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PION GENERALIZED DISTRIBUTION AMPLITUDESIN THE NONLOCAL CHIRAL QUARK MODELMi
haª Praszaªowi
zy and Andrzej RostworowskizM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived February 25, 2003)We use a simple, instanton motivated, nonlo
al 
hiral quark model to
al
ulate pion Generalized Distribution Amplitudes (GDAs). The nonlo-
ality appears due to the momentum dependen
e of the 
onstituent quarkmass, whi
h we take in a form of a generalized dipole formula. With this
hoi
e all 
al
ulations 
an be performed dire
tly in the Minkowski spa
eand the sensitivity to the shape of the 
uto� fun
tion 
an be studied. Wedemonstrate that the model ful�lls soft pion theorems both for 
hirally evenand 
hirally odd GDAs. The latter 
annot be derived by the methods of
urrent algebra. Whenever possible we 
ompare our results with the exist-ing data. This 
an be done for the pion ele
tromagneti
 form fa
tor andquark distributions as measured in the proton-pion s
attering.PACS numbers: 12.38.Lg, 14.40.Aq1. Introdu
tionIn this work we 
al
ulate two pion distribution amplitudes (2�DAs) andpion skewed parton distributions (�SPDs) in the instanton motivated, e�e
-tive 
hiral quark model. 2�DAs and �SPDs are de�ned as Fourier transformsof matrix elements of 
ertain light-
one operators, taken between the pionstates. 2�DAs appear in the amplitude for the pro
ess 
�
 ! ��, if thevirtuality of the photon is mu
h larger then the squared invariant mass ofthe two pion system [1℄. 2�DAs des
ribe the transition from partons to twopions in a �nal state. They are also related to the pion ele
tromagneti
 formfa
tor in the time like region and pion ele
tromagneti
 radius.The pro
ess 
�
 ! �� 
an be related by 
rossing symmetry to virtualCompton s
attering 
�� ! 
�. This pro
ess fa
torizes into a hard photon�parton s
attering and �SPDs [2�4℄. In the forward limit the latter redu
ey e-mail: mi
hal�if.uj.edu.plz e-mail: arostwor�th.if.uj.edu.pl (2699)
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z, A. Rostworowskito the quark densities whi
h are measurable in the ��p Drell�Yan pro
essor prompt photon produ
tion [5, 6℄. Finally 
ertain integral of �SPDs givespion ele
tromagneti
 form fa
tor in the spa
e like region.Pions are the simplest hadroni
 states being q�q pairs and Goldstonebosons of spontaneously broken 
hiral symmetry at the same time. There-fore, their properties may be 
al
ulated with little dynami
al input, relyingon their 
hiral stru
ture and 
hiral symmetry breaking. In this work weuse the instanton motivated e�e
tive 
hiral quark model [7℄ with nonlo
alintera
tions. This model has been su

essfully applied to the 
al
ulationof the leading twist pion distribution amplitude [7�10℄, 2�DAs [11�13℄ andpion SPDs [12, 13℄. The main ingredient of the model is the momentumdependen
e of the 
onstituent quark mass whi
h regularizes 
ertain, other-wise divergent, integrals. To make the 
al
ulation feasible this momentumdependen
e has been taken in the form [9℄:Mk =M � ��2k2 � �2 + i��2n =MF 2(k) : (1)M is the 
onstituent quark mass at zero momentum. Its value, obtained fromthe gap equation, is approximately 350 MeV. Quantities n and � = �(n;M)are model parameters. As explained below we expe
t the model to beroughly independent of n, if the value of � is properly adjusted. The for-mula (1) maybe thought to be instanton motivated in a sense that when
ontinued to Eu
lidean momenta (k2 ! �k2E) it reprodu
es reasonablywell [9℄ the momentum dependen
e 
al
ulated expli
itly [14, 15℄ in the in-stanton model of the QCD va
uum:Finst(kE) = 2z[I0(z)K1(z)� I1(z)K0(z)℄ � 2I1(z)K1(z) ; (2)where z = �kE=2, with � = (600 MeV)�1 being an average instanton size.The 
al
ulations presented here may be viewed as an extension of theprevious results of Refs. [11�13℄ and were partially reported in [16,17℄. Ourmotivations are both theoreti
al and phenomenologi
al. First, the asymp-toti
s of Eq. (2) suggests n = 3=2 in Eq. (1), however, taking the non-integern results in additional di�
ulties. In the previous works [7, 8, 11�13℄ thevalue n = 1 was assumed. Therefore it should be 
he
ked that the resultsdo not depend strongly on n. This is indeed true for the pion distributionamplitude, as has been shown in [9℄. Se
ondly in [7,8,11�13℄ the momentumdependen
e of the 
onstituent mass in the quark propagators was negle
ted.With the method developed in [9℄ we 
an 
al
ulate generalized parton dis-tributions for arbitrary n, keeping tra
k of momentum dependen
e of the
onstituent quark mass both in numerators and denominators even for the
onvergent quantities. This is in fa
t ne
essary if one insists on the soft pion
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al . . . 2701theorems whi
h would be otherwise not ful�lled. Apart from a well knownsoft pion theorem for 
hirally even 2�DAs [12℄, we derive (in the frameworkof the present model) a soft pion theorem for 
hirally odd 2�DAs.On the phenomenologi
al side, apart from the 
al
ulation of the pion gen-eralized distribution amplitudes (GDAs for short), i.e. 2�DAs and �SPDsthemselves, we 
al
ulate pion ele
tromagneti
 radius, ele
tromagneti
 formfa
tor and quark distributions, and 
ompare them with the existing data.This 
omparison although not bad, is not entirely satisfa
tory. We shalldis
uss our results in Se
t. 7. We start with the short des
ription of themodel in Se
t. 2 Then, in Se
t. 3, we pro
eed with de�nitions of 2�DAs and�SPDs and their general properties. In Se
t. 4 we sket
h the 
al
ulationsand present numeri
al results. In Se
t. 5 we demonstrate soft pion theorems.Finally, in Se
t. 6, we dis
uss pion quark densities 
al
ulated in the modeland 
ompare them with data and other theoreti
al 
al
ulations. Te
hni
aldetails 
an be found in the Appendix.2. E�e
tive 
hiral quark modelFor two quark �avors (u and d) the e�e
tive model we use to 
al
ulatepion GDAs is given by the a
tion (in momentum spa
e):Se� = Z d4k(2�)4 � (k)/k  (k)�Z d4p(2�)4 d4k(2�)4 � (p)pMpU
5(p�k)pMk (k) ;(3)where  (x) = Z d4k(2�)4 e�i kx (k):The matrixU
5(x) = exp � iF� 
5�a�a(x)� = 1 + iF� 
5�a�a(x)� 12F 2� �a(x)�a(x) + : : :(4)(in 
oordinate spa
e) gives the intera
tion between quarks and pions. Thereis no kineti
 term for the pions and the pion �eld is treated as an externalsour
e. F� = 93 MeV is the pion de
ay 
onstant, �a are Pauli matri
esand the pion T̂3 eigenstates are: �0 = �3, �+ = � ��1 + i�2� =p2, �� =��1 � i�2� =p2. The momentum dependen
e of the quark 
onstituent massis given by Eq. (1). The � parameter is �xed on
e for all by adjusting thevalue of F�(�) 
al
ulated in the e�e
tive model (3) to its physi
al valueF� = 93 MeV. This has been done in [9℄. For example for M = 350 MeVand n = 1 we have obtained � = 1157 MeV.Neither M nor � should be identi�ed with the normalization s
ale Q0 ofthe quantities 
al
ulated in the model. The pre
ise de�nition of Q0 is only



2702 M. Praszaªowi
z, A. Rostworowskipossible within QCD and in all e�e
tive models one 
an use only qualitativeorder of magnitude arguments to estimate Q0. Arguments 
an be given thatthe 
hara
teristi
 s
ale of the instanton model is of the order of the inverseinstanton size 1=� = 600 MeV, or so. We shall 
ome ba
k to this questionin Se
t. 6. 3. De�nitions and general properties of GDAsWe de�ne two light-like ve
tors: n� = (1; 0; 0;�1) and ~n� = (1; 0; 0; 1).These ve
tors de�ne plus and minus 
omponents of any four-ve
tor: k+ �k0 + k3 = n � k and k� � k0 � k3 = ~n � k.3.1. Two pion distribution amplitudesWe take the de�nitions of pion generalized distribution amplitudes from[12, 13℄. Z d�2� exp (�iu�n � P )D�a(p1)�b(p2) ��� � f 0(�n)� f (0)��� 0E= Æab Æff 0 �I=02� (u; v; s) + i"ab
 (� 
)ff 0 �I=12� (u; v; s) ; (5)where P = p1 + p2 is the total momentum of the two pion system. For theleading twist (
hirally even) 2�DAs we have:� = /n ; (6)whereas for the 
hirally odd 2�DAs� = in�P ���� : (7)An impa
t parameter representation of the 2�DAs 
an be found in Ref. [18℄.Note that with the de�nition (7), 
hirally odd 2�DAs have the dimensionof mass. 2�DAs depend on the following kinemati
al variables: squaredinvariant mass of the two pions, s = P 2; the longitudinal momentum fra
tion
arried by quark with respe
t to the total longitudinal momentum, u =k+=P+ and the longitudinal momentum fra
tion 
arried by one of the pionswith respe
t to the total longitudinal momentum, v = p+1 =P+.2�DAs have the following symmetries [12℄:�I=02� (u; v; s) = ��I=02� (1� u; v; s) = �I=02� (u; 1 � v; s); (8)�I=12� (u; v; s) = �I=12� (1� u; v; s) = ��I=12� (u; 1 � v; s) : (9)
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al . . . 2703The isove
tor 
hirally even 2�DA is normalized to the pion ele
tromagneti
form fa
tor in the time-like region:1Z0 du�I=12� (u; v; s) = (1� 2v)F em� (s) : (10)From its s dependen
e the pion ele
tromagneti
 radius 
an be evaluated
(rem� )2� = 6 dF em� (s)ds ����s=0 : (11)The normalization 
ondition for the isos
alar 2�DA gives the fra
tion of apion momentum 
arried by the quarks, M (�)2 :1Z0 du (2u � 1)�I=02� (u; v; s = 0) = �2v(1� v)M (�)2 : (12)It is 
onvenient do expand the 2�DAs in the basis of the eigen fun
tionsof the ERBL equation [19, 20℄ (Gegenbauer polynomials C3=2n (2u � 1)) andpartial waves of s
attered pions (Legendre polynomials Pl(1� 2v)):�I2�(u; v; s) = 6u(1� u) 1Xn=0 n+1Xl=0 BInl(s)C3=2n (2u � 1)Pl(1� 2v) : (13)Be
ause of the symmetry properties (8), (9), the sum in Eq. (13) goes overodd (even) n and even (odd) l for isos
alar (isove
tor) 2�DA.The expansion 
oe�
ients BInl are renormalized multipli
atively:BInl(s;Q) = BInl(s;Q0)� �s(Q)�s(Q0)�
n ; (14)with 
n being anomalous dimensions [21℄. From (13) and (14) it is easy toread the asymptoti
 form of 2�DAs:�as: I=02� (u; v; s) = 0 (15)and �as: I=12� (u; v; s) = 6u(1� u)(1 � 2v)BI=101 (s): (16)This asymptoti
 form is plotted in Fig. 1. For 
hirally even 2�DA, from(10), we have BI=101 (s) = F em� (s).
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ements
s = 0 GeV2

quark uquark u pion vFig. 1. Asymptoti
 form the isove
tor 2�DA as given by Eq. (16).In Ref. [12℄ the following soft pion theorem for the 
hirally even 2�DAshas been demonstrated. In the 
hiral limit (m� = 0), in the 
ase of one ofthe pions momenta going to zero (v(1 � v)! 0) we get�I=02� (u; v = 0; s = 0) = �I=02� (u; v = 1; s = 0) = 0 (17)and �I=12� (u; v = 0; s = 0) = ��I=12� (u; v = 1; s = 0) = �AV� (u) ; (18)where �AV� (u) is the axial-ve
tor (leading twist) pion distribution amplitude:h0j �d(z)
�
5u(�z)j�+(p)i = ip2F�p� 1Z0 du ei(2u�1)z p�AV� (u) : (19)We shall 
ome ba
k to this point in Se
t. 5.3.2. Pion skewed distributionsFor �SPDs we have (for a review see Ref. [4℄):12 Z d�2� exp (i�Xn �p)��b(p0) ���� � f 0 ���n2 � /n f ��n2 ������a(p)�= Æab Æff 0 HI=0(X; �; t) + i"ab
 (� 
)ff 0 HI=1(X; �; t) ; (20)where �p = (p + p0)=2 is the average pion momentum. SPDs depend on thefollowing kinemati
al variables: the asymmetry parameter � = ��+=(2�p+),where � = p0 � p is the four-momentum transfer; t = �2 and the variable
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al . . . 2705X de�ning the longitudinal momenta of the stru
k and s
attered quarks inDVCS, (X + �)�p+ and (X � �)�p+, respe
tively.The pion SPDs obey the following symmetry properties [13℄:HI=0(X; �; t) = HI=0(X;��; t) = �HI=0(�X; �; t) ; (21)HI=1(X; �; t) = HI=1(X;��; t) = HI=1(�X; �; t) : (22)In the forward limit the SPDs redu
e to the usual quark and antiquarkdistributions:HI=0(X; � = 0; t = 0) = 12 [�(X)qs(X) ��(�X)qs(�X)℄ ; (23)HI=1(X; � = 0; t = 0) = 12 [�(X)qv(X) +�(�X)qv(�X)℄ ; (24)where qs(X), qv(X) are singlet (quark plus antiquark) and valen
e (quarkminus antiquark) distributions. For example for �+ we have:2HI=0(X; � = 0; t = 0) = �u�+(X) + �u�+(X) for X > 0 ,�d�+(�X)� �d�+(�X) for X < 0 (25)and2HI=1(X; � = 0; t = 0) = �u�+(X)� �u�+(X) for X > 0 ,�d�+(�X) + �d�+(�X) for X < 0 : (26)In the present model we get �u�+(X) = d�+(X) � 0.The normalization 
onditions for SPDs are analogous to the 2�DAs 
ase(10)�(12). In parti
ular, independently of �,+1Z�1 dX HI=1(X; �; t) = F em� (t) ; (27)
(rem� )2� = 6 dF em� (t)dt ����t=0 (28)and +1Z�1 dX XHI=0(X; �; t = 0) = 12(1� �2)M (�)2 : (29)In analogy to the soft pion theorem for 2�DAs, in the 
ase of �SPD wehave [12℄:HI=1(X; � = 1; t = 0) = �AV� �X + 12 � ; HI=0(X; � = 1; t = 0) = 0 :(30)
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(a) (b) (c)Fig. 2. Diagrams 
ontributing to the matrix elementD�a(p1)�b(p2) ��� � f 0(z1)� f (z2)��� 0E ; Eq. (5). Diagrams (a) and (b) 
ontribute both toisos
alar and isove
tor 2�DAs; diagram (
) 
ontributes only to the isos
alar 2�DA.4. Pion generalized distribution amplitudes in the e�e
tive model4.1. Analyti
al resultsFor the matrix elements entering the de�nitions of 2�DAs and SPDs,Eqs. (5), (20), in the e�e
tive model des
ribed in Se
t. 2, we obtain:D�a(p1)�b(p2) ��� � f 0(z1)� f (z2)��� 0E = iN
F 2� Z d4k(2�)4 eikz1�i(k�P )z2nÆabÆff 0 [T1(k � P; k) + T2 (k � P; k � p2; k) + T2 (k � P; k � p1; k)℄+i"ab
 (� 
)ff 0 [T2 (k � P; k � p2; k)� T2 (k � P; k � p1; k)℄o ; (31)andD�b(p0) ��� � f 0(z1)� f (z2)��� �a(p)E = iN
F 2� Z d4k(2�)4 ei(k+�2 )z1�i(k��2 )z2��ÆabÆff 0 �T1�k � �2 ; k + �2 �+T2�k � �2 ; k � �p; k + �2 �+ T2�k � �2 ; k + �p; k + �2 ��+i"ab
 (� 
)ff 0 �T2�k � �2 ; k � �p; k + �2 �� T2�k � �2 ; k + �p; k + �2 ��� ;(32)where T1(q; k) = Tr �� 1/q �Mq + i�pMqMk 1/k �Mk + i�� ; (33)T2(r; q; k) = Tr �� pMr/r �Mr + i�
5 Mq/q �Mq + i�
5 pMk/k �Mk + i�� : (34)
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δabFig. 3. Diagrams 
ontributing to the matrix elementD�b(p0) ��� � f 0(z1)� f (z2)����a(p)E, Eq. (20). Diagrams (a) and (b) 
ontribute both toisos
alar and isove
tor SPDs; diagram (
) 
ontributes only to the isos
alar SPD.For the leading twist 
hirally even distributions � = /n.Equation (32) is obtained, due to the 
rossing symmetry, from (31) bythe ex
hange p1 ! �p and p2 ! p0 (that is P ! �). The diagrams
ontributing to the matrix elements (31) and (32) are shown in �gures 2 and3, respe
tively. The diagrams (a) and (b) 
ontribute both to the isos
alarand isove
tor GDAs, while the diagram (
) 
ontributes only to the isos
alarGDAs.In the 
ase of 2�DAs we will work in the referen
e frame de�ned by~P? = 0. In this frame we �nd:P = �P+; sP+ ; ~0?� ; (35)p1 = �vP+; (1� v) sP+ ; ~p?� ; p2 = �(1� v)P+; v sP+ ; �~p?� ; (36)p2? = v(1� v)s�m2� : (37)From p2? � 0 it follows1�r1� 4m2�s � 2v � 1 +r1� 4m2�s ; s � 4m2� : (38)In the 
ase of pion SPDs we will work in the referen
e frame de�ned by~�p? = 0. In this frame we �nd:�p = ��p+; �t+ 4m2�4�p+ ; ~0?� = ��p+; �~t4�p+ ; ~0?� ; (39)� = ��2��p+; ��t+ 4m2�2�p+ ; ~�?� = ��2��p+; � �~t2�p+ ; ~�?� ; (40)�2? = �t� �2(�t+ 4m2�) = (1� �2)(�~t)� 4m2� : (41)
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z, A. RostworowskiFrom �2? � 0 it follows� p�tp�t+ 4m2� � � � p�tp�t+ 4m2� : (42)In what follows we take the 
hiral limit, m� = 0. In this limit, from (38)and (42), we get 0 � v � 1 and �1 � � � 1.Inserting Eqs. (31) and (32) into Eqs. (5) and (20) we �nd k+ = uP+and k+ = X �p+, respe
tively.We shall 
al
ulate d4k integral in Eqs. (31) and (32) in the light 
ore
oordinates: d4k = 12dk�dk+d2~k?. The method of evaluating dk� integral,taking the full 
are of the momentum mass dependen
e, has been givenin [9℄. To evaluate dk� integral we have to �nd the poles in the 
omplexk� plane. It is important to note that the poles 
ome only from momentumdependen
e in the denominators of Eqs. (33), (34). Indeed, for ea
h quarkline with the momentum k, in the 
ase Mk ! 1 we have at most Mk inthe numerator (if the line is 
oupled to pion lines at both ends) and Mk inthe denominator. This means that the position of the poles is given by thezeros of denominator, that is by the solutions of the equationk2 �M2� �2k2 � �2 + i��4n + i� = 0 : (43)This equation is equivalent toG(z) = z4n+1 + z4n � r2 = 4n+1Yi=1 (z � zi) ; (44)with z = k2=�2 � 1 + i� and r2 =M2=�2. For r2 6= 0 (or �nite �) equation(44) has 4n+ 1 nondegenerate solutions. In general 
ase 4n of them 
an be
omplex and the 
are must be taken about the integration 
ontour in the
omplex k� plane. Be
ause of the imaginary part of the zi's, the poles inthe 
omplex k� plane 
an drift a
ross Rek� axis. In this 
ase the 
ontourhas to be modi�ed in su
h a way that the poles are not allowed to 
ross it.This follows from the analyti
ity of the integrals in the � parameter andensures the vanishing of GDAs in the kinemati
ally forbidden regions. Weget nonvanishing results for 2�DAs and SPDs for 0�u�1 and �1� X� 1,respe
tively.After evaluating dk� integral the d2k? integral has to be treated numeri-
ally. The integral over angular dependen
e in the transverse plane 
an be inprin
iple evaluated analyti
ally (using residue te
hnique), or in other wordsan exa
t algorithm for its evaluation 
an be given. In this way we are leftwith the numeri
al integration in only one variable, whi
h is an easy task todo. The te
hni
al details of the 
al
ulations are presented in Appendix A.
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al . . . 27094.2. Numeri
al resultsOur results for 2�DAs and SPDs are presented in Figs. 4�7. Althoughstri
tly speaking the present model is valid only for small pion momenta, s,we show also results for s as large as 1 GeV in order to tra
e the trends ofthe 
hange of shape.For small s and one pion momentum equal zero (i.e. v = 0) the shapeof the 
hirally even isove
tor 2�DA resembles � as fun
tion of u � theaxial-ve
tor one pion distribution amplitude in agreement with the soft piontheorem (18), (63). Similarly, 
hirally odd isos
alar 2�DA resembles thederivative (straight line) of the pseudo-tensor one pion distribution ampli-tude, also in agreement with the soft pion theorem (68) whi
h we shalldis
uss in detail in Se
t. 5. The fun
tions that we obtain, obey 
orre
tsymmetry properties (8), (9) and (21), (22). The asymptoti
 form for theisove
tor 2�DA is plotted in Fig.1 and we see that it has a di�erent shapefrom the model predi
tion of Fig. 4.s = 0 GeV2 s = 1 GeV2
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ase of the pion distribution amplitude [9℄ the n dependen
e(see Eq. (1)) of our results is weak. This is depi
ted in Fig. 6 where we plot
hirally odd 2�DA's for M = 350 MeV and n = 1 and 2, s = 0:25 GeV2, atv = 0:25. One 
an see that there is almost no n dependen
e ex
ept for theend point behavior of the isos
alar distribution whi
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ontext of the pseudo-s
alar one pion DA. The n dependen
e of the
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ording toEqs. (22), (21). In the present modelHI=1(X; � = 0; t = 0) = �HI=0(X; � = 0; t = 0) for X > 0 ,�HI=0(X; � = 0; t = 0) for X < 0 . (45)and from (23), (24) it follows that qs(X) = qv(X). The se
tion ofHI=0(X; �; t) as fun
tion of X is plotted in Fig. 8. In Fig. 8(a) we plotHI=0(X; � = 0:5; t = �0:25 GeV2) for M = 350 MeV and n = 1. The



2712 M. Praszaªowi
z, A. Rostworowskisolid 
urve 
orresponds to the full result, whereas the dashed-dotted 
urve
orresponds to diagrams (a) + (b) of Fig. 3, and dashed line to diagram (
).In the forward limit (t = 0 and � = 0, Fig. 8(b) HI=0(X; � = 0; t = 0) 
orre-sponds to the quark densities in the pion (25). We see little n dependen
e.For 
omparison we also plot quark distributions obtained in the model withsharp 
uto� in the transverse momentum plane whi
h 
oin
ides with theresult obtained in Refs. [22, 23℄. These quark distributions are understoodto be at low normalization s
ale Q0 and have to be evolved to some physi
als
ale Q at whi
h they are experimentally a

essible. This will be done inSe
t. 6.
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Fig. 8. Isos
alar pion SPD, HI=0(X; �; t), in the 
hiral limit (m� = 0) forM = 350MeV; for t = �0:25 and 0 GeV2 plotted as fun
tion of X for �xed �. In (a)dashed-dotted 
urve 
orresponds to diagrams (a) + (b) of Fig.2, and dashed lineto diagram (
), whereas the solid 
urve 
orresponds to the sum. In 
ase (b)) weshow results for n = 1 (solid) and 5 (dashed-dotted line), as well as the distribution
orresponding to 
onstant M(k) [23℄. Note that in (b) 2HI=0 for X < 0 is equalto �d(�X) distribution in �+ while for X > 0 it 
orresponds to u(X).Our skewed distributions do not exhibit fa
torization [24℄ and for � =0 they are quite similar in shape to the distributions obtained from lo
alduality [25℄.
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al . . . 2713The values of F em� (s) and F em� (t) evaluated by means of Eqs. (10), (27)do not depend (as they should) on v and �, respe
tively. They are depi
tedin Fig. 9, together with the experimental data of Refs. [26�28℄. We see thatthe spa
e like pion form fa
tor overshoots the experimental points. Thisdis
repan
y may be eventually 
ured by negative 
ontribution from the pionloops. In the time like region we see that very soon the � resonan
e tailswit
hes on. Of 
ourse, ve
tor mesons are not a

ounted for in the presentmodel. The similar buildup of the � tail 
an be seen in the ��� s
atteringdata [29℄. One should note that stri
tly speaking our model 
an be used onlyfor very low momentum transfers. For higher momenta QCD perturbativete
hniques should be used [30℄.
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e like (upper �gure) and time like (lower �gure)regions. Theoreti
al 
urves 
orrespond to M = 350 MeV and n = 1. Experimentaldata are taken from: dots [26℄, triangles [27℄, squares [28℄.



2714 M. Praszaªowi
z, A. RostworowskiThe values of the pion ele
tromagneti
 radius, obtained from Eqs. (11)and (28) are 
onsistent with ea
h other, although too small. Numeri
allywe get h(rem� )2i = (0:54 fm)2, whi
h is 
omparable with the value
(rem� )2� = N
4�2F 2� = (0:58 fm)2;obtained within the instanton models. The experimental value [26℄ is bigger:h(rem� )2i = (0:66 fm)2. This 
an be, however, 
ured by the pion loops, whi
hare negle
ted in the present approa
h.5. Soft pion theoremsSoft pion theorems relate 2�DAs for one pion momentum going to 0 withthe one pion light 
one distribution amplitude.We re
all the de�nitions of the axial-ve
tor and pseudo-tensor one pionDAs:�AV� (u) = 1ip2F� +1Z�1 d�� e�i�(2u�1)(n P ) h0j �d(�n) /n
5 u(��n) ���+(P )� ;(46)ddu�PT� (u) = � 6F�ip2 h�qqi +1Z�1 d�� e�i�(2u�1)(n�P )�h0j �d(�n) in�P ����
5 u(��n) ���+(P )� : (47)The matrix element entering the de�nitions (46), (47), 
al
ulated in thepresent model, gives:h0j �d(z1)
u(z2) ���+(P )� = �p2N
F� Z d4k(2�)4 ei(k�P )z1�ikz2 T (k; k�P ) ; (48)withT (k; k � P ) = Tr 
 pMk/k �Mk + i�
5 pMk�P(/k � /P )�Mk�P + i�!= pMkMk�P Tr �

5[�/k +Mk℄[(/k � /P ) +Mk�P ℄��k2 �M2k + i�� �(k � P )2 �M2k�P + i�� : (49)Further 
al
ulations require an expli
it form of 
. Substituting (48) into(46) and (47) we get�AV� (u) = iN
F 2� Z d4k(2�)4 Æ(n � (k � uP ))T (k; k � P )j
=/n
5 (50)
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al . . . 2715andddu�(u) = �6iN
h�qqi Z d4k(2�)4 Æ(n � (k � uP ))T (k; k � P )j
=in�P����
5 ; (51)respe
tively. Similarly, in the 
ase of 2�DAs, from (5) and (31) we get�I=02� (u; v; s) = iN
F 2� Z d4k(2�)4 Æ(n (k � uP ))� [T1(k � P; k) + T2 (k � P; k � p2; k) + T2 (k � P; k � p1; k)℄ (52)and �I=12� (u; v; s) = iN
F 2� Z d4k(2�)4 Æ(n � (k � uP ))� [T2 (k � P; k � p2; k)� T2 (k � P; k � p1; k)℄ ; (53)with T1 and T2 de�ned in (33) and (34). Soft pion theorems relate matrixelements (48) and (31) for one pion momentum, say p2 ! 0 and for di�erent
 and � . For T1 we have:T1(k � P; k) = pMk�PMk Tr (� [(/k � /P ) +Mk�P ℄ [/k +Mk℄)�(k � P )2 �M2k�P + i�� �k2 �M2k + i�� ; (54)whereas for the two T2's in the limit p2 ! 0 (that is v ! 1) we get:T2(k � P; k; k) = �pMk�PMkMk Tr (� [(/k � /P ) +Mk�P ℄)�(k � P )2 �M2k�P + i�� �k2 �M2k + i�� ; (55)T2(k � P; k � P; k) = � pMk�PMkMk�P Tr (� [/k +Mk℄)�(k � P )2 �M2k�P + i�� �k2 �M2k + i�� : (56)5.1. Chirally even 2�DA and axial-ve
tor wave fun
tionConsider �rst the soft pion theorem dis
ussed already at the end ofSe
t. 3.1. To this end let us take 
 = /n
5 : (57)ThenT (k; k � P )j�=/n
5 = pMkMk�P [�Mk�P Tr (/n/k) +Mk Tr (/n(/k � /P ))℄�k2 �M2k + i�� �(k � P )2 �M2k�P + i�� :(58)



2716 M. Praszaªowi
z, A. RostworowskiFor two pions we have to take � = /n : (59)Then in the soft limit p1 = P , p2 = 0 (this means v = 1) the isove
tor
ombination in Eq. (53) readsT2(k � P; k; k)j�=/n � T2(k � P; k � P; k)j�=/n= �pMk�PMk [MkTr(/n(/k � /P ))�Mk�PTr(/n/k)℄�(k � P )2 �M2k�P + i�� �k2 �M2k + i��= �T (k � P; k)j
=/n
5 : (60)Similarly, for the sum entering the isos
alar 
ombination in Eq. (31) we have:T1(k � P; k)j�=/n + T2(k � P; k; k)j�=/n + T2(k � P; k � P; k)j�=/n = 0 : (61)Hen
e the soft pion theorem for the 
hirally even 2�DA takes the followingform �I=02�;�even(u; v = 1; s = 0) = 0 ; (62)�I=12�;�even(u; v = 1; s = 0) = ��AV� (u) : (63)5.2. Chirally odd 2�DA and pseudo-tensor wave fun
tionLet us now 
onsider 
hirally odd 2�DA in the soft pion limit. To thisend let us take 
 = in�P ����
5 = 12 [/P; /n℄ 
5 (64)whose matrix element de�nes the derivative of pseudo-tensor one pion dis-tribution amplitude. ThenT (k; k�P )j
= 12 h/P;/ni
5 = �12 pMkMk�P Tr [/P; /n℄ /k(/k � /P )�k2 �M2k + i�� �(k � P )2 �M2k�P + i�� : (65)For 2 pions let us take � = in�P ���� = 12 [/P; /n℄ : (66)Here only T1 survivesT1(k � P; k)j�= 12 h/P;/ni = 12 pMk�PMkTr ([/P; /n℄ (/k � /P )/k)�(k � P )2 �M2k�P + i�� �k2 �M2k + i��= T (k; k � P )j
= 12 h/P;/ni
5 (67)
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al . . . 2717while T2 = 0. Therefore the soft pion theorem relates the isos
alar part ofthe 
hirally odd 2�DA to the derivative of pseudo-tensor one pion amplitude:�I=02�;�odd(u; v = 1; s = 0) = �h�qqi6F 2� ddu�PT� (u) ; (68)�I=12�;�odd(u; v = 1; s = 0) = 0 : (69)This result 
annot be derived by 
urrent algebra. Sin
e the pseudo-tensorone pion distribution amplitude is 
lose to the asymptoti
 form 6u(1�u) [10℄therefore we expe
t �I=02�;�odd(u; v = 0; s = 0) � 1 � 2u. That this is indeedthe 
ase 
an be seen from Fig. 6(left). We re
all that with our de�nitions(5) and (7) the 
hirally odd 2�DAs have the dimension of mass.6. Pion stru
ture fun
tionAs explained in Se
t. 3.1 skewed pion distributions are in the forwardlimit dire
tly related to the parton distributions inside the pion. For exam-ple, as explained after Eqs. (25), (26) and as seen from Fig. 8(b)u�+(x) = �d�+(x) = 2HI=0(x; � = 0; t = 0) : (70)On the other hand one 
an relate pion quark distributions to the wave fun
-tions for all Fo
k states and polarizations [31℄. For �+ we haveu�+(x) = XFo
k statesX� Z d2k?2 (2�)3 j �(x; k?)j2= Z d2k?2 (2�)3 �� AV(x; k?)��2 + : : : ; (71)where we have saturated the sum over the di�erent Fo
k 
omponents andpolarizations by the axial-ve
tor wave fun
tion. The fun
tion  AV is (forN
 = 3) normalized in the following way [31℄:1Z0 dx Z d2k?(2�)3 AV(x;~k?) = F�p3 : (72)It is 
lear that the normalization 
ondition for u�+1Z0 dxu�+(x) = 1 (73)
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z, A. Rostworowskiand normalization 
ondition (72) are in general in
ompatible sin
e other
omponents denoted by dots in Eq. (71) are of importan
e. For example ina model with a 
onstant M one obtains for  AV [7℄: AV(u;~k?) = � (u(1� u)) 2p3F� M2~k2? +M2 (74)and the normalization 
ondition (72) is a
hieved by imposing a 
uto� � onthe transverse momentum integration dk2?:F 2� = N
M2(2�)2 lnM2 + �2M2 : (75)It is now straightforward to 
al
ulate u�+ by means of Eq. (71)u�+(x) = � (x(1� x)) 6(2�)2M2F 2� "1� exp �(2�)2 F 2�N
M2 !# : (76)The normalization 
onstant is, as expe
ted, smaller than 1, however, forM = 350 MeV we get 0.9 � a fairly satisfa
tory result for su
h a simplisti
model. Of 
ourse, the properly de�ned quark distribution is also properlynormalized [22, 23℄.In the present model [9℄ AV(x;~k?) = 2p3M2�2F� Xi;k fifk zni z3nk x+ z3ni znk (1� x)~k2?�2 + 1 + zix+ zk(1� x) (77)and the normalization 
ondition for M = 350 MeV and n = 2 gives 0:88instead of 1. The shape is also di�erent from the properly normalized resultobtained with the help of Eq. (70), however, it 
an be expli
itly seen thatfor large x both de�nitions 
onverge, as they should [32℄. This is depi
tedin Fig. 10.One of the major problems of the e�e
tive models like the one 
onsideredhere, is the normalization s
ale Q0 at whi
h the model is de�ned. This is
ru
ial short
oming as far as the 
omparison with the experimental data is
on
erned. It is argued that the relevant s
ale for the instanton motivatedmodels is of the order of the inverse instanton size 1=� i.e. approximately600 MeV. The pre
ise de�nition of Q0 is only possible within QCD and in alle�e
tive models one 
an use only qualitative order of magnitude argumentsto estimate Q0. A more pra
ti
al way to determine Q0 was dis
ussed inRef. [10℄ where we asso
iated Q0 with the transverse integration 
uto� K?whi
h was of the order of 760 < K? < 1100 MeV.
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xFig. 10. Comparison of the u quark distribution in �+ de�ned by Eq. (70) (solidline) and the �naive� one de�ned by Eq. (71) (dashed line).On the other hand in Refs. [23℄ it was argued that the pertinent models
ale may be as small as 350 MeV. This estimate is based on the requirementthat the total momentum 
arried by the quarks equals to the one measuredexperimentally at Q = 4 GeV2, i.e. 47% . In that way the initial evolutions
ale Q0 
an be adjusted. It is, however, problemati
 whether one 
an useQCD evolution equations at su
h low Q0.Sin
e, as will be dis
ussed in Se
t. 7, our model has problems with themomentum sum rule, therefore we 
annot use the above pres
ription to �xQ0. In Figs. 11 we simply show the shape of the valen
e, sea and gluondistributions 
al
ulated in the model and evolved (in the leading log ap-proximation) to the s
ale Q2 = 4 GeV2 assuming Q0 = 450 and 350 MeV.As initial 
onditions we take valen
e quark distributions as 
al
ulated in themodel with sea and gluon distribution equal to zero at the initial s
ale Q0.Therefore both sea quarks and gluons are generated dynami
ally during theevolution. In Figs. 11 we also show �experimental data� as extra
ted fromthe pion-proton Drell�Yan and dire
t photon produ
tion [5,6℄. For 
ompar-ison we also show results of Ref. [23℄ with a 
onstant quark distribution atinitial s
ale.It 
an be seen from Figs. 11 that our quark distribution di�ers fromthe distributions extra
ted from the data. However, two existing experi-mental parameterizations are not 
ompatible. Interestingly, the 
onstantinitial quark distribution after evolving to Q2 = 4 GeV2 �ts very well pa-rameterization of Ref. [5℄. Unfortunately for the sea, both 
onstant and ourdistributions do not follow the experimental parameterization. This suggeststhat rather than 
ompare model results for pion parton distributions withthe ones extra
ted from the data, it is perhaps more appropriate to 
al
ulatethe 
ross se
tion itself and 
ompare dire
tly with the data.
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xFig. 11. �+ valen
e, sea and gluon momentum distributions. Upper panel: inputdistribution as 
al
ulated in the model for M = 350 MeV and n = 1 (upper reddashed-dotted 
urve) and after evolution toQ2 = 4GeV2 fromQ0 = 450MeV (mid-dle blue dashed-dotted 
urve) and 350 MeV (lower purple dashed-dotted 
urve).Green dashed line represents 
onstant initial quark distribution [23℄. Experimentalparameterizations are depi
ted by a yellow band [5℄ and orange line [6℄. Lowerpanels: the same for sea quarks and gluons with input distributions equal zero.
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al . . . 2721There have been several other 
al
ulations of the pion stru
ture fun
-tion in the literature. A result similar to ours was obtained in Ref. [33℄where the authors 
al
ulate expli
itly a hand-bag diagram in a lo
al NJL(nonbosonized) model in the Bjorken limit. They, however, introdu
e anx dependent 
uto� in order to regularize the divergent integrals and getproper behavior of the valen
e quark distribution in the large x limit. Theirresult is in agreement with a similar 
al
ulation of Ref. [34℄. In an approa
hbased on Ward�Takahashi identities, whi
h is in fa
t equivalent to the lo
alNJL model with a sharp momentum 
uto�, the valen
e quark distribution isequal to 1 over the whole range of x [23℄. This very simple quark distributionis properly normalized, in a sense that the quark number is 1 and its totalmomentum is 1/2. The vanishing of q(x) for x! 1 is a
hieved by DGLAPevolution. We have plotted the result of this evolution in Fig. 11.Dire
t 
al
ulations in the instanton model [35℄ show phenomenologi
allyquite similar behavior as ours. An advantage of Ref. [35℄ is that they usewell de�ned 
urrents with nonlo
al pie
es [36℄, whereas we use naive quarkbillinears. This is re�e
ted in wrong normalization of the �rst moment ofthe quark distributions whi
h at low s
ale should be 1 (for R dxx(u+d) ) asopposed to 0.93 what we get. An even larger mismat
h has been reportedin a similar model of Ref. [37℄, where the remainder of the momentum wasattributed to gluons and sea, whi
h are, however, absent in our approa
h.Our quark distributions show little n dependen
e. This is depi
ted inFig. 12.
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xFig. 12. The n dependen
e of valen
e quark distributions for M = 350 MeV andn = 1 (solid) and 5 (dashed-dotted). Input density 
orresponds to the model result.Two other sets of 
urves marked by Q0 = 450 and Q0 = 350 MeV 
orrespond tothe distributions evolved to Q2 = 4 GeV2 assuming that the model s
ale was Q0.
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z, A. Rostworowski7. Dis
ussionIn this paper we have 
al
ulated the Generalized Distribution Ampli-tudes using the nonlo
al, instanton motivated, 
hiral quark model. Thenonlo
ality has been taken in the form of Eq. (1) whi
h allowed us to performall 
al
ulations in the Minkowski spa
e. Introdu
ing light 
one integrationvariables allowed us to perform most of the 
al
ulations analyti
ally. As aresult we were left with the numeri
al integration in only one variable, dk2?.We de�ne the GDA's through the matrix elements of the nonlo
al quarkbillinears (5), (20). Although in QCD this is 
ertainly a 
orre
t de�nition,one might envisage alternative de�nitions whi
h would be more appropriatefor the nonlo
al e�e
tive models [22, 35℄. The reason is that in the limitwhen the quark operators are taken in the same point, quark billinears (5),(20) do not 
orrespond to the properly normalized Noether 
urrents. This isbe
ause in the nonlo
al models Noether 
urrents get additional pie
es whi
hrestore Ward�Takahashi identities [36℄. It is not 
lear how to generalizequark billinears (5), (20), sin
e su
h generalization is, in prin
iple, pro
essdependent. Therefore an alternative way would be to 
al
ulate the wholes
attering amplitude dire
tly in the e�e
tive model and then extra
t thequantities one is interested in by imposing 
ertain kinemati
al 
onstraints,like Bjorken limit for example. Although this pro
edure seems at the �rstsight attra
tive, there is a problem be
ause the Bjorken limit requires largemomentum transfer, whereas the e�e
tive models are de�ned at low mo-menta.In fa
t the pre
ise determination of the normalization s
ale Q0 at whi
hthe model is de�ned poses a serious problem. In the instanton model ofthe QCD va
uum [15℄ that the pertinent energy s
ale is of the order of theinverse instanton size Q0 = 1=� � 600 MeV. However, it has been arguedin Ref. [23℄ that Q0 may be as low as 350 MeV. This estimate is based onthe requirement that the valen
e quark distribution 
al
ulated in the modelof Ref. [23℄ and evolved from Q0 to Q = 2 GeV 
arry observed fra
tion oftotal momentum. Unfortunately we 
annot apply the same pro
edure inour 
ase, sin
e the momentum sum rule is violated in our model. From bothequations, (12) and (29) we �nd the momentum fra
tion 
arried by quarksto be 93%, independently of v and �. This 
auses the problem, as in themodel we use, the pion is built from 
onstituent quarks (there are no gluons)so there is 7% of the pion momentum missing. A natural explanation of thismismat
h is that we missed some terms whi
h, in the limit where the quarkoperators are in the same point, would redu
e quark billinears (5), (20) tothe full nonlo
al Noether 
urrents [36, 38℄.
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hni
al details of the 
al
ulation of the pion GDAsInserting (31) and (32) into (5) and (20), respe
tively we get�I=02� (u; v; s) = J1(u; v; t) + J2(u; v; t) + J3(u; v; t);�I=12� (u; v; s) = J2(u; v; t) � J1(u; v; t) (A.1)and HI=0(X; �; t) = I1(X; �; t) + I2(X; �; t) + I3(X; �; t);HI=1(X; �; t) = I1(X; �; t) � I2(X; �; t): (A.2)J1, J2, J3, I1, I2, I3 stand for the integrals:J1(u; v; s) = iN
2(2�)4F 2� Z d2k? +1Z�1 dk� T2(k � P; k � p1; k)������k+=uP+; (A.3)J2(u; v; s) = iN
2(2�)4F 2� Z d2k? +1Z�1 dk� T2(k � P; k � p2; k)������k+=uP+; (A.4)J3(u; v; s) = iN
2(2�)4F 2� Z d2k? +1Z�1 dk� T1(k � P; k)������k+=uP+; (A.5)I1(X; �; t) = iN
4 (2�)4 F 2�� Z d2k? +1Z�1 dk� T2�k � �2 ; k � �p; k + �2 �������k+=X �p+ ;(A.6)
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z, A. RostworowskiI2(X; �; t) = iN
4 (2�)4 F 2�� Z d2k? +1Z�1 dk� T2�k � �2 ; k + �p; k + �2 �������k+=X �p+ ;I3(X; �; t) = iN
4 (2�)4 F 2�� Z d2k? +1Z�1 dk� T1�k � �2 ; k + �2 �������k+=X �p+ ; (A.7)with T1 and T2 de�ned in (33), (34). It is 
onvenient to introdu
e the s
aledvariables:�� = k�� ; !2 = s�2 ; ~�? = ~p?� ; � = ~t4�2 ; ~Æ? = ~�?2� (A.8)and the notation: �u = 1� u ; �v = 1� v : (A.9)We introdu
e the fa
tors fi = 4n+1Yk=1k 6=i 1zi � zk ; (A.10)whi
h we will use below. zi are 4n+ 1 roots of the Eq. (44). The fa
tors fihave a property: 4n+1Xi=1 zmi fi = � 0 for m < 4n ;1 for m = 4n : (A.11)This property is 
ru
ial for the 
onvergen
e of the integrals (A.3)�(A.7), inanalogy to the 
ase of the pion distribution amplitude [9℄. This property istrue for any set of di�erent 4n + 1 numbers, irrespe
tively to the fa
t thatthey are solutions of 
ertain polynomial equation.It 
an be shown thatJ3(u; v; s) = J3(u; s) = �J3(�u; s) ; (A.12)J1(�u; v; s) = �J2(u; v; s); (A.13)J1(u; �v; s) = J2(u; v; s) (A.14)
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al . . . 2725and I2(�X; �; t) = �I1(X; �; t); I3(�X; �; t) = �I3(X; �; t); (A.15)I2(X;��; t) = I1(X; �; t); I3(X;��; t) = I3(X; �; t): (A.16)The properties (A.12)�(A.16), together with Eqs. (A.1)�(A.2), provide the
orre
t symmetry properties for 2�DAs (8), (9) and SPDs (21), (22).For J3(u; s) we get analyti
al results:J3(u; s) = N
M2(2�)2 F 2� 4n+1Xi=1 4n+1Xk=1 zni znk fi fk �uz2ni � �uz2nk �� ln ��u�u!2 + 1 + �uzi + uzk� : (A.17)If 0 � u � �v then J2(u; v; s) readsJ2(u; v; s)= (�1)n+1 iN
M2(2�)3 F 2� 4n+1Xi=1 zni fi 1Z0 d ��2?� u7n+1 ���u�u!2 + ~�2? + 1 + �uzi��n4n+1Qk=1 ��u�u!2 + ~�2? + 1 + �uzi + uzk�� ZC(0;1) d� �4n4n+1Qk=1 (A(u)�2 +Bik(u; v)� +A(u)) g(u; v) =: F(u; v; s) ; (A.18)whereg(u; v) = �2 "��u��u�u!2 + ~�2? + 1 + �uziu �2n + uz2ni� (u� �v)�A(u)�2 + bi(u; v)� +A(u)�u �2n#+z2ni ��u�u!2 + ~�2? + 1 + �uziu �2n�A(u)�2 + bi(u; v)�+A(u)�u �2n�24�vu�u!2 + (u+ �u� v)| {z }�v �2? + �u (1 + zi) + (u� �u)q�2?�2?�2 + 12� 35 :(A.19)If �v � u � 1, then J2(u; v; s) = �F(�u; �v; s); (A.20)



2726 M. Praszaªowi
z, A. Rostworowskiwith F(u; v; s) de�ned in (A.18). The symbols A(u), bi(u; v), Bik(u; v) inEq. (A.18), (A.19) stand forA(u) = uq�2?�2? ;bi(u; v) = u�2? + uv(u� �v)!2 + �v(~�2? + 1)� (u� �v)zi ;Bik(u; v) = u�2? + uv(u� �v)!2 + �v(~�2? + 1)� (u� �v)zi + uzk :Be
ause HI=0 and HI=1 are symmetri
 in � we 
an assume � � 0. ThenI1(X; �; t) is nonzero only if �� � X � 1. Similarly I3(X; �; t) is nonzeroonly if �� � X � �.For �� � X � �, I3(X; �; t) and I1(X; �; t) readI3(X; �; t)= (�1)n iN
M22(2�)3F 2� 1Z0 d ��2?� 4n+1Xi=1 fi ZC(0;1) d� �(X + �)�zi �A�2 + bi�+A��n�(X + �) [(X + �)�zi℄2n + (X � �) �A�2 + bi�+A�2n4n+1Qk=1 [A�2 +Bik�+A℄ ; (A.21)
I1(X; �; t) = (�1)n iN
M22(2�)3F 2� 1Z0 d ��2?� 4n+1Xi=1 fi� ZC(0;1) d� [(X + �)�℄7n+1zni �A�2 + bi�+A�n4n+1Qk=1 [(A�2 +Bik�+A) (C�2 +Dik�+ C)℄h(a)1 (X; �; t) ;whereh(a)1 (X; �; t) = �2 "(X � �)�A�2 + bi�+A(X + �)� �2n + (X + �)z2ni�(X � 1)�C�2 + di�+ C(X + �)� �2n#+z2ni �A�2 + bi�+A(X + �)� �2n�C�2 + di�+ C(X + �)� �2n�" ��2 �X2� (1� �)� + (� + 1) �2?
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al . . . 2727+Xq�2?Æ2?�2 + 1� + (� � 1) Æ2? + (� �X)(1 + zi)# : (A.22)For � � X � 1, I1(X; �; t) readsI1(X; �; t) = (�1)n+1 iN
M22(2�)3F 2� 1Z0 d ��2?� 4n+1Xi=1 fi� ZC(0;1)d� [(X � 1)�℄6n+1 �C�2 + fi�+ C�n �C�2 + gi�+ C�n4n+1Qk=1 [(C�2 + Fik�+ C) (C�2 +Gik�+ C)℄ h(b)1 (X; �; t) ;(A.23)whereh(b)1 (X; �; t)= �2 "(X � �)�C�2 + gi�+ C(X � 1)� �2n + (X + �)�C�2 + fi�+ C(X � 1)� �2n�(X � 1)z2ni �+�C�2 + fi�+ C(X � 1)� �2n�C�2 + gi�+ C(X � 1)� �2n z2ni� ��2 � 1X � 1�2? + �q�2?Æ2?�2 + 1� + (X � 1) Æ2? + �2 �X2X � 1 (1 + zi)� :(A.24)The symbols A, bi, Bik, C, di, Dik, fi, Fik, gi, Gik in Eqs. (A.21)�(A.24)stand forA = 2Xq�2?Æ2? ;bi = 2� ��X2 � �2� � + �2? + Æ2? + 1�+ (� �X)zi ;Bik = 2� ��X2 � �2� � + �2? + Æ2? + 1�+(� �X)zi + (� +X)zk ;C = (1�X)q�2?Æ2? ;di = (X � 1) �(� +X)(1� �)� + Æ2?�� (1 + �) ��2? + 1�+ (X � 1)zi ;Dik = (X � 1) �(� +X)(1� �)� + Æ2?�� (1 + �) ��2? + 1�+(X � 1)zi � (� +X)zk ;fi = (X � 1) �(� +X)(1� �)� + Æ2?�� (1 + �) ��2? + 1�� (� +X)zi ;
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