi ;Bik = 2� ��X2 � �2� � + �2? + Æ2? + 1�+(� �X)zi + (� +X)zk ;C = (1�X)q�2?Æ2? ;di = (X � 1) �(� +X)(1� �)� + Æ2?�� (1 + �) ��2? + 1�+ (X � 1)zi ;Dik = (X � 1) �(� +X)(1� �)� + Æ2?�� (1 + �) ��2? + 1�+(X � 1)zi � (� +X)zk ;fi = (X � 1) �(� +X)(1� �)� + Æ2?�� (1 + �) ��2? + 1�� (� +X)zi ;
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