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IN MEDIUM T -MATRIX WITH REALISTICNUCLEAR INTERACTIONS�Piotr Bo»ek and Piotr CzerskiH. Niewodni
za«ski, Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Poland(Re
eived De
ember 9, 2002)We 
al
ulate the self-
onsistent in-medium T -matrix for symmetri
 nu-
lear matter using realisti
 intera
tions with many partial waves. We �ndfor the intera
tions used (CDBonn and Nijmegen) very similar results foron-shell quantities. The e�e
tive mass and the renormalization fa
tor ZFat the Fermi momentum are given for a range of densities.PACS numbers: 21.65.+fThe presen
e of a strong intera
tion between nu
leons at short distan
esrequires the use of resummation methods for many-body 
al
ulations in nu-
lear matter. Besides the Brue
kner�Hartree�Fo
k (BHF) summation of lad-der diagrams [1,2℄ and advan
ed variational methods [3,4℄, the self-
onsistentin-medium T -matrix approa
h be
ame feasible in last years [5�9℄. The nu-meri
al method presented in [8℄ allows for e�
ient 
al
ulations using o�-shellnu
leon propagators with realisti
 intera
tions. Below we present results forthe CDBonn [10℄ and Nijmegen potentials [11℄ in
orporating all partial waveswith total angular momentum J < 9. The in medium T -matrix [12℄T = V + V GGT (1)is 
al
ulated with the Green's fun
tion G = �! � p2=2m����1 self-
onsis-tently dressed by the self-energy in the T -matrix approximationi� = Tr [TAG℄ : (2)� Supported by the Polish State Committee for S
ienti�
 Resear
h (KBN), grant2P03B02019. (2759)



2760 P. Bo»ek, P. CzerskiThe di�eren
e with respe
t to the BHF approa
h lies in the dressing of theGreen's fun
tions by the full spe
tral fun
tions, whi
h means o�-shell prop-agation. Also, the double Green's fun
tion in the T -matrix equation repre-sents the propagation of two parti
les or two-holes unlike in the Kernel ofthe Bethe�Goldstone equation in the BHF s
heme where the Pauli-blo
kingfa
tor for
es the propagation of two parti
les always. The above equationsare solved by iteration for several nu
lear densities � in the range 0.2�2.4normal nu
lear densities �0 = 0:16 fm�3. The details of the equations andnumeri
s 
an be found in Refs. [7, 8℄.We have improved the numeri
al algorithm to allow for many partial-waves in the T -matrix. We use a separable parameterization of the inter-a
tion, 
hoosing 8 most important eigen-ve
tors of the intera
tion in themomentum representation for ea
h un
oupled partial wave and 24 eigen-ve
tors for the 
oupled partial waves. This parameterization is essentiallyequivalent to the full parameterization in momentum. In previous T -matrix
al
ulations a low-rank separable parameterization of the Paris potentialwas used. In this paper we 
ompare the results for two realisti
 intera
tionswithout further simplifying approximations and taking many partial waves.With these 
al
ulations the binding energy and single-parti
le properties 
anbe found without un
ertainties due to te
hni
al simpli�
ations.The binding energy per parti
le in the T -matrix approa
h 
an be 
al
u-lated from the Koltun's sum ruleEN = 1� Z d3p(2�)3 �Z�1 d!2� 12� p22m + !�A(p; !) ; (3)where A is the nontrivial spe
tral fun
tion obtained for the dressed propa-gators. In fa
t any expression for the energy should give the same result,sin
e the self-
onsistent T -matrix approximation is thermodynami
ally 
on-sistent [13℄. The existen
e a generating fun
tion � for the self-energy guar-antees the ful�llment of thermodynami
al relations between single-parti
leand global properties of the system. The fa
t that the T -matrix s
heme isa 
onsistent (
onserving) approximation has been 
he
ked expli
itely in [7℄using a model intera
tion.In the upper panels of Figs. 1 and 2 is shown the binding energy in theT -matrix approximation as a fun
tion of the density in symmetri
 nu
learmatter 
ompared to the 
orresponding BHF results. As noted previouslythe T -matrix gives smaller binding energies and smaller saturation densitiesthan the BHF 
al
ulation. At low densities the BHF and the T -matrixresults 
onverge as expe
ted. The intera
tions studied in this work givesimilar results, e.g. at normal nu
lear density E=N = �14:3 and �14:1 MeVfor the CDBonn and Nijmegen intera
tion, respe
tively. The 
orresponding
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Fig. 1. Upper panel: The binding energy and the Fermi energy as a fun
tion ofdensity for the T -matrix approa
h and the binding energy in the BHF 
al
ulation,all for the CDBonn potential. Lower panel: The pressure as a fun
tion of densityobtained from two di�erent expressions Eqs. (5) and (6). The solid and the dashed-dotted lines representing the two results for the pressure in the T -matrix 
al
ulationlie almost on top of ea
h other.
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Fig. 2. Same as Fig. 1 but for the Nijmegen potential.



2762 P. Bo»ek, P. CzerskiBHF binding energies at that density are 3.3�3.5 MeV lower. In the same�gures the Fermi energy EF is shown. The Fermi energy in the T -matrix
al
ulation is 
onsistent with the binding energy; the Hugenholz�Van Hoverelation [14℄ EF = EN (at saturation density) (4)is automati
ally ful�lled.The pressure in the system 
an be obtained from several equivalent ex-pressions. We 
onsider P = �2 �(E=N)�� (5)and P = ��EF � EN� : (6)From the se
ond form follows the Hugenholz�Van Hove relation at the sat-uration point (P = 0). The expressions (5) and (6) are equivalent in theself-
onsistent T -matrix approximation. In the BHF approa
h the pressure
an be 
al
ulated as the derivative of the binding energy (5).
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Fig. 3. The imaginary part of the retarded self-energy �Im� (p; !) as a fun
tion ofthe energy ! for p = 0 (upper panel) and p = 340 MeV (lower panel) for di�erentnu
leon�nu
leon potentials at � = �0.



In Medium T -Matrix with Realisti
 Nu
lear Intera
tions 2763One-body properties are determined by the self-energy. In Fig. 3 is shownthe imaginary part of the self-energy �Im� (p; !). The self-energy is verysimilar for the CDBonn and Nijmegen potentials and 
lose to the result forthe Paris potential [8℄ for energies 
lose to the Fermi energy (j!j < 200 MeV)and for momenta up to 500 MeV. At higher energies di�eren
es start toappear, be
ause of di�erent o�-shell behavior of the T -matrix for di�erentintera
tions. The Paris intera
tion we use is a separable parameterizationwith a small number of partial waves, this 
an lead to additional di�eren
esas 
ompared to results from the other two potentials.As 
an be seen from Fig. 4 the self-energy on-shell, i.e. for ! = !p =p2=2m + Re� (p; !p), is similar for di�erent intera
tions. For momentap < 700 MeV the width of the quasiparti
le ex
itation is similar. It isalways zero at the Fermi momentum and in
reases quadrati
ally when goingaway from it. The quadrati
 in
rease of the single-parti
le width is given bythe 
ross se
tion and the density of states at the Fermi surfa
e. The 
rossse
tions are similar for di�erent parameterizations of the nu
lear potentialsand the density of states at the Fermi surfa
e is determined by the e�e
tivemass and the renormalization fa
torZp = �1� �Re� (p; !)�! ��1�����!=!p : (7)As shown below, those quantities obtained for di�erent nu
leon�nu
leonintera
tions are similar.
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Fig. 4. The imaginary part of the retarded self-energy �Im�(p; !p) at the quasi-parti
le pole as a fun
tion of the momentum (� = �0).



2764 P. Bo»ek, P. CzerskiThe real part of the self-energy determines the single-parti
le potential,i.e. the real part of the opti
al potential. The ful�llment of the Hugenholz�Van Hove relation guarantees the 
orre
t normalization of the single-parti
lepotential. The real part of the self-energy is given as the sum of the Hartree�Fo
k and dispersive 
ontributionsRe� (p; !) = �HF(p) + Z d!0� Im� (p; !0)! � !0 : (8)The Hartree�Fo
k part is di�erent for the Nijmegen and CDBonn potentials,but the total single-parti
le energy on-shell is very similar (Fig. 5). Thedi�eren
e in the Hartree�Fo
k part is 
ompensated by the dispersive part,whi
h in
ludes integration of the imaginary part of the self-energy far o�-shell. The di�eren
es in Im� (p; !) for ! > 200MeV (Fig. 3) give thene
essary shifts leading to similar total opti
al potentials (8). Although theNijmegen and CDBonn intera
tions show some di�eren
es in the o�-shellbehavior of the self-energies, the resulting properties of the quasiparti
lepole are very similar in the range of densities � < 2�0. The properties ofthe quasiparti
les at the Fermi surfa
e are de�ned by the renormalizationfa
tor (7) and the e�e
tive massm? = pdpd!p : (9)The e�e
tive mass and the renormalization fa
tor are important to de�nethe e�e
tive intera
tion between quasiparti
les [15, 16℄ and the super�uid
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Fig. 5. The single-parti
le potential Re� (p; !p) at the quasiparti
le pole as a fun
-tion of the momentum at � = �0. The upper 
urves represent the Hartree�Fo
k
ontribution for the Nijmegen and CDBonn intera
tions.
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Fig. 6. The e�e
tive mass m?=m at the Fermi surfa
e for di�erent nu
lear intera
-tions.
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Fig. 7. The renormalization fa
tor of the quasiparti
le pole Zp at the Fermi surfa
efor di�erent nu
lear intera
tions.gap [17, 18℄. We present the 
al
ulation of these quantities for di�erent in-tera
tions in a range of densities. We �nd that for � < 2�0 the CDBonnand the Nijmegen intera
tions give very similar results (Figs. 6, 7). Thedi�eren
e of the 
al
ulation using the separable Paris potential 
an be at-tributed to the simpli
ity of that parameterization. The e�e
tive mass inour 
al
ulation 
omes out very 
lose to the free nu
leon mass. It is usefulfor further appli
ations to parameterize its density dependen
em?m = 1:43 � 0:623 ��0 + 0:146� ��0�2 (10)



2766 P. Bo»ek, P. Czerskiand similarly the for renormalization Zp at the Fermi momentum (Fig. 7)ZF = 0:57 + 0:2 ��0 � 0:05� ��0�2 : (11)The above parameterizations of the density dependen
e of the e�e
tive massand of the ZF fa
tor are valid in the range 0:3�0 < � < 2:6�0. The lowdensity limit, m? = m and ZF = 1 at � = 0, 
annot be explored by thenumeri
al pro
edures we use and is beyond the range of appli
ability ofthe �ts (10) and (11). At normal nu
lear density ZF ' 0:72 whi
h meansa redu
tion of the e�e
tive intera
tion between quasiparti
les by a fa
torZ2F ' 0:5.We extend previous 
al
ulations of the self-
onsistent T -matrix to soft
ore CDBonn and Nijmegen nu
leon�nu
leon potentials. We in
lude in the
al
ulation partial waves up to the total angular momentum J = 8. Wepresent for the �rst time results on the binding energy for su
h realisti
and detailed parameterizations of the two-body intera
tions. The redu
edbinding leads to a harder equation of state, a smaller binding energy and asmaller saturation density than the BHF approximation. The pressure we�nd is thermodynami
ally 
onsistent as expe
ted for a 
onserving approxi-mation. The single-parti
le energy and the width at the quasiparti
le pole
ome out similarly for di�erent intera
tions used. It is remarkable that dif-feren
es in the Hartree�Fo
k energies and di�eren
es in the o�-shell behaviorof the imaginary part of the self-energy 
an
el out in the single-parti
le po-tential. We present results on the properties of the quasiparti
le pole at theFermi surfa
e. The e�e
tive mass is 
lose to the free one and the renor-malization fa
tor of the quasiparti
le pole is ZF ' 0:7 around the normalnu
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