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IN MEDIUM T -MATRIX WITH REALISTICNUCLEAR INTERACTIONS�Piotr Bo»ek and Piotr CzerskiH. Niewodniza«ski, Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Poland(Reeived Deember 9, 2002)We alulate the self-onsistent in-medium T -matrix for symmetri nu-lear matter using realisti interations with many partial waves. We �ndfor the interations used (CDBonn and Nijmegen) very similar results foron-shell quantities. The e�etive mass and the renormalization fator ZFat the Fermi momentum are given for a range of densities.PACS numbers: 21.65.+fThe presene of a strong interation between nuleons at short distanesrequires the use of resummation methods for many-body alulations in nu-lear matter. Besides the Bruekner�Hartree�Fok (BHF) summation of lad-der diagrams [1,2℄ and advaned variational methods [3,4℄, the self-onsistentin-medium T -matrix approah beame feasible in last years [5�9℄. The nu-merial method presented in [8℄ allows for e�ient alulations using o�-shellnuleon propagators with realisti interations. Below we present results forthe CDBonn [10℄ and Nijmegen potentials [11℄ inorporating all partial waveswith total angular momentum J < 9. The in medium T -matrix [12℄T = V + V GGT (1)is alulated with the Green's funtion G = �! � p2=2m����1 self-onsis-tently dressed by the self-energy in the T -matrix approximationi� = Tr [TAG℄ : (2)� Supported by the Polish State Committee for Sienti� Researh (KBN), grant2P03B02019. (2759)



2760 P. Bo»ek, P. CzerskiThe di�erene with respet to the BHF approah lies in the dressing of theGreen's funtions by the full spetral funtions, whih means o�-shell prop-agation. Also, the double Green's funtion in the T -matrix equation repre-sents the propagation of two partiles or two-holes unlike in the Kernel ofthe Bethe�Goldstone equation in the BHF sheme where the Pauli-blokingfator fores the propagation of two partiles always. The above equationsare solved by iteration for several nulear densities � in the range 0.2�2.4normal nulear densities �0 = 0:16 fm�3. The details of the equations andnumeris an be found in Refs. [7, 8℄.We have improved the numerial algorithm to allow for many partial-waves in the T -matrix. We use a separable parameterization of the inter-ation, hoosing 8 most important eigen-vetors of the interation in themomentum representation for eah unoupled partial wave and 24 eigen-vetors for the oupled partial waves. This parameterization is essentiallyequivalent to the full parameterization in momentum. In previous T -matrixalulations a low-rank separable parameterization of the Paris potentialwas used. In this paper we ompare the results for two realisti interationswithout further simplifying approximations and taking many partial waves.With these alulations the binding energy and single-partile properties anbe found without unertainties due to tehnial simpli�ations.The binding energy per partile in the T -matrix approah an be alu-lated from the Koltun's sum ruleEN = 1� Z d3p(2�)3 �Z�1 d!2� 12� p22m + !�A(p; !) ; (3)where A is the nontrivial spetral funtion obtained for the dressed propa-gators. In fat any expression for the energy should give the same result,sine the self-onsistent T -matrix approximation is thermodynamially on-sistent [13℄. The existene a generating funtion � for the self-energy guar-antees the ful�llment of thermodynamial relations between single-partileand global properties of the system. The fat that the T -matrix sheme isa onsistent (onserving) approximation has been heked expliitely in [7℄using a model interation.In the upper panels of Figs. 1 and 2 is shown the binding energy in theT -matrix approximation as a funtion of the density in symmetri nulearmatter ompared to the orresponding BHF results. As noted previouslythe T -matrix gives smaller binding energies and smaller saturation densitiesthan the BHF alulation. At low densities the BHF and the T -matrixresults onverge as expeted. The interations studied in this work givesimilar results, e.g. at normal nulear density E=N = �14:3 and �14:1 MeVfor the CDBonn and Nijmegen interation, respetively. The orresponding
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Fig. 1. Upper panel: The binding energy and the Fermi energy as a funtion ofdensity for the T -matrix approah and the binding energy in the BHF alulation,all for the CDBonn potential. Lower panel: The pressure as a funtion of densityobtained from two di�erent expressions Eqs. (5) and (6). The solid and the dashed-dotted lines representing the two results for the pressure in the T -matrix alulationlie almost on top of eah other.
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Fig. 2. Same as Fig. 1 but for the Nijmegen potential.



2762 P. Bo»ek, P. CzerskiBHF binding energies at that density are 3.3�3.5 MeV lower. In the same�gures the Fermi energy EF is shown. The Fermi energy in the T -matrixalulation is onsistent with the binding energy; the Hugenholz�Van Hoverelation [14℄ EF = EN (at saturation density) (4)is automatially ful�lled.The pressure in the system an be obtained from several equivalent ex-pressions. We onsider P = �2 �(E=N)�� (5)and P = ��EF � EN� : (6)From the seond form follows the Hugenholz�Van Hove relation at the sat-uration point (P = 0). The expressions (5) and (6) are equivalent in theself-onsistent T -matrix approximation. In the BHF approah the pressurean be alulated as the derivative of the binding energy (5).
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Fig. 3. The imaginary part of the retarded self-energy �Im� (p; !) as a funtion ofthe energy ! for p = 0 (upper panel) and p = 340 MeV (lower panel) for di�erentnuleon�nuleon potentials at � = �0.



In Medium T -Matrix with Realisti Nulear Interations 2763One-body properties are determined by the self-energy. In Fig. 3 is shownthe imaginary part of the self-energy �Im� (p; !). The self-energy is verysimilar for the CDBonn and Nijmegen potentials and lose to the result forthe Paris potential [8℄ for energies lose to the Fermi energy (j!j < 200 MeV)and for momenta up to 500 MeV. At higher energies di�erenes start toappear, beause of di�erent o�-shell behavior of the T -matrix for di�erentinterations. The Paris interation we use is a separable parameterizationwith a small number of partial waves, this an lead to additional di�erenesas ompared to results from the other two potentials.As an be seen from Fig. 4 the self-energy on-shell, i.e. for ! = !p =p2=2m + Re� (p; !p), is similar for di�erent interations. For momentap < 700 MeV the width of the quasipartile exitation is similar. It isalways zero at the Fermi momentum and inreases quadratially when goingaway from it. The quadrati inrease of the single-partile width is given bythe ross setion and the density of states at the Fermi surfae. The rosssetions are similar for di�erent parameterizations of the nulear potentialsand the density of states at the Fermi surfae is determined by the e�etivemass and the renormalization fatorZp = �1� �Re� (p; !)�! ��1�����!=!p : (7)As shown below, those quantities obtained for di�erent nuleon�nuleoninterations are similar.
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Fig. 4. The imaginary part of the retarded self-energy �Im�(p; !p) at the quasi-partile pole as a funtion of the momentum (� = �0).



2764 P. Bo»ek, P. CzerskiThe real part of the self-energy determines the single-partile potential,i.e. the real part of the optial potential. The ful�llment of the Hugenholz�Van Hove relation guarantees the orret normalization of the single-partilepotential. The real part of the self-energy is given as the sum of the Hartree�Fok and dispersive ontributionsRe� (p; !) = �HF(p) + Z d!0� Im� (p; !0)! � !0 : (8)The Hartree�Fok part is di�erent for the Nijmegen and CDBonn potentials,but the total single-partile energy on-shell is very similar (Fig. 5). Thedi�erene in the Hartree�Fok part is ompensated by the dispersive part,whih inludes integration of the imaginary part of the self-energy far o�-shell. The di�erenes in Im� (p; !) for ! > 200MeV (Fig. 3) give theneessary shifts leading to similar total optial potentials (8). Although theNijmegen and CDBonn interations show some di�erenes in the o�-shellbehavior of the self-energies, the resulting properties of the quasipartilepole are very similar in the range of densities � < 2�0. The properties ofthe quasipartiles at the Fermi surfae are de�ned by the renormalizationfator (7) and the e�etive massm? = pdpd!p : (9)The e�etive mass and the renormalization fator are important to de�nethe e�etive interation between quasipartiles [15, 16℄ and the super�uid
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Fig. 5. The single-partile potential Re� (p; !p) at the quasipartile pole as a fun-tion of the momentum at � = �0. The upper urves represent the Hartree�Fokontribution for the Nijmegen and CDBonn interations.
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Fig. 6. The e�etive mass m?=m at the Fermi surfae for di�erent nulear intera-tions.
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Fig. 7. The renormalization fator of the quasipartile pole Zp at the Fermi surfaefor di�erent nulear interations.gap [17, 18℄. We present the alulation of these quantities for di�erent in-terations in a range of densities. We �nd that for � < 2�0 the CDBonnand the Nijmegen interations give very similar results (Figs. 6, 7). Thedi�erene of the alulation using the separable Paris potential an be at-tributed to the simpliity of that parameterization. The e�etive mass inour alulation omes out very lose to the free nuleon mass. It is usefulfor further appliations to parameterize its density dependenem?m = 1:43 � 0:623 ��0 + 0:146� ��0�2 (10)



2766 P. Bo»ek, P. Czerskiand similarly the for renormalization Zp at the Fermi momentum (Fig. 7)ZF = 0:57 + 0:2 ��0 � 0:05� ��0�2 : (11)The above parameterizations of the density dependene of the e�etive massand of the ZF fator are valid in the range 0:3�0 < � < 2:6�0. The lowdensity limit, m? = m and ZF = 1 at � = 0, annot be explored by thenumerial proedures we use and is beyond the range of appliability ofthe �ts (10) and (11). At normal nulear density ZF ' 0:72 whih meansa redution of the e�etive interation between quasipartiles by a fatorZ2F ' 0:5.We extend previous alulations of the self-onsistent T -matrix to softore CDBonn and Nijmegen nuleon�nuleon potentials. We inlude in thealulation partial waves up to the total angular momentum J = 8. Wepresent for the �rst time results on the binding energy for suh realistiand detailed parameterizations of the two-body interations. The reduedbinding leads to a harder equation of state, a smaller binding energy and asmaller saturation density than the BHF approximation. The pressure we�nd is thermodynamially onsistent as expeted for a onserving approxi-mation. The single-partile energy and the width at the quasipartile poleome out similarly for di�erent interations used. It is remarkable that dif-ferenes in the Hartree�Fok energies and di�erenes in the o�-shell behaviorof the imaginary part of the self-energy anel out in the single-partile po-tential. We present results on the properties of the quasipartile pole at theFermi surfae. The e�etive mass is lose to the free one and the renor-malization fator of the quasipartile pole is ZF ' 0:7 around the normalnulear density. REFERENCES[1℄ J.P. Jeukenne, A. Leugeunne, C. Mahaux, Phys. Rep. 25, 83 (1976).[2℄ R. Brokmann, R. Mahleit, Phys. Rev. C42, 1965 (1990).[3℄ R.B. Wiringa, V. Fiks, A. Fabroini, Phys. Rev. C38, 1010 (1988).[4℄ A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C58, 1804(1998).[5℄ W.H. Dikho�, Phys. Rev. C58, 2807 (1998).[6℄ P. Bo»ek, Phys. Rev. C59, 2619 (1999).[7℄ P. Bo»ek, P. Czerski, Eur. Phys. J. A11, 271 (2001).[8℄ P. Bo»ek, Phys. Rev. C65, 054306 (2002).[9℄ Y. Dewulf, D. Van Nek, M. Waroquier, Phys. Rev. C65, 054316 (2002).
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